
MATH 416, PROBLEM SET 5

Comments about homework.
• Solutions to homework should be written clearly, with justification, in
complete sentences. Your solution should resemble something you’d write
to teach another student in the class how to solve the problem.

• You are encouraged to work with other 416 students on the homework, but
solutions must be written independently. Include a list of your collaborators
at the top of your homework.

• You should submit your homework on Gradescope, indicating to Grade-
scope where the various pieces of your solutions are. The easiest (and
recommended) way to do this is to start a new page for each problem.

• Attempting and struggling with problems is critical to learning mathemat-
ics. Do not search for published solutions to problems. I don’t have to tell
you that doing so constitutes academic dishonesty; it’s also a terrible way
to get better at math.

If you get stuck, ask someone else for a hint. Better yet, go for a walk.

Warning. These are not necessarily model solutions; they are meant to
help you understand the problems you didn’t totally solve and maybe to give
you alternative solutions. Sometimes I will give less or more detail here than
I would expect from you.

Problem 1.
(a) Prove the Handshake Lemma: in a graph, the sum of the degrees is

twice the number of edges.
(b) Deduce that every graph has an even number of odd-degree vertices.
(c) Prove that if a graph G has exactly 2 vertices of odd degree, then

there must be a path from one to the other.

Solution. (a) There are many proofs. The easiest is by induction on the
number of edges, but the best is the following direct combinatorial argument.

Count the pairs (e, v) where e is an edge incident to v. Grouping these pairs
by edges, we count 2|E|. Grouping them by vertices, we count

∑
v∈V deg(v).

(b) This follows immediately from part (a). The sum of the degrees is an
even number, so the number of odd terms must be even.

(c) Suppose that x and y are vertices of odd degree. If there is no path
from x to y, then x and y lie in different connected components, say C and
D. Now C induces a subgraph with at least one vertex of odd degree; by

2 MATH 416, PROBLEM SET 5

part (b) it must have another. So we’ve identified at least three vertices of
odd degree. �

(The argument in part (c) uses the fact that the degree of a vertex in G is
the same as its degree in the subgraph induced by its connected component.)

MATH 416, PROBLEM SET 5 3

Problem 2.
(a) Give an example of a connected graph with 8 vertices in which every

vertex has degree 3. What is the length of the shortest cycle in your
graph? the longest?

(b) Give an example of a connected graph with 10 vertices in which every
vertex has degree 3. What is the length of the shortest cycle in your
graph? the longest?

Solution. (a) Here’s an example.

The shortest cycle has length 4. The longest has length 8:

(b) Here are two examples: the one on the right is called the Petersen
Graph.

The shortest cycle in each graph has length 5. The longest has length 10 in
the graph on the left and 9 in the graph on the right:

4 MATH 416, PROBLEM SET 5

Problem 3. Consider the problem of taking a graph G and two vertices
s, t ∈ G and determining the number of shortest paths from s to t in G. Give
a linear-time algorithm that solves this problem.

(Hint: Adapt bfs. Your algorithm should run in linear time if the graph is
represented by an adjacency list.)

Solution. The solution I originally had in mind folds the computation into
bfs, but as two of you pointed out to me, it is easier to run bfs first and
then compute the number of shortest paths level-by-level.

We will solve the apparently more difficult problem of computing the
number of shortest paths from s to every vertex in the graph, not just the t
we’re given. We will write count(x) for the number of shortest paths from s
to a vertex x. The following lemma is the main point.

Lemma 1. (s, s1, . . . , sn, y) is a shortest path from s to y iff (s, s1, . . . , sn)
is a shortest path to sn and sn is a neighbor of y.

As a consequence, we have the following Claim.

Claim. If t ∈ Lk+1, then count(t) =
∑

x count(x), where the sum is over all
x ∈ Lk adjacent to t.

Now the algorithm writes itself. Start by running bfs so that we have
access to the layers Lk of the bfs tree. Notice that it considers each edge
only once, so it runs in linear time.

Algorithm 1: Number of shortest paths
1 foreach v in V do
2 set count(v) to 0 ; // initialize counts

3 set count(s) = 1 ;
4 set k = 1 ;
5 while Lk is nonempty do
6 foreach y in Lk do
7 foreach x adjacent to y do
8 if x ∈ Lk−1 then
9 count(y) += count(x) ;

10 k++ ;
11 return count(t)

MATH 416, PROBLEM SET 5 5

Problem 4. Prove that the following are equivalent for a graph G = (V,E):
(a) G is a tree, i.e., a connected acyclic graph;
(b) G is connected and |E| = |V | − 1;
(c) G is acyclic and |E| = |V | − 1;
(d) for any vertices x, y ∈ V there is a unique path from x to y.
(e) G has no cycles but for any x, y ∈ V with e = {x, y} /∈ E the graph

G+ e := (V,E ∪ {e}) has a cycle.

Solution. We first prove (a) ⇔ (d).
Suppose first that G is connected but (d) fails, so that there are vertices

x, y in G with two different paths from x to y. Let

p0 = x, p1, . . . , pn−1, pn = y and q0 = x, q1, . . . , qm−1, qm = y

be two different paths from x to y. Let k ≥ 1 be least such that pk 6= qk. Let
l, l′ ≥ k be least such that pl = ql′ . Then

pk−1, pk, . . . , pl = ql′ , ql′−1, . . . , qk−1 = pk−1

is a cycle in G.
For the converse, suppose that there is a cycle

x0, x1, . . . , xl = x0

in G. Since cycles cannot repeat vertices (and l ≥ 2), there are two different
paths x0, x1 and x0, xl, xl−1, . . . , x2, x1 from x0 to x1.

Now we prove

Lemma 2.
(i) Every tree with n vertices has exactly n− 1 edges.
(ii) Every acyclic graph with k connected components and n vertices has

exactly n− k edges.
(iii) Every acyclic graph with n vertices has ≤ n− 1 edges.

Proof of Lemma ??. For (i), one could use Problem 5 and induction on n.
But better to construct a bijection directly, as follows. Choose a root! Let r
be any vertex of T . Since we showed (a) iff (d), we know that for each vertex
x there is a unique path from x to r. The parent of a vertex x 6= r is the
unique vertex x∗ that is first (after x) on the unique path from x to r. Every
edge is incident to one parent and its child. So there is a bijection from the
set of edges to the set of non-root vertices, given by sending an edge to the
child vertex to which it is incident. This proves that the number of edges is
n− 1.

For (ii), suppose that G is an acyclic graph with k connected components.
Say that the connected components of G have vertex counts n1, . . . , nk,
respectively. Each connected component is a tree, so the jth one has nj − 1
vertices, by part (i). Every edge is part of a connected component, so in total
there are

(n1 − 1) + (n2 − 1) + · · ·+ (nk − 1) = n− k

6 MATH 416, PROBLEM SET 5

edges.
(iii) follows easily from (ii). �

Lemma 3.
(i) If G is connected and the edge e is part of a cycle in G, then G− e is

connected.
(ii) If G is a connected graph with n vertices, then G has ≥ n− 1 edges.
(iii) If G is a connected graph with n vertices and a cycle, then G has

≥ n edges.

Proof of Lemma ??. Suppose that x0, x1, . . . , xl−1, xl = x0 is a cycle in G
and e = {xk, xk+1}. Now let v and w be any vertices of G. There is a path
from v to w. If the path doesn’t use e, then we’re done. If it does use e, then
replace e with the path xk+1, xk+2, . . . , xl−1, x0, . . . , xk. So v and w are still
connected in G− e. This proves (i).

Suppose that G is a connected graph with n vertices. If G has no cycles,
then by Lemma ??(i) G has n− 1 edges.

Suppose that G has a cycle. Remove an edge from this cycle. Continue
removing edges from cycles in this way until no cycles remain. By part (i) of
the present lemma, the graph obtained at the end is acyclic and is connected.
But it still has n vertices, so by Lemma ??(i), it has n− 1 edges. So there
must have been ≥ n edges to start with. �

Now we’re ready. We have (a) ⇒ (b) by Lemma ??(i).
(b) ⇒ (c) follows from Lemma ??(iii).
(c) ⇒ (e): Assume (c) and let e = {x, y} /∈ E. Then G+ e is a graph with

|V | = |E|, so Lemma ??(iii) implies that G+ e has a cycle.
(e) ⇒ (a): Suppose that (e) holds, so that G is acyclic. Suppose toward a

contradiction that G is disconnected. Let x and y be vertices of G in different
connected components, say C and D, so that in particular {x, y} is not an
edge of G. By assumption, C +D + {x, y} has a cycle. But now we apply
Lemma ??(i) to C+D+{x, y} and e = {x, y} to see that C+D is connected,
contradicting the fact that they are different connected components of G. �

MATH 416, PROBLEM SET 5 7

Problem 5. Show that every tree with at least 2 vertices must have a leaf,
i.e., a vertex of degree 1.

Solution. There are many proofs. Here’s one that uses the Handshake
Lemma and the edge count for trees. Suppose that T is a tree with n vertices.
By Problem 4, T has exactly n − 1 edges. Look at the sum given by the
Handshake Lemma: ∑

v

deg(v) = 2|E| = 2n− 2.

Each of the terms deg(v) is ≥ 1 since T is connected, and not all of them
can be ≥ 2, since then the sum is 2n. So one of them must be 1. �

Other options:
• Choose a root and look at a vertex on the maximum level.
• Look at one end of a path of maximum possible length in the tree.

8 MATH 416, PROBLEM SET 5

Problem 6. Let G be a connected graph.
(a) Prove that if any edge e in G is part of a cycle, then removing e does

not disconnect G.
(b) Using part (a), briefly describing an algorithm for finding a spanning

tree of G that starts with the set of edges E and deletes edges until
what remains is the edges of a spanning tree.

Solution. See the proof of Lemma ??(i) of Problem 4.

MATH 416, PROBLEM SET 5 9

Problem 7. Let G be a strongly connected digraph and let T be the dfs
tree obtained from a particular ordering of the vertices of G. Prove that, if
all the forward edges (in the sense of the dfs tree T) are removed from G,
then the resulting graph is still strongly connected.

Solution. If (x, y) is a forward edge (in the sense of T), then x is a non-
child ancestor of y in T . This means that there is a path x, x1, . . . , xn, y
with all edges in T . Thus, any path in G that uses the forward edge (x, y)
can be modified not to use the forward edge (x, y) by replacing (x, y) with
(x, x1, . . . , xn, y). All of the new edges are tree edges, so not forward edges,
so in this way any path in G can be modified to include only non-forward
edges.

In conclusion, if there is a path in G from vertex u to vertex v, then there
is a path from u to v in G∗, the graph obtained by removing all forward
edges. So if G is strongly connected, then so is G∗.

10 MATH 416, PROBLEM SET 5

Problem 8. You just discovered your best friend from elementary school on
Twitbook. You both want to meet as soon as possible, but you live in two
different cites that are far apart. To minimize travel time, you agree to meet
at an intermediate city, and then you simultaneously hop in your cars and
start driving toward each other. But where exactly should you meet?

You are given a weighted graph G = (V,E), where the vertices V represent
cities and the edges E represent roads that directly connect cities. Each edge
e has a weight w(e) equal to the time required to travel between the two
cities. You are also given a vertex p, representing your starting location, and
a vertex q, representing your friend’s starting location. Describe and analyze
an algorithm to find the target vertex t that allows you and your friend to
meet as quickly as possible.

Solution. The goal is to minimize the time it takes for you to meet. If we
carry out Dijkstra’s algorithm at the start point s and t we get two distance
functions the distance function

ds : V→N and dt : V→N
that encode the distance from s and t respectively. So it suffices to sort V by
max(d(s), d(t)) and find the minimum. The max function tells you the total
time it takes for both to arrive at a given city. Minimizing it tells you the
city that you should drive to in order to meet as quickly as possible.

MATH 416, PROBLEM SET 5 11

Problem 9.
(a) Give an example of a weighted graph with negative weights and a

source vertex s on which Dijkstra’s algorithm does not produce the
minimum-weight path from s to some vertex v. In your example, there
should be no negative-weight cycles (so that there is a min-weight
path from s to v).

(b) Given a weighted graph, possibly with negative weights, you might
try to add a sufficiently large number to all the weights so that they
all become nonnegative and then run Dijkstra’s algorithm on the
modified graph. Does this successfully find min-weight paths (in the
original graph)? Either prove that it works or give a counterexample.

Solution. (a)

s

u

v

2

1

−2

The unique cycle in this example has weight 1, so there are no negative-weight
cycles. Dijkstra’s Algorithm will start at s, visit v and update dist(v) = 1,
and then visit u and update dist(u) = 1− 2 = −1. Then it will stop. But
there is a weight-0 path from s to v, so Dijkstra’s Algorithm does not produce
the correct output.

(b) Doesn’t work. The problem is that the same value is added to all edges,
so that the weights of paths with more edges change more than the weights
of paths with fewer edges. Here is an example.

s

at

b

c d

−1 (0)

2 (3)

0 (1)

0 (1)

0 (1)

0 (1)

(The modified weights are in blue.) The only cycle in this graph has weight
−1 + 2 + 0 = 1, so there are no negative-weight cycles.

The min-weight path from s to t in the modified graph is s–a–t (which
has weight 3 < 4), while min-weight path from s to t in the original graph
is s–d–c–b–d (which has weight 0 < 1 in the original graph). It really has

12 MATH 416, PROBLEM SET 5

nothing to do with Dijkstra’s Algorithm; it’s just that adding a constant to
all edge-weights can change which path has minimal weight. �

