
MATH 416, PROBLEM SET 4

Comments about homework.
• Solutions to homework should be written clearly, with justification, in
complete sentences. Your solution should resemble something you’d write
to teach another student in the class how to solve the problem.

• You are encouraged to work with other 416 students on the homework, but
solutions must be written independently. Include a list of your collaborators
at the top of your homework.

• You should submit your homework on Gradescope, indicating to Grade-
scope where the various pieces of your solutions are. The easiest (and
recommended) way to do this is to start a new page for each problem.

• Attempting and struggling with problems is critical to learning mathemat-
ics. Do not search for published solutions to problems. I don’t have to tell
you that doing so constitutes academic dishonesty; it’s also a terrible way
to get better at math.

If you get stuck, ask someone else for a hint. Better yet, go for a walk.

Warning. These are not necessarily model solutions; they are meant to
help you understand the problems you didn’t totally solve and maybe to give
you alternative solutions. Sometimes I will give less or more detail here than
I would expect from you.

Problem 1. Let a and b be constants. Describe completely and concisely
the execution of our polynomial-multiplication algorithm on the inputs

A(x) = B(x) = a+ bx.

Solution. The algorithm begins by padding the coefficient sequences with
0s to obtain (a, b, 0, 0) and (a, b, 0, 0). We are working in the case n = 4
and ζ = i. Next, the algorithm evaluates A(1), A(−i), A(−1) and A(i). To
achieve this, it calls FFT((a, b, 0, 0),−i), which runs as follows.

(s0, s1) = FFT((a, 0),−1) = (a+ 0, a− 0) = (a, a);

(t0, t1) = FFT((b, 0),−1) = (b+ 0, b− 0) = (b, b).

Next:

r0 = a+ (−i)0b = a+ b

r1 = a+ (−i)b = a− ib
r2 = a− (−i)0b = a− b
r3 = a− (−i)b = a+ ib.
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This subroutine returns

FFT((a, b, 0, 0),−i) = (a+ b, a− ib, a− b, a+ ib).

(Notice that this is evidently the sequence (A(1), A(−i), A(−1), A(i)).) Next,
the algorithm computes the products of the polynomials in point–value form:

A(1)B(1) = (a+ b)(a+ b) = a2 + 2ab+ b2

A(−i)B(−i) = (a− ib)(a− ib) = a2 − 2iab− b2

A(−1)B(−1) = (a− b)(a− b) = a2 − 2ab+ b2

A(i)B(i) = (a+ ib)(a+ ib) = a2 + 2iab− b2.
Finally, we interpolate by computing

IFT(a2 + 2ab+ b2, a2 − 2iab− b2, a2 − 2ab+ b2, a2 + 2iab− b2)
= 1

4 FFT((a2 + 2ab+ b2, a2 − 2iab− b2, a2 − 2ab+ b2, a2 + 2iab− b2), i).
To compute this, the algorithm calls

(s0, s1) = FFT((a2 + 2ab+ b2, a2 − 2ab+ b2),−1) = (2a2 + 2b2, 4ab)

(t0, t1) = FFT((a2 − 2iab− b2, a2 + 2iab− b2),−1) = (2a2 − 2b2,−4iab)

and finally returns

r0 = s0 + i0t0 = 4a2

r1 = s1 + it1 = 4ab+ 4ab = 8ab

r2 = s0 − i0t0 = 4b2

r3 = s1 − it1 = 4ab− 4ab = 0,

giving

A(x)B(x) = (a+ bx)2 = 1
4(4a2 + 8abx+ 4b2x2) = a2 + 2abx+ b2x2,

as expected. �
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Problem 2. Let ζ = ei·2π/8 = 1√
2

+ i 1√
2
and consider the sequence a =

(0, 1, 2, 3, 4, 3, 2, 1).
(a) Describe completely and concisely the execution of the Fast Fourier

Transform that computes FFT(a, ζ). 1 (In particular, you should
describe the values of all local variables at all stages of the iteration.)

(b) Conclude by giving the unique polynomial of degree ≤ 7 that inter-
polates the eight points

(1, 0), ( 1√
2
− i 1√

2
, 1), (−i, 2), (− 1√

2
− i 1√

2
, 3),

(−1, 4), (− 1√
2

+ i 1√
2
, 3), (i, 2), ( 1√

2
+ i 1√

2
, 1).

Solution. In this case n = 8 and ζ = ei·2π/8 = 1√
2

+ i 1√
2
. Notice that ζ2 = i

and ζ4 = −1.
The algorithm begins by setting

(s0, s1, s2, s3) = (0, 2, 4, 2)

(t0, t1, t2, t3) = (1, 3, 3, 1).

Then it computes FFT((0, 2, 4, 2), ζ2) and FFT((1, 3, 3, 1), ζ2), first by com-
puting

FFT((0, 4), ζ4) = FFT((0, 4),−1) = (4,−4),

FFT((2, 2), ζ4) = FFT((2, 2),−1) = (4, 0),

FFT((1, 3), ζ4) = FFT((1, 3),−1) = (4,−2),

FFT((3, 1), ζ4) = FFT((3, 1),−1) = (4, 2).

(The computation of FFT for input of length 2 was considered at the beginning
of Problem 1.)

1. To compute FFT((0, 2, 4, 2), i) with

(s0, s1) = FFT((0, 4),−1) = (4,−4)

(t0, t1) = FFT((2, 2),−1) = (4, 0),

we compute:

r0 = s0 + i0t0 = 4 + 4 = 8

r1 = s1 + it1 = −4 + i · 0 = −4

r2 = s0 − i0t0 = 4− 4 = 0

r3 = s1 − it1 = −4− i · 0 = −4.

2. To compute FFT((1, 3, 3, 1), i) with

(s0, s1) = FFT((1, 3),−1) = (4,−2)

(t0, t1) = FFT((3, 1),−1) = (4, 2),

1Recall that we defined the DFT in such a way that DFT(a) = FFT(a, ζ−1), so the
algorithm should produce n · IFT(0, 1, 2, 3, 4, 3, 2, 1).
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we compute:

r0 = s0 + i0t0 = 4 + 4 = 8

r1 = s1 + it1 = −2 + 2i

r2 = s0 − i0t0 = 4− 4 = 0

r3 = s1 − it1 = −2− 2i.

3. Now the algorithm merges the two sequences. With

(s0, s1, s2, s3) = FFT((8,−4, 0,−4), i)

(t0, t1, t2, t3) = FFT((8,−2 + 2i, 0,−2− 2i), i),

we compute:

r0 = s0 + ζ0t0 = 16

r1 = s1 + ζt1 = −4 + ζ(−2 + 2i)

r2 = s2 + ζ2t2 = 0

r3 = s3 + ζ3t3 = −4 + ζ3(−2− 2i)

r4 = s0 − ζ0t0 = 0

r5 = s1 − ζt1 = −4− ζ(−2 + 2i)

r6 = s2 − ζ2t2 = 0

r7 = s3 − ζ3t3 = −4− ζ3(−2− 2i).

Using the observation (−1 + i)ζ = (1 + i)ζ = −
√

2, one simplifies this result
to

(16,−4− 2
√

2, 0,−4 + 2
√

2, 0,−4 + 2
√

2, 0,−4− 2
√

2).

The x-coordinates of the points given are (in order) 1, ζ−1, ζ−2, . . . , ζ−7.
And the sequence of y-coordinates is (0, 1, 2, 3, 4, 3, 2, 1). Therefore, the
unique degree-7 polynomial interpolating the points has coefficient sequence

IFT(0, 1, 2, 3, 4, 3, 2, 1) = 1
8 FFT((0, 1, 2, 3, 4, 3, 2, 1), ζ)

= (2,−1
2 −

1
8

√
2, 0,−1

2 + 1
8

√
2, 0,−1

2 + 1
8

√
2, 0,−1

2 −
1
8

√
2).

That is, the polynomial is

2 + (−1
2 −

1
8

√
2)x+ (−1

2 + 1
8

√
2)x3 + (−1

2 + 1
8

√
2)x5 + (−1

2 −
1
8

√
2)x7.

It can easily be verified that this polynomial interpolates the given points. �

Notice that the coefficients of this polynomial are all real numbers. This
won’t necessarily be true, even if we start with all real y-values (as in this
problem). You should think about what property of the starting sequence
ensures this result.
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Problem 3. For this problem, fix n ∈ N and ζ = ei·2π/n.
(a) Compute 1 + ζ + ζ2 + · · ·+ ζn−1.
(b) Compute 1 · ζ · ζ2 · · · · · ζn−1.

(Hint: Your answer might depend on whether n is even or odd. )
(c) Use Euler’s formula to prove

cos(x+ y) = cosxcosy − sinxsiny.

(d) Use Euler’s formula to prove that for all x ∈ R and all n ∈ Z
(cos(x) + isin(x))n = cos(nx) + isin(nx).

Solution.
(a) If n = ζ = 1, then the sum is 1. Suppose n > 1. Use the geometric

sum formula and remember that ζn = 1:

1 + ζ + ζ2 + · · ·+ ζn−1 =
1− ζn

1− ζ
= 0.

(b) Suppose first that n is even. Pair up the factors ζk and ζn−k for
k ∈ [1, n/2) to get

n−1∏
k=0

ζk = 1 ·
n/2−1∏
k=1

ζkζn−k · ζn/2 =
∏

1 · ζn/2 = −1.

Pair in the same way assuming that n is odd, except this time there
is no leftover factor:

n−1∏
k=0

ζk = 1 ·
(n−1)/2∏
k=1

ζkζn−k = 1.

(Alternatively, write ζ = ei·2πk/n and compute.)
(c) Use Euler’s formula to expand ei(x+y) in two ways:

cos(x+ y) + isin(x+ y) = ei(x+y) = eixeiy

= (cosx+ isinx)(cosy + isiny)

= (cosxcosy − sinxsiny) + i(sinxcosy + cosxsiny).

Now identify real parts to get the requested formula for cos(x+ y).
We could also identify imaginary parts to get the usual formula for
sin(x+ y).

(d) This follows from Euler’s formula and basic properties of exponentials:

(cosx+ isinx)n = (eix)n = ei(nx) = cos(nx) + isin(nx).
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Problem 4. For two sequences a• = (a0, . . . , an−1) and b• = (b0, . . . , bn−1),
each of length n, we define their convolution to be the sequence whose lth
term is

(a• ∗ b•)l =
∑
j+k=l

ajbk.

(a) Explain the connection with polynomials.
(b) Prove that DFT(a• ∗ b•) (a sequence of length 2n− 1) is the compo-

nentwise product of DFT(a•, 0, . . . , 0) and DFT(b•, 0, . . . , 0).

Solution. If a and b are the coefficient sequences (padded with 0s) of A(x)
and B(x), respectively, then (a ∗ b) is the coefficient sequence of A(x) and
B(x).

Let c = DFT(a) and d = DFT(b). (We should assume that a and b are
padded with 0s to have length 2n.) Let ζ = ei·π/n. Use the formula for DFT,
multiply, and collect like terms. Writing α for ζ−k, we have:

ckdk =

n−1∑
j=0

akζ
−kj

(n−1∑
l=0

bkζ
−kl

)

=

n−1∑
j=0

ajα
j

(n−1∑
l=0

blα
l

)

=
2n−2∑
m=0

 m∑
j=0

ajbm−j

αm

=

2n−2∑
m=0

 m∑
j=0

ajbm−j

 ζ−km

This is exactly the formula for the kth term of DFT(a ∗ b). �
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Problem 5. Recall that we write DFT for the discrete Fourier transform
and IFT for the inverse discrete Fourier transform.

(a) Compute IFT(1, 1, . . . , 1).
(b) Compute DFT(1, 13 ,

1
32
, . . . , 1

3n−1 ).

(c) Compute DFT
((

n−1
0

)
,
(
n−1
1

)
, . . . ,

(
n−1
k

)
, . . . ,

(
n−1
n−1
))

.

Define two operations on sequences by

lshift(z0, . . . , zn−1) := (z1, . . . , zn−1, z0)

rshift(z0, . . . , zn−1) := (zn−1, z0, . . . , zn−2).

(d) Find formulas for DFT(lshift(z)) and DFT(rshift(z)) in terms of
DFT(z). Make a conclusion that would be intelligible to a linear
algebra student.

(e) Use the previous part to find a general formula for the DFT of a
cyclic permutation of a sequence in terms of its DFT.

(f) Use the previous parts to find a general formula for the IFT of a
cyclic permutation of a sequence in terms of its IFT.

Solution.
(a) Let ζ = ei·2π/n be a primitive nth root of unity and let c = DFT(1, 1, . . . , 1).

Notice that the sum

1 + ζk + ζ2k + · · ·+ ζ(n−1)k (0.1)

is 1−(ζk)n
1−ζk = 0 unless k = 0. If k = 0, then each term in (??) is 1, so

the sum is n. Therefore IFT(1, 1, . . . , 1) = (1, 0, 0, . . . , 0).
Alternatively, think about polynomials: IFT returns the coefficients

of the (unique) polynomial of degree ≤ n− 1 interpolating the points

(ζ−1, 1), (ζ−2, 1), . . . , (1, 1).

One such polynomial is the constant polynomial 1 + 0z + 0z2 + · · · .
By uniqueness this is the answer.

(b) Let c = (c0, . . . , cn−1) be DFT(1, 13 ,
1
32
, . . . , 1

3n−1 ). Using the geomet-
ric sum formula, we have

ck =

n−1∑
l=0

1

3l
ζ−kl =

1− (13)n

1− 1
3ζ
−k =

1

3n
· 3n − 1

1− 1
3ζ
−k .

(E.g. for n = 4 this gives

DFT(1, 13 ,
1
9 ,

1
27) = 80

81(32 , (1 + 1
3 i)
−1, 34 , (1−

1
3 i)
−1)

= 80
81(32 ,

9
10 −

3
10 i,

3
4 ,

9
10 + 3

10 i)

= (4027 ,
8
9 −

8
27 i,

20
27 ,

8
9 + 8

27 i),

in case you are interested.)
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(c) Let c = (c0, . . . , cn−1) be DFT
((

n−1
0

)
,
(
n−1
1

)
, . . . ,

(
n−1
k

)
, . . . ,

(
n−1
n−1
))

.
Use the Binomial Theorem to see that

ck =

n−1∑
l=0

zlζ
−kl = (ζ−k + 1)n−1.

(d) Let c be DFT(z) and write c∗ for DFT(lshift(z)).

c∗k = z1 + z2ζ
−k + z3ζ

−2k + · · ·+ zn−1ζ
−(n−2)k + z0ζ

−(n−1)k

Multiply and divide by ζk, and remember that ζn = 1:

= ζk(z1ζ
−k + z2ζ

−2k + z3ζ
−3k + · · ·+ zn−1ζ

−(n−1)k + z−nk0 )

= ζk(z0 + z1ζ
−k + z2ζ

−2k + · · ·+ zn−1ζ
−(n−1)k)

= ζkck.

In summary, we have DFT(lshift(z)) = (c0, ζc1, ζ
2c2, . . . , ζ

(n−1)cn−1).
By similar reasoning, DFT(rshift(z)) = (c0, ζ

−1c1, ζ
−2c2, . . . , ζ

−(n−1)cn−1).
The discrete Fourier transform diagonalizes the linear transforma-

tions lshift and rshift.
(e) A cyclic permutation is just a power of lshift or rshift, so we just

iteratively apply the result from the previous part. For example,

DFT(lshiftm(z)) = (c0, ζ
mc1, ζ

2mc2, . . . , ζ
m(n−1)cn−1).

(Notice that e.g. lshift(n−1) = rshift, and ζn−1 = ζ−1.)
(f) Writing ∆ζ for the diagonal transformation

(c0, . . . , cn−1) 7→ (c0, ζc1, . . . , ζ
n−1cn−1),

we have by the previous part that DFT · lshiftm = ∆ζm ·DFT. Invert
and rearrange to get

IFT · rshiftm = ∆ζ−m IFT,

i.e., IFT(rshiftm(c)) = (z0, ζ
−mz1, . . . , ζ

−m(n−1)zn−1). Every cyclic
permutation is a power of rshift, so this is enough. �
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Problem 6. There are n kindergarteners seated in a circle who have each
brought in rocks for show and tell. Different kids bring in different numbers of
rocks, so let z = (z0, . . . , zn−1) be the sequence of amounts of rocks brought
by the n kids. To prevent jealousy, their teacher has them periodically
redistribute the rocks as follows: at regular intervals, each kid hands 1/3 of
their rocks to the kid on their left and the remaining 2/3 of them to the right.
The circular symmetry of the problem suggests that the Discrete Fourier
Transform might be a useful tool to analyze what happens to the rocks in
the long term.

The redistribution procedure starting with the initial sequence z gives a
list of new sequences z, z(1), z(2), . . . satisfying

z(t+1) = 1
3 lshift(z(t)) + 2

3 rshift(z(t)).

Say DFT(z) = (c0, c1, . . . , cn−1).

(a) Prove that c(t)k = (13ζ
k + 2

3ζ
−k)tck, where c(t)k is the kth term of

DFT(z(t)).
(Hint: DFT is linear. (Why?) )

(b) What happens to the rocks as t→∞?
(Hint: Consider separately the cases when n is even and n is odd. )

(c) What would change if for some fixed p ∈ (0, 1) other than 1/3, the
kindergarteners passed their rocks in proportion p to the left and
1− p to the right?

Solution. (a) DFT is given by multiplication by the matrix Mn(ζ−1)
(as we called it in class) and is therefore linear. We use our result
from Problem 5(d), linearity, and induction on m.

c(t+1) = DFT(z(t)) = DFT(13 lshift(z(t)) + 2
3 rshift(z(t)))

= 1
3 DFT(lshift(z(t))) + 2

3 DFT(rshift(z(t)))

and so, by Problem 5(d),

c
(t+1)
k = 1

3ζ
kc

(t)
k + 2

3ζ
−kc

(t)
k .

The base case t = 0 is trivial, so, assuming inductively that our
formula is correct for t, we obtain it for t+ 1:

c
(t+1)
k = (13ζ

k + 2
3ζ
−k)c

(t)
k = (13ζ

k + 2
3ζ
−k)(13ζ

k + 2
3ζ
−k)tck

= (12ζ
k + 2

3ζ
−k)t+1ck.

(b) For convenience, write αk for 1
3ζ
k+ 2

3ζ
−k, so that c(t)k = αtkck. Suppose

first that n (the number of kids) is odd. Notice that α0 = 1, and

Claim. if k 6= 0 then |αk| < 1.

Proof of Claim. The point is that ζk = cos(2kπ/n) + isin(2kπ/n)
and ζ−k = cos(2kπ/n) − isin(2kπ/n) are complex conjugates (i.e.,
reflections of each other across the real axis), and so αk is just the
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point 2/3 of the way along the line segment from ζk to ζ−k, so it lies
in the disk |z| < 1. (Draw a picture!)

You can give a careful argument by observing that αk = cos(2kπ/n)−
1
3 isin(2kπ/n), so that

|αk| =
√

cos(2kπ/n)2 + 1
9sin(2kπ/n)2 <

√
cos(−)2 + sin(−)2 = 1.

At least this is true unless ζk = ζ−k, which happens if and only if
ζk = ±1, i.e., if −1 is an nth root of unity. Since we’ve assumed that
n is odd, −1 is not an nth root of unity, so the only problematic case
is when ζk = 1, i.e., when k = 0. �

We observe as a consequence of the claim that lim
t→∞

αtk = 0 if k 6= 0,
so

lim
t→∞

c(t) = (c0, 0, 0, . . . , 0).

That c0 = z0 + z1 + · · ·+ zn−1 follows directly from the definition of
DFT, so, using the linearity (hence continuity!) of IFT, we have

lim
t→∞

z(t) = lim
t→∞

IFT(c(t))

= IFT( lim
t→∞

c(t))

= IFT(z0 + z1 + · · ·+ zn−1, 0, 0, . . . , 0).

For a constant c, the sequence (c, 0, 0, . . . , 0) has IFT (c/n, c/n, . . . , c/n)],
so in the long run the rocks tend to be equally distributed.

But there is another case! Suppose that n is even. Now we have to
worry about the issue that ζn/2 = −1. So |αk| < 1 unless k ∈ {0, n/2},
and α0 = 1 and αn/2 = −1. Thus c(t)0 = c0 for all t (as in the odd
case), and c(t)n/2 = (−1)tcn/2 for all t.

As t increases, c(t) alternates between the sequences (c0, . . . , cn/2, . . . )
and (c0, . . . ,−cn/2, . . . ) where the . . . conceal entries that are ap-
proaching 0 exponentially fast. For the purposes of understanding
long-term behavior, we’d might as well treat those entries as 0.

As before we have c0 = z0 + · · ·+ zn−1, and now we compute

cn/2 = z0 − z1 + z2 − · · ·+ zn−2 − zn−1.

A standard computation in the style of Problem 5(a) shows that

IFT(c0, 0, . . . , 0, cn/2, 0, . . . , 0)

is the sequence whose even terms each equal the average of z0, z2, . . . , zn−2
and whose odd terms each equal the average of z1, z3, . . . , zn−1. On
the other hand, IFT(c0, 0, . . . , 0,−cn/2, 0, . . . , 0) is the same but with
even and odd switched.

So, after many exchanges, the odd kids’ rocks will be roughly
equally distributed and the even kids’ rocks will be roughly equally
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distributed, but the even kids and the odd kids will swap collections
at each stage.

(c) Nothing would change, even if we chose p = 1− p = 1/2. If you go
back and look at our arguments for the previous parts, at no point
do we use anything special about 1

3 . �


