Worksheet 11. The Fast Fourier Transform

Remember that we want to evaluate a polynomial $A(x)$ at the $n^{\text {th }}$ roots of unity $1, \zeta, \ldots, \zeta^{n-1}$. The idea: to evaluate $A\left(\zeta^{k}\right)$, we recursively evaluate $A_{\text {even }}\left(\zeta^{2 k}\right)$ and $A_{\text {odd }}\left(\zeta^{2 k}\right)$ and combine as follows:

$$
\begin{aligned}
A\left(\zeta^{k}\right) & =A_{\text {even }}\left(\zeta^{2 k}\right)+\zeta^{k} A_{\text {odd }}\left(\zeta^{2 k}\right) \\
A\left(\zeta^{k+n / 2}\right) & =A_{\text {even }}\left(\zeta^{2 k}\right)-\zeta^{k} A_{\text {odd }}\left(\zeta^{2 k}\right)
\end{aligned}
$$

Problem 1. Why does the second equation give the correct value for $A\left(\zeta^{k+n / 2}\right)$?
Here is the algorithm.

```
Algorithm 1: Fast Fourier Transform
    FFT \((a, \zeta)\)
    Input: A sequence \(a=\left(a_{0}, \ldots, a_{n-1}\right), n\) a power of 2 , a primitive \(n^{\text {th }}\) root of unity \(\zeta\)
    Output: \(M_{n}(\zeta) \cdot a\)
    if \(\zeta=1\) then
        return \(a\)
    \(\operatorname{set}\left(E_{0}, E_{1}, \ldots, E_{n / 2-1}\right)=\operatorname{FFT}\left(\left(a_{0}, a_{2}, \ldots, a_{n-2}\right), \zeta^{2}\right)\);
    set \(\left(O_{0}, O_{1}, \ldots, O_{n / 2-1}\right)=\operatorname{FFT}\left(\left(a_{1}, a_{3}, \ldots, a_{n-1}\right), \zeta^{2}\right)\);
    foreach \(k=0\) to \(n / 2-1\) do
        set \(c_{k}=E_{k}+\zeta^{k} O_{k}\);
        set \(c_{k+n / 2}=E_{k}-\zeta^{k} O_{k}\);
    return \(\left(c_{0}, c_{1}, \ldots, c_{n-1}\right)\)
```


Problem 2.

(a) Run $\operatorname{FFT}((x, y),-1)$ to see that FFT works correctly on sequences of size 2 .
(b) Verify (using either i or $-i$) that the FFT algorithm works correctly on input sequences of size 4 .
We want to prove that the FFT algorithm is correct, i.e., that

$$
\begin{aligned}
\operatorname{FFT}\left(z_{\bullet}, \zeta^{-1}\right) & =M\left(\zeta^{-1}\right) z_{\bullet}
\end{aligned}=\operatorname{DFT}\left(z_{\bullet}\right) \text { and }, ~=\frac{1}{n} \operatorname{FFT}\left(c_{\bullet}, \zeta\right)=\frac{1}{n} M(\zeta) c_{\bullet}=\operatorname{IFT}\left(c_{\bullet}\right), ~ l
$$

where here by ζ we mean $e^{2 \pi i / n}$.
This boils down to the following fact.
Proposition. Suppose that $c_{\bullet}=M_{n}(\zeta)\left(z_{\bullet}\right)$ and write

$$
\begin{aligned}
& E_{\bullet}=M_{n / 2}\left(\zeta^{2}\right) \cdot\left[\begin{array}{llll}
z_{0} & z_{2} & \cdots & z_{n-2}
\end{array}\right]^{\top} \quad \text { and } \\
& O_{\bullet}=M_{n / 2}\left(\zeta^{2}\right) \cdot\left[\begin{array}{llll}
z_{1} & z_{3} & \cdots & z_{n-1}
\end{array}\right]^{\top}
\end{aligned}
$$

Then c_{0}, \ldots, c_{n-1} are given by the following formula, for $k=0,1, \ldots, n / 2-1$.

$$
\begin{aligned}
c_{k} & =E_{k}+\zeta^{k} O_{k} \\
c_{k+n / 2} & =E_{k}-\zeta^{k} O_{k}
\end{aligned}
$$

Problem 3. Write down exactly what the Proposition is asserting in the case $n=4, \zeta=i$.
Problem 4. Prove the Proposition, and explain why the correctness of the FFT algorithm follows.

Here's another way to look at it:

$$
M\left(\zeta^{-1}\right) z_{\bullet}=\left[\begin{array}{cc}
I_{n / 2} & D_{n / 2} \\
I_{n / 2} & -D_{n / 2}
\end{array}\right]\left[\begin{array}{c}
M\left(\zeta^{-2}\right) z_{\mathrm{even}} \\
M\left(\zeta^{-2}\right) z_{\mathrm{odd}}
\end{array}\right] .
$$

Problem 5. In Equation $(\star), I_{n / 2}$ is the $(n / 2) \times(n / 2)$ identity matrix. What is $D_{n / 2}$?
Running time The FFT Algorithm, on an input sequence of length n, makes two recursive calls to itself on input sequences of length $n / 2$, and also does some variable reassignment, etc., that takes $\Theta(n)$ time.
Problem 6. Write $T(n)$ for the worst-case running time of the FFT Algorithm on input sequences of size n.
(a) What is the recurrence that $T(n)$ satisfies?
(b) Which case of the Master Theorem does this fall under?
(c) What can we conclude about the asymptotics of $T(n)$ from the Master Theorem?

Polynomial multiplication Our original goal was to multiply polynomials $f(x)$ and $g(x)$ efficiently. The idea is to use FFT to pass from the coefficient forms of f and g to their point-value forms: $\left(f(1), f(\zeta), f\left(\zeta^{2}\right), \ldots, f\left(\zeta^{n-1}\right)\right)$ and similarly for g. Then it is easy to multiply in point-value form: e.g. $(f \cdot g)(\zeta)=f(\zeta) \cdot g(\zeta)$. Then we use FFT to convert back to coefficient form.

Problem 7. Write out this polynomial-multiplication procedure in pseudocode, calling the FFT subroutine as necessary.
Remark. Base- b notation (e.g. in base $b=10,753=7 \cdot 10^{2}+5 \cdot 10+3 \cdot 10^{0}$) expresses integers as polynomials evaluated at b, so a fast algorithm for polynomial multiplication gives a fast algorithm for integer multiplication.

Culture: for the interested reader

- FFT crucial for signal-processing. See Wikipedia.
- FFT credited to Cooley-Tukey (1965), but the main ideas go back to Gauss 1805.
- Shor's quantum algorithm to factor into primes uses a quantum FFT.
- Can $O(n \log n)$ be improved? Open question!

Fourier analysis: for the interested reader What the heck does this have to do with Fourier analysis?

If $f: \mathbb{R} \rightarrow \mathbb{R}$ is 2π-periodic and 'reasonable' (bounded derivative, differentiable at most points, \ldots), then there are real numbers $a_{0}, a_{1}, b_{1}, a_{2}, b_{2}, \ldots$ such that

$$
\begin{equation*}
f(x)=a_{0}+a_{1} \cos (x)+b_{1} \sin (x)+a_{2} \cos (2 x)+b_{2} \sin (2 x)+\cdots \tag{1}
\end{equation*}
$$

(and in particular the expression on the right converges). This is called the Fourier series of f. (Compare to the Taylor series: $\sum a_{n} x^{n}$.)

A 2π-periodic function is better thought of as a function $S^{1} \rightarrow \mathbb{R}$, or even better $S^{1} \rightarrow \mathbb{C}$. (This S^{1} is the unit circle.) Try again with functions $\theta \mapsto e^{i \pi \theta}$:

$$
\begin{align*}
f(\theta) & =\cdots+c_{-2} e^{-2 i \theta}+c_{-1} e^{-i \theta}+c_{0}+c_{1} e^{i \theta}+c_{2} e^{2 i \theta}+\cdots \tag{2}\\
& =\sum_{-\infty}^{\infty} c_{k} e^{i k \theta} \\
& =\sum_{-\infty}^{\infty} c_{k}(\cos (k \theta)+i \sin (k \theta)) \\
& =c_{0}+\sum_{k=1}^{\infty} c_{k}(\cos (k \theta)+i \sin (k \theta))+c_{-k}(\cos (k \theta)-i \sin (k \theta)) \\
& =c_{0}+\sum_{k=1}^{\infty}\left(c_{k}+c_{-k}\right) \cos (k \theta)+i\left(c_{k}-c_{-k}\right) \sin (k \theta) .
\end{align*}
$$

Set $a_{0}=c_{0}$ and $a_{k}=c_{-k}+c_{k}, b_{k}=i\left(c_{k}-c_{-k}\right)$ for $k>0$ to get the first expression (1).
Exercise. Assuming $f(\theta)$ equals a series as in (2) above, and that integration of infinite series can be done term by term, show that

$$
c_{k}=\frac{1}{2 \pi} \int_{0}^{2 \pi} f(\theta) e^{-i k \theta} d \theta
$$

The Fourier Transform sends f to $\left(c_{k}: k \in \mathbb{Z}\right)$; its inverse sends the sequence \vec{c} to f.
Now observe that the Riemann sum of $\int_{0}^{2 \pi} \frac{1}{2 \pi} f(\theta) e^{-i k \theta} d \theta$ with n sample points $\theta=2 l \pi / n$, $l=0,1, \ldots, n-1$, is

$$
\begin{aligned}
\frac{1}{2 \pi} \sum_{l=0}^{n-1} f(2 l \pi / n) e^{-i k \theta} \cdot \frac{2 \pi}{n} & =\frac{1}{n} \sum_{l=0}^{n-1} f(2 l \pi / n) e^{-2 \pi i k l / n} \\
& =\frac{1}{n} \operatorname{DFT}(f(0), f(2 \pi / n), f(4 \pi / n), \ldots, f(2(n-1) / n \pi))
\end{aligned}
$$

a 'uniform sample' from f.
(Notice that our $\frac{1}{n}$ shows up in IFT instead. You can do it either way.)

