
MATH 416, PROBLEM SET 6

Comments about homework.
• Solutions to homework should be written clearly, with justification, in complete
sentences. Your solution should resemble something you’d write to teach another
student in the class how to solve the problem.

• You are encouraged to work with other 416 students on the homework, but solutions
must be written independently. Include a list of your collaborators at the top of
your homework.
• You should submit your homework on Gradescope, indicating to Gradescope where

the various pieces of your solutions are. The easiest (and recommended) way to do
this is to start a new page for each problem.

• Attempting and struggling with problems is critical to learning mathematics. Do
not search for published solutions to problems. I don’t have to tell you that doing
so constitutes academic dishonesty; it’s also a terrible way to get better at math.

If you get stuck, ask someone else for a hint. Better yet, go for a walk.

Warning. These are not necessarily model solutions; they are meant to help you
understand the problems you didn’t totally solve and maybe to give you alternative
solutions. Sometimes I will give less or more detail here than I would expect from
you.

Problem 1. A small business (say, a small photocopying service with a single large
machine) faces the following scheduling problem. Each morning they receive a set of
jobs from customers. They want to do the jobs on their single machine in an order
that keeps their customers happiest. Customer k’s job will take time tk to complete.
Given a schedule (i.e., an ordering of the jobs), let Ck denote the finish time of job
k. For example, if job j is the first to be done, we would have Cj = tj . Each job k
also has a given weight wk that represents the job’s importance to the business. So
the company decides to order the jobs in order to minimize the weighted sum of the
completion times,

∑n
k=1wkCk.

Design an efficient algorithm to solve this problem. That is, you are given a list
of n jobs, the kth with processing time tk and a weight wk. Order the jobs so as to
minimize the weighted sum of the completion times,

∑n
k=1wkCk.

Example. Suppose there are two jobs: the first takes time t1 = 1 and has weight
w1 = 10; the second takes time t2 = 3 and has weight w2 = 2. Then doing job 1 first
would yield a weighted completion time of 10 · 1 + 2 · 4 = 18, while doing the second
job first would yield the larger weighted completion time of 10 · 4 + 2 · 3 = 46.

Solution. The optimal algorithm is to schedule jobs in decreasing order of wi/ti.
We prove the correctness of this algorithm by an exchange argument.



2 MATH 416, PROBLEM SET 6

Consider any schedule other than the one produced by this greedy algorithm. As
is standard in exchange arguments, we observe that this schedule must contain an
inversion, a pair of jobs i, j for which i comes before j in the alternative solution, and
j comes before i in the greedy solution. Arguing as we did in the interval-scheduling
exchange argument, we see that there must be such a pair i, j of jobs that are adjacent
in the alternative schedule. By the definition of the greedy schedule, we must have
wj/tj ≥ wi/ti. If we can show that swapping this pair i, j does not increase the
weighted sum of completion times, then we can repeatedly do this until no inversions
remain, arriving at the greedy schedule without having increased the function we’re
trying to minimize. It will then follow that the greedy solution is optimal.

So consider the effect of swapping i and j. The completion times of all other jobs
remain the same. Suppose the completion time of the job before i and j is c. Then,
before the swap, the contribution to the sum was

wi(c+ ti) + wj(c+ ti + tj), (0.1)

while after the swap it is

wj(c+ tj) + wi(c+ ti + tj). (0.2)

The difference between quantity (??) and quantity (??) is (after canceling) witj−wjti.
This is ≤ 0 since wj/tj ≥ wi/ti, so we have shown that the swap does not increase
the total weighted sum of the completion times, as desired. �



MATH 416, PROBLEM SET 6 3

Problem 2. A sequence is palindromic if it is the same whether read left-to-right or
right-to-left. For instance, the sequence

A C G T G T C A A A A T C G
has many palindromic subsequences, including ACGCA and AAAA (but not ACT). (Notice
that subsequences are not required to be contiguous.) Devise an algorithm that takes
as input a sequence x[1 . . . n] and returns the (length of the) longest palindromic
subsequence. Its running time should be O(n2).

Solution. The subproblems to consider are contiguous subsequences of x[1 . . . n],
i.e., x[i . . . j]. Let P (i, j) be the length of the longest palindromic subsequence of
x[i . . . j]. We want P (1, n).

To find the key relation between subproblems, we consider whether ai = aj . If
xi = xj , then xi and xj are part of a longest palindromic subsequence of x[i . . . j]
obtained by prepending xi and appending xj to a longest palindromic subsequence
of x[i+ 1 . . . j − 1]. In this case, P (i, j) = 2 + P (i+ 1, j − 1). On the other hand,
if xi 6= xj , then we can use at most one in the longest palindromic subsequence, so
P (i, j) = max(P (i+ 1, j), P (i, j − 1)). In summary:

P (i, j) =


1 if i = j

2 + P (i+ 1, j − 1) if xi = xj

max(P (i+ 1, j), P (i, j − 1)) if xi 6= xj .

(0.3)

As in the matrix-multiplication example, we fill a table by starting with the diagonal
entries and working outward, using (??):

Algorithm 1: Palindromic subsequences
1 P will be an n× n table
2 foreach i = 1 to n do
3 P [i, i] = 1

// now solve problems of size 2, then of size 3, etc.
4 foreach l = 1 to n− 1 do
5 foreach i = 1 to n− l do
6 j = i+ l

7 if xi = xj then
8 P [i, j] = 2 + P [i+ 1, j − 1]

9 else
10 P [i, j] = max(P [i+ 1, j], P [i, j − 1])

11 return P [1, n]

(The algorithm solves n2 subproblems that each require O(1) work, so the total
running time is O(n2).)



4 MATH 416, PROBLEM SET 6

Problem 3. A shuffle of two stringsX and Y is formed by interspersing the characters
into a new string, keeping the characters of X and Y in the same order. For example,
the string BANANAANANAS is a shuffle of the strings BANANA and ANANAS in
several ways:

BANANAANANAS BANANAANANAS BANANAANANAS.
(a) Given three strings A[1 . . .m], B[1 . . . n], C[1 . . .m+ n], describe an efficient

algorithm to determine whether C is a shuffle of A and B. How fast does it
run?

(b) A smooth shuffle of X and Y is a shuffle of X and Y that never uses more
than two consecutive symbols of either string. For example, the shuffling
BANANAANANAS. Describe an efficient algorithm to decide, given three
strings X, Y , and Z, whether Z is a smooth shuffle of X and Y . How fast
does it run?

Solution. (a) We have the following backtracking relation: if C[1 . . . i+ j] is a
shuffle of A[1 . . . i], B[1 . . . j] then EITHER
(1) (C[1 . . . i+j−1] is a shuffle of A[1 . . . i−1], B[1 . . . j] AND A[i] = C[i+j])
(2) OR (C[1 . . . i+ j − 1] is a shuffle of A[1 . . . i], B[1 . . . j − 1] AND B[j] =

C[i+ j]).
So in words, the algorithm can be described as follows. We would like to fill
in a table with the information of whether A[i], B[j] is a shuffle of C[i+ j]. It
takes O(1) to fill in each entry given the answers to the predecessors (i− 1, j)
and (i, j − 1). So in total the algorithm takes O(m · n). The final entry
answers the question asked by the algorithm.

(b) We have the following backtracking relation. If C[1 . . . i + j] is a smooth
shuffle of A[1 . . . i], B[1 . . . j] then EITHER
(1) C[i+ j] = A[i], C[1 . . . i+ j − 1] is a smooth shuffle of A[i− 1], B[j],
(2) OR C[i+ j] = B[i], C[1 . . . i+ j − 1] is a smooth shuffle of A[i], B[j − 1].
There is still something to be checked though, that we don’t have too many
As in a row (!).

We execute the algorithm as follows. We create a grid where the (i, j)th
entry keeps track of whether or not C[1 . . . i+ j] is a smooth shuffle of A[i],
B[j]. If (i, j) is a smooth shuffle then we also keep track of the minimal
number of As and Bs in a row at the end of a smooth shuffle that gives (i, j).
When filling in the (i, j) entry we ask if A[i] = C[i + j]. If so, we need to
check also that the minimal number of As in a row at entry (i− 1, j) is at
most 1. Similarly if B[j] = C[i+ j]. We can calculate the minimum ending
As, and Bs in a smooth shuffle at (i, j). Calculating whether (i, j) is in a
smooth shuffle and calculating the minimums can be done in O(1) time using
the neighboring minimums. The whole algorithm runs in O(mn).



MATH 416, PROBLEM SET 6 5

Problem 4. Recall the interval-scheduling problem in which we sought to minimize
the maximum lateness. There are n jobs, the ith with a deadline di and a required
processing time ti, and all jobs are available to start at time t = 0. Each job needs to
be scheduled, i.e., assigned a start time si and finish time fi = si + ti, and different
jobs should be assigned non-overlapping intervals. As usual, such an assignment of
times will be called a schedule.

In this problem, we consider a problem with the same setup but a different objective.
We assume that each job must be completed by its deadline or not at all. We’ll say
that a subset J of the jobs is schedulable if there is a schedule for the jobs in J so
that each of them finishes by its deadline. Your task is to select a schedulable subset
of maximum possible size and give a schedule your subset that allows each job (in
your subset) to finish on time.

(a) Prove that there is an optimal solution J (i.e., a schedulable set of maximal
size) in which the jobs in J are scheduled in increasing order of their deadlines.

(b) Assume that all deadlines di and time durations ti are integers. Give an
algorithm to find an optimal solution. Your algorithm should run in time
polynomial in the number n of jobs and the maximum deadline D = maxi di.

Solution. (a) Let J be the optimal subset. By definition all jobs in J can be
scheduled to meet their deadline. We know that the minimum lateness of J is 0, and
we showed that the greedy algorithm of scheduling jobs in the order of their deadline,
is optimal for minimizing maximum lateness. Hence ordering the jobs in J by the
deadline generates a feasible schedule for this set of jobs.

(Or you could prove this from scratch, but you’re just reproving the optimality of
the greedy algorithm.)

(b) We need to assume that the jobs are given in increasing order of deadline:
d1 ≤ · · · ≤ dn.

The subproblems are jobs {1, . . . ,m} with deadline d for m ≤ n and d ≤ D. (These
are like the subproblems in one of the knapsack problems.) For a time 0 ≤ d ≤ D
and m = 0, . . . , n let M(m, d) be the maximum number of jobs among 1, . . . ,m that
can be scheduled before deadline d (even if the deadline of the job is > d). The
crucial relation between subproblems is this: if job m is not in the optimal solution,
then M(m, d) = M(m − 1, d), whereas if job m is in the optimal solution, then
M(m, d) = M(m− 1, d− tm) + 1. Now the algorithm writes itself:

Its running time is O(nD).



6 MATH 416, PROBLEM SET 6

Algorithm 2: Job selection
1 Array M [0 · · ·n, 0 · · ·D] ;
2 foreach i = 0 to D do
3 set M [0, d] = 0 ;
4 foreach m = 1 to n do
5 foreach d = 0 to D do
6 set M [m, d] := max(M [m− 1, d],M [m− 1, d− tm] + 1) ;

7 return M [n,D]



MATH 416, PROBLEM SET 6 7

Problem 5. You are going on a long trip. You start on the road at mile post 0.
Along the way there are n hotels, at mile posts a1 < a2 < · · · < an, where each ai is
measured from the starting point. The only places you are allowed to stop are at
these hotels, but you can choose which of the hotels you stop at. You must stop at
the final hotel (located at distance an), which is your destination.

You’d ideally like to travel 200 miles per day, but this may not be possible,
depending on the spacing of the hotels. If you travel x miles during a day, the penalty
for that day is (200− x)2. You want to plan your trip so as to minimize the total
penalty, that is, the sum, over all travel days, of the daily penalties. Give an efficient
algorithm that determines the optimal sequence of hotels at which to stop.

Solution. For j = 1, 2, . . . , n let p(j) be the minimal penalty for a trip finishing at
hotel j. The crucial relation between subproblems is this:

p(j) = min
i<j

(p(i) + (200− (aj − ai))
2).

Algorithm 3: hotel trip
1 Array P [0 · · ·n] ;
2 P (1) = (200− a1)

2 ;
3 foreach j = 2 to n do
4 p(j) = mini<j(p(i) + (200− (aj − ai))

2) ;
5 return p(n)

There are n subproblems, each taking O(n) work, so the running time is O(n2).


