Worksheet 10. The Discrete Fourier Transform

We want to interpolate! That is, we still want to be able to take n values of a polynomial $A\left(x_{0}\right), A\left(x_{1}\right), \ldots, A\left(x_{n-1}\right)$ and return its coefficients $a_{0}, a_{1}, \ldots, a_{n-1}$. This problem can be thought of in terms of matrices:

$$
\left[\begin{array}{c}
A\left(x_{0}\right) \\
A\left(x_{1}\right) \\
\vdots \\
A\left(x_{n-1}\right)
\end{array}\right]=\left[\begin{array}{ccccc}
1 & x_{0} & x_{0}^{2} & \cdots & x_{0}{ }^{n-1} \\
1 & x_{1} & x_{1}^{2} & \cdots & x_{1}{ }^{n-1} \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
1 & x_{n-1} & x_{n-1}{ }^{2} & \cdots & x_{n-1}{ }^{n-1}
\end{array}\right]\left[\begin{array}{c}
a_{0} \\
a_{1} \\
\vdots \\
a_{n-1}
\end{array}\right]
$$

The large $n \times n$ matrix M is called a Vandermonde matrix; if the x_{i} are distinct then M is invertible. So interpolation is just multiplication by M^{-1}.

The naïve algorithm (of basic linear algebra) for finding the inverse of an $n \times n$ matrix takes $O\left(n^{3}\right)$ time. Vandermonde matrices are special and their structure can be exploited to improve this to $O\left(n^{2}\right)$ time, but this is still too expensive for our $O(n \log n)$ goal.

But remember that our plan was to interpolate using the roots of unity. If ζ is an $n^{\text {th }}$ root of unity and $x_{i}=\zeta^{i}$ then that matrix M above, which we now call $M_{n}(\zeta)$, becomes

$$
M_{n}(\zeta)=\left[\begin{array}{ccccc}
1 & 1 & 1 & \cdots & 1 \\
1 & \zeta & \zeta^{2} & \cdots & \zeta^{n-1} \\
1 & \zeta^{2} & \zeta^{4} & \cdots & \zeta^{2(n-1)} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & \zeta^{n-1} & \zeta^{2(n-1)} & \cdots & \zeta^{(n-1)(n-1)}
\end{array}\right]
$$

For example,
Problem 1. Write down $M_{4}(i)$. And $M_{4}(-i)$ too, while you're at it.
Problem 2. Let $\zeta=e^{2 \pi i / n}$.
(a) Show that the $(i, j)^{\text {th }}$ entry of $M_{n}(\zeta)$ is $\zeta^{i j}$ and conclude that $M_{n}(\zeta)$ is a symmetric matrix.
(b) Establish the following formula for the sum of the powers of ζ^{m}.

$$
\sum_{l=0}^{n-1} \zeta^{m l}= \begin{cases}n & \text { if } m \text { is a multiple of } n \\ 0 & \text { otherwise }\end{cases}
$$

(c) Prove that $M(\zeta) M\left(\zeta^{-1}\right)=n I$, where I is the $n \times n$ identity matrix.
(d) Find a formula for the (matrix) inverse of $M(\zeta)$.
(e) Go back through this problem and make sure that you never actually used the fact that $\zeta=e^{2 \pi i / n}$. What you use is that ζ is a primitive $n^{\text {th }}$ root of unity, meaning that $\zeta^{k}=1$ iff n divides k.
Definition. The discrete Fourier transform (DFT) of a sequence $z_{\bullet}=\left(z_{0}, \ldots, z_{n-1}\right)$ is the sequence $\operatorname{DFT}\left(z_{\bullet}\right)=\left(c_{0}, \ldots, c_{n-1}\right)$ where

$$
c_{k}=\sum_{l=0}^{n-1} z_{l} e^{-2 \pi i k l / n}=\sum_{l=0}^{n-1} z_{l} \zeta^{-k l}
$$

(In this case we insist that $\zeta=e^{2 \pi i / n}$. This distinction is important.)

Problem 3. Thinking of z_{\bullet} as a column vector, fill in the blank:

$$
\operatorname{DFT}\left(z_{\bullet}\right)=M(\square) \cdot z_{\bullet}
$$

Problem 4. Consider $\zeta=e^{2 \pi i / 4}=i$.
(a) Find $\operatorname{DFT}(1,1,1,1)$.
(b) Let $\left(z_{0}, z_{1}, z_{2}, z_{3}\right)$ be an arbitrary sequence of length 4 . Find a formula for $\operatorname{DFT}\left(z_{\bullet}\right)$.

Definition. The inverse discrete Fourier transform sends $c_{\boldsymbol{\bullet}}=\left(c_{0}, \ldots, c_{n-1}\right)$ to $z_{\boldsymbol{\bullet}}=$ $\operatorname{IFT}\left(c_{\bullet}\right)$. It is given by the formula

$$
z_{l}=\frac{1}{n} \sum_{k=0}^{n-1} c_{k} \zeta^{k l} .
$$

Problem 5. Prove that $\operatorname{IFT}\left(\operatorname{DFT}\left(z_{\bullet}\right)\right)=z_{\bullet}$ and $\operatorname{DFT}\left(\operatorname{IFT}\left(c_{\bullet}\right)\right)=c_{\bullet}$.
(Hint: Use matrices and Problem 2; don't do it directly from the formulas.)
Proposition. Suppose that we are given a polynomial $P(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n}$ and an integer $N \geq n+1$. Set $\zeta=e^{2 \pi i / N}$ and set

$$
c_{\bullet}=\operatorname{DFT}(\underbrace{a_{0}, \ldots, a_{n}, 0, \ldots, 0}_{N \text { terms }}) .
$$

Then $c_{\bullet}=\left(P(1), P\left(\zeta^{-1}\right), \ldots, P\left(\zeta^{-(N-1)}\right)\right)$.
Problem 6. Make sure you understand what the previous Proposition says, and then prove it.

Problem 7. Explain the assertion, 'DFT gives evaluation, while IFT gives interpolation.'
Problem 8. Let $N=4, \zeta=e^{\pi i / 2}=i$. Evaluating a polynomial of degree <4 at the $4^{\text {th }}$ roots of unity is equivalent to taking the DFT of its coefficient sequence. Suppose we are given that the polynomial $p(x)$ passes through the points

$$
(1,-3),(-i, 3 i-2),(-1,3),(i,-3 i-2) .
$$

Find the coefficients of $p(x)$.

