
MATH 416, PROBLEM SET 3

Comments about homework.
• Solutions to homework should be written clearly, with justification, in
complete sentences. Your solution should resemble something you’d write
to teach another student in the class how to solve the problem.

• You are encouraged to work with other 416 students on the homework, but
solutions must be written independently. Include a list of your collaborators
at the top of your homework.

• You should submit your homework on Gradescope, indicating to Grade-
scope where the various pieces of your solutions are. The easiest (and
recommended) way to do this is to start a new page for each problem.

• Attempting and struggling with problems is critical to learning mathemat-
ics. Do not search for published solutions to problems. I don’t have to tell
you that doing so constitutes academic dishonesty; it’s also a terrible way
to get better at math.

If you get stuck, ask someone else for a hint. Better yet, go for a walk.

Warning. These are not necessarily model solutions; they are meant to
help you understand the problems you didn’t totally solve and maybe to give
you alternative solutions. Sometimes I will give less or more detail here than
I would expect from you.

Problem 1. By pre-sorting the input array at the beginning, show that
the Closest-Pair algorithm we described in class can be improved to have
worst-case running time O(n log n) (where n is the number of points), as
advertised.

Solution. The point is that, at the beginning, we can create two (for con-
venience) auxiliary lists, one in which the input is sorted by x-coordinate
and one in which the input is sorted by y-coordinate. (Link the lists so
that from the position of an element in one list one can in constant time
determine its position in the other.) It is easy to see that the algorithm does
not require these lists to be reordered at any point, so there is no need for
further sorting. This improves our “merge” step to linear cost (iteratively
check the distance between each point in the narrow central strip and its 7ish
successors in the sorted-by-y list). So there is some O(n log n) initial cost, and
the post-sorting worst-case running time T (n) follows the familiar recurrence
T (n) = 2T (n/2) +O(n), which has solution T (n) ∈ O(n log n) by the Master
Theorem. The total cost is O(n log n) +O(n log n), i.e., O(n log n). �



2 MATH 416, PROBLEM SET 3

Problem 2.
(a) For a given constant δ > 0, find an example (with proof) of an

increasing function f : N → N such that f is O(nδ), but f is not
O(nγ) for any γ < δ, and f is not Θ(nδ). Conclude by commenting
on the claim, “any f that is O(nlogb a) is covered by one of the first
two cases in the Master Theorem.”

Recall the third case of the Master Theorem (assuming a ≥ 1 and b > 1 are
constants, f : N→ N is increasing, . . . ):

If both
(i) f is Ω(nγ) for some constant γ > logb a, and
(ii) there is a constant c < 1 such that af(n/b) ≤ cf(n) for

all n sufficiently large,
then T (n) is Θ(f(n)).

(b) Show that if f(n) = nlogb a, then (ii) is false.
(c) Find an example of a function f for which (i) holds but (ii) fails.

(You may choose your favorite values of a and b, e.g., a = b = 2.)
(Hint: One approach is to build a function f for which the inequality
af(n/b) ≥ f(n) holds for infinitely many n. You can choose which n these
are in advance, and then you have a lot of freedom to decide the remaining
values of the function in order for (i) to hold. )

(d) Show that in fact (ii) implies (i). (For simplicity you may consider
only n that are exact powers of b.)

Solution. (a) Let f(n) = nδ/dlog ne (with finitely many values suitably
modified so the function is nonnegative). Certainly f is O(nδ). Sup-
pose toward a contradiction that f is O(nγ) for some γ < δ. Let C
and N0 be constants witnessing this: for all n > N0 the inequality
f(n) ≤ Cnγ holds. Rearrange:

nδ−γ ≤ Cdlog ne

for all n sufficiently large. But this contradicts the fact that log n
is not dominated by any positive power of n. (Notice that δ − γ is
positive.) So f(n) cannot be O(nγ).

Suppose toward a contradiction that f is Ω(nδ), witnessed byD > 0
and N1: for n > N1 the inequality f(n) ≥ Dnδ holds. Rearrange to
get dlog ne ≤ 1/D for all sufficiently large n, an evident contradiction
since lim

n→∞
log n =∞. So f is not Θ(nδ).

(b)

a
f(n)

f(n/b)
= a

nlogb a

(n/b)logb a
= a

alogb n

alogb n−1
= 1.

(c) The negation of (ii) says that for every c < 1 there are infinitely many
n for which af(n/b) ≤ cf(n) holds.



MATH 416, PROBLEM SET 3 3

To ensure that (ii) fails, it would be enough to arrange that

af(n/b) ≥ f(n) (0.1)

holds for infinitely many n.
Assume a = 1. In this case, we can conclude from (??) that f is

constant on the interval [n/b, n]. It would be enough to arrange for f
to be constant, with value vk say, on the interval [b2k, b2k+2). But we
still need (i) to hold. We are free to choose the values vk however we
like; we could even arrange that f(n) = vk > n for every n by setting
vk = b2k+2, for instance. Now, consider n ∈ N and let k be the unique
integer for which n ∈ [b2k, b2k+2). (That is, k = b12 logb nc.) We have

f(n) = b2k+2 > n,

which certainly implies that f is Ω(n). And (ii) fails, since for the
infinitely many n of the form b2k+1 we have

f(n) = f(b2k+1) = vk = f(b2k) = f(n/b).

To construct an example with a > 1, arrange for f(b2k+1) =
af(b2k), choose f |(b2k+1,b2k+2) arbitrarily; as in the case a = 1 you
have freedom to choose the values vk = f(b2k) to be as large as
you like. In particular, you can arrange for f to be Ω(nγ) for any
prescribed γ.

(d) Assume that (ii) holds: for all n ≥ N0 we have af(n/b) ≤ cf(n). By
increasing N0 if necessary, we may assume that N0 is a power of b.

Claim. For all n ≥ N0 that are powers of b and all i ≤ logb(n/N0)+1,
we have aif(n/bi) ≤ cif(n).

Proof of Claim. We prove the Claim by induction on i (for all n
simultaneously). The base case is i = 1, for which the Claim reduces
to our assumption.

Fix i and suppose inductively that for all n for which i ≤ logb(n/N0)+
1 the inequality aif(n/bi) ≤ cif(n) holds. Let n be such that
i + 1 ≤ logb(n/N0) + 1, and notice that this allows us to apply
the inductive hypothesis. Applying the assumption (ii) with n/bi in
place of n gives af(n/bi+1) ≤ cf(n/bi); now multiply each side of the
inequality by ai and combine that with our inductive hypothesis:

ai+1f(n/bi+1) ≤ ai(cf(n/bi)) = c · aif(n/bi) ≤ ci+1f(n).

This finishes the induction and the proof of the Claim. �

The Claim for i = logb(n/N0) gives

alogb n−logbN0f(N0) ≤ clogb n−logbN0f(n).

which transforms by our usual log-swapping trick into the inequality

nlogb aN
logb c
0 f(N0) ≤ nlogb cN logb a

0 f(n)



4 MATH 416, PROBLEM SET 3

Rearrange to get

f(n) ≥ f(N0)N
logb c−logb a
0 · nlogb a−logb c,

which holds for all n ≥ N0. (Of course, f(N0)N
logb c−logb a
0 is constant.)

Finally, notice that γ := logb a− logb c > logb a since c < 1. �



MATH 416, PROBLEM SET 3 5

Problem 3. A partial matching of [n] = {1, . . . , n} is simply a set of
pairwise-disjoint 2-element subsets of [n]. That is, it’s a way of pairing
up some of the elements of [n], possibly leaving some unpaired. For example,
{{2, 5}, {3, 6}, {1, 7}} is a partial matching of [8] (in which 4 and 8 are left
unpaired). (The pairs are unordered.)

(a) List or draw all partial matchings of [4].
(b) Let mn be the number of partial matchings of [n]. Prove that this

sequence satisfies the recurrence mn+1 = mn + nmn−1 for n ≥ 1 and
m0 = m1 = 1.

(c) The exponential generating function of a sequence1 (an) is the (formal)
power series

∞∑
n=0

an
n!
zn.

Let M(z) be the exponential generating function of (mn). Verify
thatM(z) and ez+

1
2
z2 each satisfy the initial value problem d

dzM(z) =
(1 + z)M(z), M(0) = 1 (and hence are equal).

Solution. (a) There are 10 partial matchings of [4], which I will indicate
here in a way that is hopefully clear:

(1)(2)(3)(4) (1, 2)(3)(4) (1, 3)(2)(4) (1, 4)(2)(3) (2, 3)(1)(4)
(2, 4)(1)(3) (3, 4)(1)(2) (1, 2)(3, 4) (1, 3)(2, 4) (1, 4)(2, 3)

(b) Divide the matchings of [n+ 1] into two classes: those in which n+ 1
is unmatched and those in which n+ 1 is matched. The first class is
in bijection with the matchings of [n] by removing n+ 1. The second
class is in bijection with n copies of the set of partial matchings of
n− 1. To see this, send a matching of n+ 1 to the pair (k,M), where
k is the number n+ 1 is matched with and M is a matching of the
remaining n− 1 elements. We conclude that mn+1 = mn + nmn−1.

1The exponential generating function is often useful for counting objects that involve some
choice of ordering.



6 MATH 416, PROBLEM SET 3

(c) Use the chain rule to see that ez+
1
2 z

2

satisfies the differential equation.
As for M(z), differentiate term-by-term and use the recurrence:

M ′(z) =
∞∑
n=1

mn

n!
nzn−1

=

∞∑
n=1

mn

(n− 1)!
zn−1

=
∞∑
n=0

mn+1

n!
zn

= 1 +

∞∑
n=1

mn+1

n!
zn

= 1 +
∞∑
n=1

mn + nmn−1
n!

zn

= 1 +

∞∑
n=1

mn

n!
zn +

∞∑
n=1

mn−1
(n− 1)!

zn

=
∞∑
n=0

mn

n!
zn +

∞∑
n=0

zn+1

= M(z) + zM(z).

(Of course, the way ez+
1
2 z

2

was obtained in the first place was to run
this argument in reverse: deduce the differential equation from the
recurrence and then solve it.)

It is a standard fact (that you weren’t expected to prove) that a
formal initial value problem has at most one solution. �



MATH 416, PROBLEM SET 3 7

Problem 4. Suppose that you are given n nonvertical lines in the plane,
labeled L1, . . . , Ln, with the ith line specified by the equation y = aix+ bi.
Assume also that no three lines intersect in a single point. Say that the line
Li is uppermost at an x-coordinate x0 if aix0 + bi > ajx0 + bj for all j 6= i.
Say that the line Li is visible if there is some x-coordinate at which it is
uppermost. (Intuitively, this means that some portion of the line can be seen
“looking down from y =∞.”) Give (with proof) an algorithm that takes n
lines as input and (with proof) in O(n log n) time returns exactly the visible
lines.

(Hint: First, sort the list of lines by slope. Then recursively apply the algorithm
to the first n/2 lines and to the second n/2 lines. But it won’t be enough to know
which of the first n/2 lines are visible and which of the second n/2 lines are visible;
your algorithm should report a bit more than that. (Consider the case n = 4.) )

Solution. It will be convenient to write x(p) for the x-coordinate of a point
p and y(p) for its y-coordinate.

First label the lines in order of increasing slope, and then use a divide-and-
conquer approach. Note:

• If the line y = aix+ bi is given to us as a pair (ai, xi), then sorting
by the ai takes O(n log n) time.
• If there are ties among the slopes, discard all but the line with largest
y-intercept. (Only this one will be visible.) So we may assume in
what follows that all the slopes are distinct.

If n ≥ 3 (the “base case” of the divide-and-conquer), then we can easily find
the visible lines in constant time: the first and third lines will always be
visible; the second will be visible if and only if it meets the first line to the
left of where the third line and the first line meet.

Let m = dn/2e. We first recursively compute the sequence of s ≤ m visible
lines among L1, . . . , Lm: call them Li1 , . . . , Lis in increasing order of slope.
We also recursively compute the sequence of points p1, . . . , ps−1 where pk
is the intersection of line Lik with line Lik+1

. Notice that q1, . . . , qt−1 have
increasing x-coordinates, since if two lines are each visible, then the region in
which the line of smaller slope is uppermost lines to the left of the region in
which the line of larger slope is uppermost. Similarly, we recursively compute
the sequence Lj1 , . . . , Ljt of t visible lines among Lm+1, . . . , Ln together with
intersection points q1, . . . , qt−1.

Define SL = {Li1 , . . . , Lis} and SR = {Lj1 , . . . , Ljt}. To complete the
algorithm, we show how to determine the visible lines in SL ∪ SR, together
with the corresponding intersection points, in linear time. We know that
Li1 and Ljt will be visible, since they have, respectively, the minimal and
maximal slopes among all lines in this list. (For xL less than all x-coordinates
of all intersection points of all the lines, the line of minimal slope is uppermost
at xL. Similarly, the line of maximal slope is uppermost at any sufficiently
large x-value.)



8 MATH 416, PROBLEM SET 3

Merge the sorted lists p1, . . . , ps−1 and q1, . . . , qt−1 into a single list

P1, . . . , Ps+t−2

of points ordered by x-coordinate. (This takes O(s+ t) = O(n) time.)
Notice that the recursion gives us:

(a) for any k = 1, . . . , s, the line Lik is uppermost among all lines in SL
at any x ∈ [x(pk−1), x(pk)] (taking x(p0) = −∞); and

(b) for any k = 1, . . . , t− 1, the line Ljk is uppermost among all lines in
SR at any x ∈ [x(qk), x(qk+1)] (taking x(qt) = +∞).

Using these observations, search through the sorted list, comparing for
each k the y-coordinates of the SL-uppermost line and the SR-uppermost
line at x(Pk).

(You know exactly which lines these are by the two observations above, so
no additional search is required. The total cost of this additional search is
still only O(n).)

Let l∗ ≤ s+ t− 2 be the maximal index such that at Pl∗ the SL-uppermost
line, call it Lie , is above the SR-uppermost line; let r∗ ≤ s + t − 2 be the
minimal index such that at Pr∗ the SR-uppermost line, call it Ljf , is above
the SL-uppermost line.

It is possible that l∗ as defined does not exist, in which case we take l∗ = 0
and ie = i1; it is possible that r∗ as defined does not exist, in which case we
take r∗ = s+ t− 1 and jf = jt.

Compute the intersection of the SL-uppermost line at Pl∗ with the SR-
uppermost line at Pr∗ : call this point of intersection P ∗.

Using the fact that the slopes are listed in increasing order, one can verify
that l∗ ≤ r∗.

Claim. The lines visible among SL ∪ SR are Li1 , . . . , Lie , Ljf , . . . , Ljt .

Proof of Claim. Our choice of ie guarantees that the line Lie is visible in
SL ∪SR (indeed, on the interval [x(pe−1), x(P ∗)]), and the fact that the lines
are ordered by slope guarantees that all preceding lines in SL are visible. By
similar reasoning, all of Ljf , . . . , Ljt are visible in SL ∪ SR. We must show
that none of the other lines are visible.

We have already observed that the line Li1 of minimal slope will be visible
in SL ∪ SR. Another line Lik+1

∈ SL for k ≥ 1 will be invisible in SL ∪ SR if
and only if there is a line Ljl ∈ SR obscuring it, meaning that at x(pk) the
line Ljl is above Lik+1

. (Since Ljl has greater slope, this condition implies
that Ljl is above Lik+1

on the whole interval [x(pk), x(pk+1)].) This is true
iff the line in SR uppermost at x(pk) is above Lik+1

, which must occur at all
pk listed after Pl∗ , by maximality of l∗. That is, this condition holds of any
k ∈ {e, . . . , s− 1}, so the lines Lie+1 , . . . , Lis are invisible in SL ∪ SR.

Using similar reasoning but the minimality of r∗ instead of l∗, one can
show that each of the lines Lj1 , . . . , Ljf−1

is invisible in SL ∪ SR. �



MATH 416, PROBLEM SET 3 9

In light of the claim, we complete the recursion by returning

Li1 , . . . , Lie , Ljf , . . . , Ljt

and the sequence of intersection points p1, . . . , pe−1, P ∗, qf , . . . , qt−1.
The recurrence for the worst-case running time looks like T (n) = 2T (n/2)+

O(n), which gives T (n) is Θ(n log n) by the Master Theorem. �



10 MATH 416, PROBLEM SET 3

Problem 5. Suppose you are given a 2n × 2n checkerboard with one (arbi-
trarily chosen) square removed. Describe an algorithm in pseudocode that
computes a tiling of the board by L-shaped tiles, each composed of exactly
three squares. Your input is the integer n and two n-bit integers representing
the row and column of the missing square. The output is a list of the positions
and orientations of (4n − 1)/3 tiles. Your algorithm should run in O(4n).

Solution. Input: n and two n-bit numbers. Output: Positions and orienta-
tions of (4n − 1)/3 tiles.

Consider the 2× 2 base case. The missing square is denoted by two 1-bit
numbers. The four possibilities are (0, 0), (1, 0), (0, 1), and (1, 1). Clearly
there is an L-shaped tile that makes up the other squares. In this way we
can refer to the orientation of an L–shaped tile by referring to the missing
location. E.g. (1,1), looks like an actual L.

Now consider the general case. Break the 2n × 2n board into quadrants.
The quadrant location of the missing tile is determined by the first bits of
the two n-bit integers. For example, (1011, 0111) is located in the bottom
right quadrant because the first digits are (1, 0). If the two n-bit integers are
(a1 . . . an, b1 . . . bn) then we add an L-shaped tile with orientation (a1, b1) at
the center of the board. Now the four quadrants each have exactly one tile
removed, and we proceed recursively. (Note: one tile is added at each step of
the recursion at precisely the center of the board.)

The algorithm runs in O(4n)-steps as there are O(4n) tile locations to
write. On the other hand, each assembly time is O(1) in the input as the
locations of the L–shapes can be read from the first digits.


