– Math 416

Worksheet 12. Graphs, Chapter 0

We briefly review graphs, though many of you have probably seen them before.

Definition. A graph is a set V = V(G) of vertices (typically something like $V = \{1, 2, ..., n\}$) together with a set $E = E(G) \subseteq [V]^2$ of edges. (Edges are unordered pairs.)

Aside. The graphs we're considering now are simple graphs, that is graphs with at most 1 edge between two vertices and no loops. There are (at least) three natural ways to generalize them.

- (i) You might allow loops, so that (x, x) can be an edge.
- (ii) In a **directed graph** the edges are ordered pairs, so that (x, y) might be an edge while (y, x) is not.
- (iii) You might also allow parallel edges, so that an edge (x, y) comes with a multiplicity that tells you how many copies of it appear in the graph.

Problem 1. Suppose that G is a graph with n = |V| vertices. Is there a maximum number of edges that G can have? If so, what is that maximum?

Here is a picture of a graph with vertex set $\{A, B, C, D, E\}$.

In computing, a graph is often coded by its **adjacency matrix**. If G has n vertices x_1, \ldots, x_n , then the adjacency matrix of G (associated to this ordering of the vertices) is the $n \times n$ matrix M whose entries are either 0 or 1, as the following formula explains.

$$M_{ij} = \begin{cases} 1 & \text{if } (x_i, x_j) \in E \\ 0 & \text{if } (x_i, x_j) \notin E \end{cases}$$

Problem 2. Give the adjacency matrix of the graph pictured in (1).

Problem 3. How can you look at an $n \times n$ matrix and tell whether it is the adjacency matrix of some simple graph?

Another data structure associated to graph is the **adjacency list**, which stores in its i^{th} entry the list of vertices to which the i^{th} is adjacent. But let's not worry about that for now.

Definition. In a graph G, two vertices x and y are said to be **adjacent** if $\{x, y\}$ is an edge in G. We also say that x and y are **neighbors**.

The **degree** of a vertex x in a graph G is the number of its neighbors. We write this as

$$\deg_G(x) = |\{y \in V(G) : y \text{ is adjacent to } x\}|.$$

(Or just deg(x) if the graph G is clear from context.)

On the Problem Set you will prove...

Lemma (Handshake lemma). The sum of the degrees is twice the number of edges. That is,

$$\sum_{v \in V(G)} \deg(v) = 2 \cdot |E|$$

Definition (many standard definitions). For a graph G = (V, E), we define the following terms.

- (a) A walk of length n 1 is a sequence (v_0, v_1, \ldots, v_n) of vertices in which v_k and v_{k+1} are adjacent for every k < n. (Notice that vertices can be repeated.)
- (b) A walk (v_0, \ldots, v_n) is called a (simple) **path** of length n if the vertices v_0, \ldots, v_n visited by the walk are all distinct: $j \neq k$ implies $v_j \neq v_k$.
- (c) A walk (v_0, \ldots, v_n) is a **cycle** if (v_0, \ldots, v_{n-1}) is a path of length n-1, and v_{n-1} and v_n are adjacent, and $v_0 = v_n$.
- (d) Vertices x and y are **connected** (in G) if there is a path from x to y. Connectedness defines an equivalence relation; the equivalence classes are called the **connected components** of G. If any two vertices in G are connected, then G is said to be a **connected** graph.
- (e) A connected graph with no cycles (**acyclic**) is a **tree**.

Problem 4.

- (a) Give examples of connected and disconnected graphs.
- (b) Give two examples of trees. In each one, count the vertices and the edges. What do you notice?

Problem 5. Suppose that G = (V, E) is a graph.

- (a) Let v, w be vertices of G. Prove that if there is a walk from v to w in G, then there is a path from v to w in G.
- (b) Sketch a proof that connectedness is an equivalence relation on the vertices of G. (Caution: there is something that needs to be proved!)

Remark. We say that a graph algorithm is **linear** if its running time is O(m + n), where m = |E| and n = |V|. It is a consequence of the Handshake Lemma that $n + m \in O(n^2)$.

Definition. A complete graph is a simple graph where every pair of vertices is connected by an edge. We denote the complete graph on n vertices by K_n .

Problem 6. (For fun)

- (1) Prove that K_n is the simple graph with the most possible edges.
- (2) Show that K_2 , K_3 , and K_4 can be *embedded in* \mathbb{R}^2 meaning you can draw them in \mathbb{R}^2 without crossing any edges.
- (3) Prove that K_5 is not planar, i.e. it cannot be embedded in \mathbb{R}^2 .