– Math 416

Worksheet 11. The Fast Fourier Transform

Remember that we want to evaluate a polynomial A(x) at the n^{th} roots of unity $1, \zeta, \ldots, \zeta^{n-1}$. The idea: to evaluate $A(\zeta^k)$, we recursively evaluate $A_{\text{even}}(\zeta^{2k})$ and $A_{\text{odd}}(\zeta^{2k})$ and combine as follows:

$$A(\zeta^k) = A_{\text{even}}(\zeta^{2k}) + \zeta^k A_{\text{odd}}(\zeta^{2k})$$
$$A(\zeta^{k+n/2}) = A_{\text{even}}(\zeta^{2k}) - \zeta^k A_{\text{odd}}(\zeta^{2k})$$

Problem 1. Why does the second equation give the correct value for $A(\zeta^{k+n/2})$?

Here is the algorithm.

Algorithm 1: Fast Fourier Transform

FFT(a, ζ)
Input: A sequence a = (a₀,..., a_{n-1}), n a power of 2, a primitive nth root of unity ζ
Output: M_n(ζ) ⋅ a
if ζ = 1 then

 $\mathbf{3}$ **return** a

4 set $(E_0, E_1, \ldots, E_{n/2-1}) = FFT((a_0, a_2, \ldots, a_{n-2}), \zeta^2);$

5 set $(O_0, O_1, \dots, O_{n/2-1}) = FFT((a_1, a_3, \dots, a_{n-1}), \zeta^2);$

6 foreach k = 0 to n/2 - 1 do

7 | set $c_k = E_k + \zeta^k O_k$;

s
$$[$$
 set $c_{k+n/2} = E_k - \zeta^{\kappa} O_k;$

9 return $(c_0, c_1, \ldots, c_{n-1})$

Problem 2.

- (a) Run FFT((x, y), -1) to see that FFT works correctly on sequences of size 2.
- (b) Verify (using either i or -i) that the FFT algorithm works correctly on input sequences of size 4.

We want to prove that the FFT algorithm is correct, i.e., that

$$\begin{aligned} \operatorname{FFT}(z_{\bullet},\zeta^{-1}) &= M(\zeta^{-1})z_{\bullet} = \operatorname{DFT}(z_{\bullet}) \text{ and} \\ \frac{1}{n}\operatorname{FFT}(c_{\bullet},\zeta) &= \frac{1}{n}M(\zeta)c_{\bullet} &= \operatorname{IFT}(c_{\bullet}), \end{aligned}$$

where here by ζ we mean $e^{2\pi i/n}$.

This boils down to the following fact.

Proposition. Suppose that $c_{\bullet} = M_n(\zeta)(z_{\bullet})$ and write

$$E_{\bullet} = M_{n/2}(\zeta^2) \cdot \begin{bmatrix} z_0 & z_2 & \cdots & z_{n-2} \end{bmatrix}^{\top} \text{ and } O_{\bullet} = M_{n/2}(\zeta^2) \cdot \begin{bmatrix} z_1 & z_3 & \cdots & z_{n-1} \end{bmatrix}^{\top}.$$

Then c_0, \ldots, c_{n-1} are given by the following formula, for $k = 0, 1, \ldots, n/2 - 1$.

$$c_k = E_k + \zeta^k O_k$$
$$c_{k+n/2} = E_k - \zeta^k O_k$$

Problem 3. Write down exactly what the Proposition is asserting in the case n = 4, $\zeta = i$.

Problem 4. Prove the Proposition, and explain why the correctness of the FFT algorithm follows.

Here's another way to look at it:

$$M(\zeta^{-1})z_{\bullet} = \begin{bmatrix} I_{n/2} & D_{n/2} \\ I_{n/2} & -D_{n/2} \end{bmatrix} \begin{bmatrix} M(\zeta^{-2})z_{\text{even}} \\ M(\zeta^{-2})z_{\text{odd}} \end{bmatrix}.$$
 (*)

Problem 5. In Equation (*), $I_{n/2}$ is the $(n/2) \times (n/2)$ identity matrix. What is $D_{n/2}$?

Running time The FFT Algorithm, on an input sequence of length n, makes two recursive calls to itself on input sequences of length n/2, and also does some variable reassignment, etc., that takes $\Theta(n)$ time.

Problem 6. Write T(n) for the worst-case running time of the FFT Algorithm on input sequences of size n.

- (a) What is the recurrence that T(n) satisfies?
- (b) Which case of the Master Theorem does this fall under?
- (c) What can we conclude about the asymptotics of T(n) from the Master Theorem?

Polynomial multiplication Our original goal was to multiply polynomials f(x) and g(x) efficiently. The idea is to use FFT to pass from the coefficient forms of f and g to their point-value forms: $(f(1), f(\zeta), f(\zeta^2), \ldots, f(\zeta^{n-1}))$ and similarly for g. Then it is easy to multiply in point-value form: e.g. $(f \cdot g)(\zeta) = f(\zeta) \cdot g(\zeta)$. Then we use FFT to convert back to coefficient form.

Problem 7. Write out this polynomial-multiplication procedure in pseudocode, calling the FFT subroutine as necessary.

Remark. Base-*b* notation (e.g. in base b = 10, $753 = 7 \cdot 10^2 + 5 \cdot 10 + 3 \cdot 10^0$) expresses integers as polynomials evaluated at *b*, so a fast algorithm for polynomial multiplication gives a fast algorithm for integer multiplication.

Culture: for the interested reader

- FFT crucial for signal-processing. See Wikipedia.
- FFT credited to Cooley–Tukey (1965), but the main ideas go back to Gauss 1805.
- Shor's quantum algorithm to factor into primes uses a quantum FFT.
- Can $O(n \log n)$ be improved? Open question!

Fourier analysis: for the interested reader What the heck does this have to do with Fourier analysis?

If $f : \mathbb{R} \to \mathbb{R}$ is 2π -periodic and 'reasonable' (bounded derivative, differentiable at most points, ...), then there are real numbers $a_0, a_1, b_1, a_2, b_2, \ldots$ such that

$$f(x) = a_0 + a_1 \cos(x) + b_1 \sin(x) + a_2 \cos(2x) + b_2 \sin(2x) + \cdots$$
(1)

(and in particular the expression on the right converges). This is called the **Fourier series** of f. (Compare to the Taylor series: $\sum a_n x^n$.)

A 2π -periodic function is better thought of as a function $S^1 \to \mathbb{R}$, or even better $S^1 \to \mathbb{C}$. (This S^1 is the unit circle.) Try again with functions $\theta \mapsto e^{i\pi\theta}$:

$$f(\theta) = \dots + c_{-2}e^{-2i\theta} + c_{-1}e^{-i\theta} + c_0 + c_1e^{i\theta} + c_2e^{2i\theta} + \dots$$
(2)
$$= \sum_{-\infty}^{\infty} c_k e^{ik\theta}$$
$$= \sum_{-\infty}^{\infty} c_k (\cos(k\theta) + i\sin(k\theta))$$
$$= c_0 + \sum_{k=1}^{\infty} c_k (\cos(k\theta) + i\sin(k\theta)) + c_{-k} (\cos(k\theta) - i\sin(k\theta))$$
$$= c_0 + \sum_{k=1}^{\infty} (c_k + c_{-k})\cos(k\theta) + i(c_k - c_{-k})\sin(k\theta).$$

Set $a_0 = c_0$ and $a_k = c_{-k} + c_k$, $b_k = i(c_k - c_{-k})$ for k > 0 to get the first expression (1).

Exercise. Assuming $f(\theta)$ equals a series as in (2) above, and that integration of infinite series can be done term by term, show that

$$c_k = \frac{1}{2\pi} \int_0^{2\pi} f(\theta) e^{-ik\theta} \, d\theta$$

The Fourier Transform sends f to $(c_k : k \in \mathbb{Z})$; its inverse sends the sequence \vec{c} to f. Now observe that the Riemann sum of $\int_0^{2\pi} \frac{1}{2\pi} f(\theta) e^{-ik\theta} d\theta$ with n sample points $\theta = 2l\pi/n$, $l = 0, 1, \ldots, n-1$, is

$$\frac{1}{2\pi} \sum_{l=0}^{n-1} f(2l\pi/n) e^{-ik\theta} \cdot \frac{2\pi}{n} = \frac{1}{n} \sum_{l=0}^{n-1} f(2l\pi/n) e^{-2\pi ikl/n}$$
$$= \frac{1}{n} \operatorname{DFT}(f(0), f(2\pi/n), f(4\pi/n), \dots, f(2(n-1)/n\pi)),$$

a 'uniform sample' from f.

(Notice that our $\frac{1}{n}$ shows up in IFT instead. You can do it either way.)