
Math 416

Worksheet 13. Graph search

We turn toward the algorithmic problem of connectivity: given vertices s and t in a graph G, is
there a path from s to t? Can we find it algorithmically?

Breadth-first search The idea: start at s, explore all neighbors one ‘layer’ at a time; at the end
can check whether t is in one of the layers. In this way, bfs produces a rooted tree with root s.

Breadth-first search (bfs) takes as input a graph G and a vertex s in G. It produces a rooted
tree with root s and stratifies the graph into layers L0, L1, . . . as follows.

L0 = {s}
L1 = {neighbors of s}
L2 = {v /∈ L0 ∪ L1 that are adjacent to a vertex in L1}
...

...
Li+1 = {v /∈ L0 ∪ · · · ∪ Li that are adjacent to a vertex in Li}.

The distance between two vertices x and y in a graph is the length of the shortest path from x to y
(if there is no path we say the distance is ∞). We can give a different definition of the layers of bfs
by setting

Li = {vertices of distance i from s}.
bfs is an instance of the following underspecified algorithm for exploring a graph from a vertex s:

Starting with R = {s}, iteratively grow R by adding new vertices adjacent to a vertex in R, until
you run out of such vertices. One way to implement this is to grow R in ‘layers’ as bfs does.

Depth-first search. Another such algorithm is suggested by a natural approach to exploring a
maze: explore until you reach a dead-end and then backtrack.

Algorithm 1: the explore subroutine
1 explore(v):
2 visited(v) = true;

// (previsit work)
3 foreach neighbor u of v do
4 if not visited(u) then
5 explore (u);

// (postvisit work)

Algorithm 2: Depth-first search
1 DFS(G, s, t):

Input: a graph G = (V,E), a start vertex s and a target vertex t
Output: whether s is connected to t

// initialize
2 foreach v ∈ V do
3 set visited(v) = false.
4 explore (s);
5 if visited(t) then
6 return true



If you visit w in virtue of its being a neighbor of v, then you can also add the edge (v, w) to a tree.
At the end, you will have a spanning tree of the connected component rooted at the start vertex s.
This is called the dfs tree. (The algorithm is underspecified; you should use an ordering on the
vertices to break ties.)
Problem 1.

(a) Perform bfs on the graph in (1) starting at any vertex. Identify the layers Li.
(b) Perform dfs on the graph in (1) starting at any vertex.
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Problem 2. Prove the following.
(a) If x and y are adjacent vertices and x ∈ Li and y ∈ Lj , then |i− j| ≤ 1.
(b) The set of vertices visited by bfs is exactly the connected component containing s.
(c) Explain how edges can be kept track of in the execution of bfs in such a way that bfs

produces a subtree of G that spans the connected component containing s. (Hint: give
the vertices an ordering.)

Item (a) says that edges not in the bfs tree pass between vertices in the same layer or between
vertices in adjacent layers.
Definition. Recall that a rooted tree is a tree (connected, acyclic graph) with a specified vertex
r, called the root.

Recall that a graph T is a tree iff between any two vertices of T there is a unique path. Thus in a
rooted tree every vertex has a unique path to the root.
Definition. If x and y are vertices in a rooted tree (T, r), then we say. . .

(a) x is a descendant of y (or y is an ancestor of x) if y occurs on the unique path from x to
the root r.

(b) x is a child of y (or y is a parent of x) if x is a descendant of y and a neighbor of y.
Problem 3. Draw a picture explaining the definition.
Problem 4. (a) Explain how the dfs and the bfs algorithms can be “enriched" to keep track

of the edges of a dfs tree and a bfs tree, both rooted trees with root s.
(b) With the graph in (1), which starting vertex gives the bfs tree with the minimum height?

Problem 5. Look at the graph below. If the blue (solid) portion is the dfs tree starting at s, why
can’t the graph have an edge indicated by the dashed line? (Certainly the dfs tree cannot have that
edge, but the original graph can’t either!)
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Problem 6. Run dfs on the graph in (†), starting at S and then using the alphabetical ordering.
Draw the dfs tree. Verify that every non-tree edge is incident to a vertex and its descendant.
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Problem 7. Prove the following assertion: In a call to explore(v), all vertices marked ‘visited’
between calling and the end of the execution are descendants of v in the dfs tree T .

Explain why the following Corollary is true.

Corollary. Suppose that T is the dfs tree rooted at r in a graph G. If x and y are vertices of T
and x and y are adjacent in G, then one of x and y is a descendant of the other in T .

Definition. H is a subgraph of G if V (H) ⊆ V (G) and E(H) ⊆ E(G). A spanning tree of G is
a subgraph H such that (1) H is a tree and (2) V (H) = V (G).

Theorem. A graph is connected if and only if it has a spanning tree.

Problem 8. Prove the theorem. (Hint: What might this have to do with algorithms?)

On implementation and running time In practice, it is often better to represent graphs by
adjacency lists rather than adjacency matrices. In the adjacency list representation, to each vertex
v is associated a list L[v] of the neighbors of v.

Problem 9. While the adjacency-matrix representation takes O(n2) space for an n-vertex graph,
the adjacency-list representation requires O(m+ n) space, which for sparse graphs (i.e., graphs for
which m is small relative to n) is less. Explain.

Problem 10. Explain why bfs runs in O(m + n) time on a graph with n vertices and m edges,
assuming the graph is given by its adjacency list representation.

Problem 11. By consulting one of the CS majors in your group, complete and explain the following
analogy.

bfs : queue :: dfs :

Problem 12. Give a (vague but convincing) explanation for why dfs runs in linear time, using
adjacency lists.

Testing bipartiteness with bfs (Assume that G is connected; if not, we can work component-
by-component.)

Definition. A graph G is bipartite iff there is a partition V = R t B of its vertices into two
(disjoint) pieces R and B so that every edge is incident to one vertex in R and one in B.

This presents an algorithmic problem: determine whether a graph G is bipartite and, if it is, find
a bipartition.

Theorem. G is bipartite if and only if G has no odd cycle.

Problem 13. We’re about to prove the harder direction ⇐; why is the other direction true?
(Hint: Suppose that you have an odd cycle and that the vertices are partitioned into R and B. How many

R–B edges can appear in the cycle?)



Here is the idea: start with s and declare s ∈ B. Put all neighbors of s into R. Color their
neighbors Blue. Continue. Hope for the best. This will either produce a bipartition or should yield
a blue edge or a red edge.

Do bfs starting at s and obtain layers L0, L1, . . . .

B = L0 ∪ L2 ∪ L4 ∪ · · ·
R = L1 ∪ L3 ∪ L5 ∪ · · · (∗)

At the end review the m edges to check whether there’s an R–R or B–B edge.

Proposition. Let G be a connected graph and L0, L1, . . . the layers produced by bfs. Then exactly
one of the following holds.

(i) There is no edge (x, y) of G with x, y ∈ Li.
This implies that G is bipartite with bipartition (∗).

(ii) There is an edge (x, y) of G with x, y ∈ Li.
This implies that G has an odd cycle and is therefore not bipartite.

Problem 14.
(a) Why can’t both conditions hold?
(b) Suppose that x, y ∈ Li are adjacent, as in condition (ii). The vertices x and y certainly have

a common ancestor in the bfs tree, namely the root r. Explain why there may not be a
cycle including x, y, and r, though. So we choose a common ancestor z of x and y in Lj for
j maximal.

(c) There are unique paths from x to z and from y to z in T . How long are they?
(d) You should have produced an odd cycle. Verify that you have.
(e) Be sure that you have completed the proof of the Proposition.

Corollary. If G has no odd cycle, then G is bipartite.

Problem 15. Explain why the Corollary follows from the Proposition.

Problem 16. By running bfs starting at vertex A in each case, determine whether each of these
graphs is bipartite and if not which odd cycle the algorithm exhibits.
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