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Abstract. The purpose of this paper is to explore the geometry and establish the slope stability
of tautological vector bundles on Hilbert schemes of points on smooth surfaces. By establishing
stability in general we complete a series of results of Schlickewei and Wandel who proved the slope
stability of these vector bundles for Hilbert schemes of 2 points or 3 points on K3 or abelian surfaces
with Picard group restrictions. In exploring the geometry we show that every sufficiently positive
semistable vector bundle on a smooth curve arises as the restriction of a tautological vector bundle
on the Hilbert scheme of points on the projective plane. Moreover we show the tautological bundle
of the tangent bundle is naturally isomorphic to the log-tangent sheaf of the exceptional divisor of
the Hilbert-Chow morphism.

Introduction

The purpose of this paper is to explore the geometry of tautological bundles on Hilbert schemes
of smooth surfaces and to establish the slope stability of these bundles.

Let S be a smooth complex projective surface, and denote by S[n] the Hilbert scheme parametriz-
ing length n subschemes of S. This parameter space carries some natural tautological vector
bundles: if L is a line bundle on S then L[n] is the rank n vector bundle whose fiber at the point
corresponding to a length n subscheme ξ ⊂ S is the vector space H0(S,L ⊗ Oξ). These tau-
tological vector bundles have attracted a great deal of interest. Lehn [Leh99] first computed the
cohomology of the tautological bundles. Later Danila [Dan01] and Scala [Sca09] identified the in-
duced symmetric group representations on the cohomology of the tautological bundles. Ellingsrud
and Strømme [ES93] showed the Chern classes of the bundles OP2

[n], OP2(1)[n], and OP2(2)[n] gen-
erate the cohomology of P2[n]. Nakajima gave an interpretation of the McKay correspondence by
restricting the tautological bundles to the G-Hilbert scheme which is nicely exposited in [Nak99,
§4.3]. Recently Okounkov [Oko14] formulated a conjecture about special generating functions as-
sociated to the tautological bundles.

Given the importance of the tautological bundles it is natural to explore how different geometric
aspects of vector bundles transform to their tautological bundles. For instance, we ask when the
tautological bundle of a stable bundle is also stable. In [Sch10], [Wan14], and [Wan13] this question
has been answered positively for Hilbert schemes of 2 points or 3 points on a K3 or abelian surface
with Picard group restrictions. Our first result establishes the stability of these bundles for arbitrary
n and any surface.

Theorem A. If L is a nontrivial line bundle on S, then L[n] is slope stable with respect to natural
Chow divisors on S[n].

More precisely, an ample divisor on S determines a natural ample divisor on Symn(S), and the
pullback via the Hilbert-Chow morphism gives one such natural Chow divisor on S[n], which is
not ample but is big and semiample. More generally, we prove that if E 6∼= OS is any slope stable
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vector bundle on S with respect to some ample divisor then E [n] is slope stable with respect to the
corresponding Chow divisor. Although Theorem A only gives stability with respect to a strictly
big and nef divisor, we are able to deduce stability with respect to nearby ample divisors via a
perturbation argument on the nef cone.

If S is any smooth surface, there is a divisor Bn in S[n] which consists of nonreduced sub-
schemes. The pair (S[n], Bn) gives a natural closure of the space of n distinct points in S. The
vector fields on S[n] tangent to Bn form the sheaf of logarithmic vector fields DerC(−logBn).
Our second result says the sheaf DerC(−logBn) is naturally isomorphic to the tautological bundle
associated to the tangent bundle on S.

Theorem B. For any smooth surface S there exists a natural injection:

αn : (TS)[n] → TS[n] ,

and αn induces an isomorphism between (TS)[n] and DerC(−logBn).

The analogous statement also holds for smooth curves. In general the sheaves DerC(−logBn) are
only guaranteed to be reflexive as Bn is not a simple normal crossing divisor. However, Theorem
B shows DerC(−logBn) is locally free, that is Bn is a free divisor. Buchweitz, Ebeling, and Graf von
Bothmer [BEGvB09a] have already shown that Bn is a free divisor using different methods .

Using Aubin and Yau’s theorem [Aub76] we obtain the corollary:

Corollary C. If a surface S has ample canonical bundle, then the log tangent bundle DerC(−logBn)
is polystable with respect to the big and nef canonical divisor KS[n] .

Finally, we explore the geometry of the tautological bundles when the surface is the projective
plane. We prove the tautological bundles on P2[n] are rich enough to capture all semistable rank n
bundles on curves.

Theorem D. If C is a smooth projective curve and E is a semistable rank n vector bundle on C with
sufficiently positive degree, then there exists an embedding C → P2[n] such that OP2(1)[n]|C ∼= E .

The proof of Theorem A follows the approach taken by Mistretta [Mis06] who studies the
stability of tautological bundles on the symmetric powers of a curve. The idea is to examine
the tautological vector bundles on the cartesian power Sn and show there are no Sn-equivariant
destabilizing subsheaves. This strategy is more effective for surfaces because the diagonals in Sn

have codimension 2. The map in Theorem B arises from pushing forward the normal sequence of
the universal family. The proof of Theorem D is constructive, using the spectral curves of Beauville,
Narasimhan, and Ramanan [BNR89].

In Section 1 we give the proof of Theorem A. In Section 2 we prove Theorem B and deduce
Corollary C. In Section 3 we prove Theorem D. In Section 4 we give the perturbation argument,
deducing the tautological bundles are stable with respect to ample divisors.

Throughout we work over the complex numbers. If X is a variety of dimension d and E is a
vector bundle on X , then for any divisor class H ∈ N1(X) we define the slope of E with respect to
H to be the rational number:

µH(E) :=
c1(E) ·Hd−1

rank(E)
.

We say E is slope (semi)stable with respect to H if for all subsheaves F ⊂ E of intermediate rank:



GEOMETRY AND STABILITY OF TAUTOLOGICAL BUNDLES ON HILBERT SCHEMES OF POINTS 3

µH(F) <
(≤)

µH(E).

I am grateful to my advisor Robert Lazarsfeld who suggested the project and directed me
in productive lines of thought. I am also thankful for conversations and correspondences with
Lawrence Ein, Roman Gayduk, Daniel Greb, Julius Ross, Giulia Saccà, Ian Shipman, Brooke Ullery,
Dingxin Zhang, and Xin Zhang. This paper is a substantial revision of a previous preprint. I would
finally like to thank the referees of the paper for thoroughly reviewing the paper and offering helpful
suggestions.

1. Stability of Tautological Bundles

In this section we prove that the tautological bundle of a stable vector bundle E is stable with
respect to natural Chow divisors on S[n]. Thus we deduce Theorem A when E is a nontrivial line
bundle. We start by defining the essential objects in the study of Hilbert schemes of points on
surfaces.

Let S be a smooth complex projective surface. We write S[n] for the Hilbert scheme of length n
subschemes of S. We denote by Zn the universal family of S[n] with projections:

S × S[n] ⊃ Zn S.

S[n]

p2

p1

For a fixed vector bundle E on S of rank r we define

E [n] := p2∗(p1
∗E).

It is the tautological vector bundle associated to E and has rank rn. The fiber of E [n] at a point
[ξ] ∈ S[n] can be naturally identified with the vector space H0(S, E|ξ).

The symmetric group on n elements Sn naturally acts on the cartesian product Sn, and we
write σn for the quotient map:

σn : Sn → Sn/Sn =: Symn(S).

There is also a Hilbert-Chow morphism:

hn : S[n] → Symn(S)

which is a semismall map [dCM02, Definition 2.1.1].
We wish to view E [n] as an Sn-equivariant sheaf on Sn. Recall that if G is a finite group that

acts on a scheme X , and if F is a coherent sheaf on X then a G-equivariant structure on F is given
by a choice of isomorphisms:

φg : F → g∗F
for all g ∈ G satisfying the compatibility condition h∗(φg)◦φh = φgh. Following Danila [Dan01] and
Scala [Sca09] we study the tautological bundles on S[n] by working with Sn-equivariant sheaves on
Sn. For our purposes it is enough to study E [n] equivariantly on the open subset of distinct points
in S[n].

We write Symn(S)◦ for the open subset of Symn(S) of distinct points. Likewise given a map
f : X → Symn(S) we write X◦ for f−1(Symn(S)◦). By abuse of notation given another map
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g : X → Y with domain X we define g◦ := g|X◦ and given a coherent sheaf F on X we define
F◦ := F|X◦ . The map hn,◦ : S

[n]
◦ → Symn(S)◦ is an isomorphism. We define

σn,◦ := h−1
n,◦ ◦ σn,◦ : Sn◦ → S

[n]
◦ .

Given a torsion-free coherent sheaf F on S[n] we define a torsion-free coherent sheaf on Sn by

(F)Sn := j∗(σ
∗
n,◦(F◦))

where j is the inclusion j : Sn◦ → Sn. The sheaf (F)Sn can be thought of as a modification of F
along the exceptional divisor of hn.

The pullback σ∗n,◦(−) is left exact as the map σn,◦ is étale; thus the functor (−)Sn is left exact.
If F is reflexive, the normality of Sn implies the natural Sn-equivariant structure on the reflexive
sheaf σ∗n,◦(F◦) pushes forward uniquely to an Sn-equivariant structure on (F)Sn .

Let qi denote the projection from Sn onto the ith factor. Given a vector bundle E on S there is
an Sn-equivariant vector bundle on Sn defined by

E�n :=
n⊕
i=1

q∗i (E).

We have given two natural Sn-equivariant sheaves on Sn associated to E . In fact they are equiva-
lent.

Lemma 1.1. Given a vector bundle E on S there is an isomorphism:
(E [n])Sn ∼= E�n

of Sn-equivariant vector bundles on Sn.

Proof. Consider the fiber square:

Zn,◦ ×
S
[n]
◦

Sn◦F := Sn◦

Zn,◦ S[n]
◦

p′2,o

σ′n,◦
p2,o

σn,◦

.

Every map in the fiber square is an étale map between Sn-schemes (the Sn-action on Zn,◦ and
S

[n]
◦ is trivial). We write Γi for the subscheme of Sn◦ × S that is the graph of the map qi,o :
Sn◦ → S. The scheme F is equal to the disjoint union

∐
Γi and is a subscheme of Sn◦ × S.

The restriction p1,◦ ◦ σ′n,◦|Γi
is the projection Γi → S. So there is an equivariant isomorphism

p′2,o∗(σ
′
n,◦
∗(p1,◦

∗(E))) ∼= E�n◦ .
As the fiber square is made of flat proper Sn-maps there is a natural Sn-equivariant isomor-

phism:

p′2,o∗(σ
′
n,◦
∗(p1,◦

∗(E))) ∼= σn,◦
∗(p2,o∗(p1,◦

∗(E))).

The latter sheaf is (E [n])Sn,◦. Finally, any isomorphism between vector bundles on Sn◦ uniquely
extends to an isomorphism between their pushforwards along j. Therefore there is a natural
Sn-equivariant isomorphism (E [n])Sn ∼= E�n. �
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Given an ample divisor H on S there is a natural Sn-invariant ample divisor on Sn defined as:

HSn :=
n∑
i=1

q∗i (H).

This is the Chow divisor that appears in Theorem A. Fogarty [Fog73, Lemma 6.1] shows every
divisor HSn descends to an ample Cartier divisor on Symn(S). Pulling back this Cartier divisor
along the Hilbert-Chow morphism gives a big and nef divisor on S[n] which we denote by Hn. If
H is effective then Hn can be realized set-theoretically as

Hn = {ξ ∈ S[n] | ξ ∩ Supp(H) 6= ∅}.

Lemma 1.2. If F is a torsion-free sheaf on S[n] then

(n!)

∫
S[n]

c1(F) · (Hn)2n−1 =

∫
Sn

c1((F)Sn) · (HSn)2n−1.

Proof. This is a straightforward calculation using S[n]
◦ , Symn(S)◦, and Sn◦ . �

In the following lemma we assume Proposition 4.7 which says the pullback of a stable bundle to
a product is stable with respect to a product polarization. For the sake of the exposition we give
the proof of Proposition 4.7 in Section 4.

Lemma 1.3. If E 6∼= OS is slope stable on S with respect to an ample divisor H then there are no
Sn-equivariant subsheaves of E�n that are slope destabilizing with respect to HSn .

Proof. Let 0 6= F ⊂ E�n be anSn-equivariant subsheaf. We can find a (not necessarily equivariant)
slope stable subsheaf 0 6= F ′ ⊂ F which has maximal slope with respect to HSn . Fix i so that the
composition:

F ′ → E�n → q∗i E

is nonzero. By Proposition 4.7 we know that each q∗i E is slope stable with respect to HSn . A
nonzero map between slope stable sheaves can only exist if

(1) the slope of F ′ is less than the slope of q∗i E , or
(2) F ′ → q∗i E is an isomorphism.

In case (1), µHSn (F) ≤ µHSn (F ′) < µHSn (q∗i E). By symmetry, µHSn (q∗i E) = µHSn (q∗jE) for all i
and j. Thus µHSn (q∗i E) = µHSn (E�n) and F does not destabilize E�n.

In case (2), we know F ′ ∼= q∗i E . Because E 6∼= OS , the pullbacks q∗i E and q∗jE are not iso-
morphic unless i = j. As all the q∗jE have the same slope and are stable with respect to HSn ,
Hom(F ′, q∗jE) = 0 for j 6= i. In particular all the compositions

F ′ → E�n → q∗jE

are zero for j 6= i. Thus F ′ is a summand of E�n. So F is an Sn-equivariant subsheaf of E�n
which contains one of the summands. But Sn acts transitively on the summands so F contains all
the summands, hence F does not destabilize E�n. �

Now we prove Theorem A in full generality.
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Theorem 1.4. If E 6∼= OS is a vector bundle on S which is slope stable with respect to an ample divisor
H , then E [n] is slope stable with respect to Hn.

Proof. Let F ⊂ E [n] be a reflexive subsheaf of intermediate rank. It is enough to consider reflexive
sheaves because the saturation of a torsion free subsheaf of E [n] is reflexive of the same rank and
its slope cannot decrease. By Lemma 1.2, the slope of a torsion-free sheaf F with respect to Hn is
up to a fixed positive multiple the same as the slope of (F)Sn with respect to HSn . In particular

µHn(F) < µHn(E [n]) ⇐⇒ µHSn ((F)Sn) < µHSn (E�n).

Now (F)Sn is naturally an Sn-equivariant subsheaf of E�n. Thus by Lemma 1.3

µHSn ((F)Sn) < µHSn (E�n).

Therefore, µHn(F) < µHn(E [n]) for all torsion-free subsheaves of intermediate rank, and E [n] is
stable with respect to Hn. �

2. The tautological tangent map

For any smooth surface S (not necessarily projective), the Hilbert scheme S[n] is a smooth
closure of the space of n distinct points in S. The boundary Bn is the locus of nonreduced length
n subschemes of S. We are interested in vector fields which are tangent to the boundary Bn.

Definition 2.1. If D is a codimension 1 subvariety of X a smooth variety, then the sheaf of loga-
rithmic vector fields, denoted DerC(−logD), is the subsheaf of TX consisting of vector fields which
along the regular locus of D are tangent to D.

When D is smooth, DerC(−logD) is just the elementary transformation of the tangent bundle
along the normal bundle of D in X , in particular it is a vector bundle. Even when D is singular
DerC(−logD) is reflexive by definition, so it is enough to define DerC(−logD) away from the
singular locus (or any codimension 2 set in X ) of D and then pushforward.

For Hilbert schemes of points on a surface we can naturally understand DerC(−logBn) as the
tautological bundle of the tangent bundle on the surface.

Theorem B. For any smooth connected surface S there exists a natural injection:

αn : (TS)[n] → TS[n] ,

and αn induces an isomorphism between (TS)[n] and DerC(−logBn).

At a point [ξ] ∈ S[n] the map αn|[ξ] can be interpreted as deformations of ξ coming from tangent
vectors of S. We expect that the degeneracy loci of αn give a interesting stratification of S[n].

Before proving Theorem B we prove a general lemma.

Lemma 2.2. Let X and Y be smooth varieties and f : X → Y a branched covering with reduced
branch locus B ⊂ Y . If δ ∈ H0(Y, TY ) is a vector field on Y whose pullback f ∗δ ∈ H0(X, f ∗TY ) is
in the image of

df : H0(X,TX)→ H0(X, f ∗TY ),

then δ ∈ H0(Y,DerC(−logB)).
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Proof. It is enough to check δ is tangent to B for points p ∈ B outside of a codimension 2 subset
in Y . Let p ∈ B be a general point and q a ramified point in the fiber of f over p. We can choose
local analytic coordinates y1, ..., yn centered at p and coordinates x1, ..., xn centered at q such that

f ∗(y1) = xm1
f ∗(yi) = xi (i > 1).

That is y1 is a local equation for B and x1 is a local equation for the reduced component of
ramification containing q. Then the derivative df maps

∂
∂x1
7→ mxm−1

1 f ∗
(
∂
∂y1

)
∂
∂xi
7→ f ∗

(
∂
∂yi

)
(i > 1).

Now f ∗δ is in the image of df . Expanding locally, f ∗δ = f ∗(g1)f ∗
(
∂
∂y1

)
+ ... + f ∗(gn)f ∗

(
∂
∂yn

)
.

Thus xm−1
1 divides f ∗(g1). So y1 divides g1 and δ is in H0(Y,DerC(−logB)). �

Proof of Theorem B. As in §1 we use Zn ⊂ S × S[n] to denote the universal family of the Hilbert
scheme of points. Applying relative Serre duality to the main result of [Leh98] shows the tangent
bundle of S[n] is given by TS[n] = p2∗Hom(IZn ,OZn). The normal sequence for Zn gives a map:

p∗1TS ⊕ p∗2TS[n]
∼= TS×S[n]|Zn

β−→
(
IZn/I2

Zn

)∨ ∼= Hom(IZn ,OZn).

Thus after pushing forward the first summand we get a map:

αn : (TS)[n] := p2∗(p
∗
1TS)→ p2∗Hom(IZn ,OZn) = TS[n] .

To prove that αn maps (TS)[n] isomorphically onto DerC(−logBn) we first restrict to the open
set U ⊂ S[n] parametrizing subschemes ξ ⊂ S where ξ contains at least n − 1 distinct points.
The complement of U has codimension 2 so by reflexivity it is enough to prove the theorem on U .
Moreover the open set

V := p−1
2 U ⊂ Zn

is smooth so we are in a situation where we can apply Lemma 2.2. There is a map:

p∗2(TS)[n]|V

0→ TZn|V → p∗2TS[n]|V ⊕ p∗1TS|V
β−→ Hom(IZn ,OZn)|V ,

p∗2αn|V ⊕−φ|V

where φ is the natural map coming from pulling back a pushforward. The composition:

β ◦ (p∗2αn|V ⊕−φ|V )

is identically zero. Therefore, the pullback of each local section of (TS)[n]|U lies in TZn|V . It
follows from Lemma 2.2 that (TS)[n] is contained in DerC(−logBn). Now we can think of αn as
having codomain DerC(−logBn). The map is an isomorphism of (TS)[n] and DerC(−logBn) away
from Bn and they both have the same first Chern class. Therefore, αn could only fail to be an
isomorphism in codimension greater than 2. But both sheaves are reflexive, and any isomorphism
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between reflexive sheaves away from codimension 2 on a normal variety extends uniquely to an
isomorphism on the whole variety. �

Proof of Corollary C. As a reminder, a vector bundle is polystable if it is a direct sum of stable
bundles of the same slope. The theorem of Aubin and Yau [Aub76] proves the existence of Kähler-
Einstein metrics for canonically polarized manifolds. This implies that the tangent bundle is
polystable with respect to the canonical bundle (see [Kob87, Theorem 8.3], this is the easy direction
of the Donaldson-Uhlenbeck-Yau theorem [Don85]). Thus we have TS is either stable or a direct
sum of line bundles of the same canonical degree. In the first case Corollary C follows directly
from Theorem A and Theorem B.

For the second case let TS ∼= L1 ⊕ L2. First we point out that taking tautological bundles
respects direct sums, that is:

(E ⊕ F)[n] ∼= E [n] ⊕F [n]

We then note that neither L1 or L2 are trivial so their tautological bundles are stable by Theorem
A. And if two line bundles on S have equal degrees with respect to the canonical bundle then
their tautological bundles also have equal degrees with respect to KS[n] . Thus by Theorem B,
DerC(−logBn) is a direct sum of stable bundles of the same slope with respect to KS[n] , proving
Corollary C. �

Remark 2.3 (On the rank of αn). The restriction of αn to any point [ξ] ∈ S[n] is precisely the map
from H0(S, TS|ξ) → Hom(Iξ,Oξ) in the normal sequence of ξ ⊂ S. In a collaboration with D.
Bejleri [BS16] we relate the rank of αn to the dimension of the tangent space of the fibers of the
Hilbert-Chow morphism. In particular we show that if ξ ⊂ C2 is cut out by monomials and Pξ
denotes the fiber of the Hilbert-Chow morphism at ξ, then:

dimT[ξ]Pξ = 2n− rank(αn|[ξ]).

Moreover we give an explicit combinatorial formula to compute rank(αn|[ξ]) at these monomial
subschemes.

3. Spectral curves and tautological bundles

In this section we prove every sufficiently positive, rank n, semistable vector bundle on a smooth
projective curve arises as the pull back of OP2(1)[n] along an embedding of the curve in P2[n].
To prove the theorem we need the spectral curves of [BNR89]. For completeness we recall the
construction.

Let π : D → C be an n : 1 map between smooth irreducible projective curves and let E be an
OC-module. If D can be embedded into the total space of a line bundle L on C :

L := SpecOC
(Sym•(L∨)) πL−→ C

with π = πL|D then this gives a presentation:

π∗OD ∼= Sym•(L∨)
/

(xn + s1x
n−1 + ...+ sn)

for xn + s1x
n−1 + ...+ sn ∈ H0(L, (πL∗L)⊗n). Here we write x ∈ H0(L, πL∗(L)) for the coordinate

section of πL∗(L). To give E the structure of a π∗OD-module we need to specify a multiplication
mapm : E⊗L−1 → E (equivalently E → E⊗L) which satisfies the relationmn+s1m

n−1+...+sn =
0.
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Every L-twisted endomorphism m : E → E ⊗ L has an associated L-twisted characteristic
polynomial, which is a global section pm(x) ∈ H0(L, (πL∗L)⊗n). A global version of the Cayley-
Hamilton theorem says that m automatically satisfies its L-twisted characteristic polynomial. In
particular, if the zero set of pm(x) is D then E can naturally be thought of as a π∗OD-module.
Fixing s ∈ H0(L, (πL∗L)⊗n) which cuts out the integral curve D, [BNR89, Proposition 3.6] gives
the beautiful correspondence:

(�)
{
E m−→ E ⊗ L

∣∣∣E a vector bundle and pm(x) = s
}

1:1←→ {invertible sheavesM on D}.

The correspondence going from right to left is given by taking the coordinate section of πL∗(L),
restricting to D, twisting byM, and pushing forward along π.

To prove Theorem D we need the following Key Lemma which provides sufficient conditions for
when a section of End(E)⊗ L produces a smooth spectral curve.

Key Lemma. If C is a smooth connected genus g curve, E is a rank n semistable vector bundle on C ,
and L is an ample line bundle on C with deg(L) ≥ 2g, then the spectral curve associated to a generic
section of End(E)⊗ L is smooth and irreducible.

The method of proof of the Key Lemma involves a standard analysis of the discriminant locus where
a section of End(E)⊗ L has eigenvalues with multiplicity ≥ 2. Before proving the Key Lemma we
show that Theorem D follows immediately.

Proof of Theorem D. Let C be a smooth projective genus g curve and E a rank n semistable vector
bundle on C . Let L be a line bundle on C of degree ≥ 2g. By the Key Lemma if

m : E → E ⊗ L
is a general L-twisted endomorphism then the resulting L-twisted characteristic polynomial is
smooth and irreducible.

Thus, by the correspondence (�) there is a line bundleM on D such that π∗M∼= E . The genus
of D is gD =

(
r
2

)
deg(L) + n(g − 1) + 1 and is independent of E . However, the degree ofM is

deg(E) +
(
r
2

)
deg(L) and does depend on the degree of E . In particular, if

deg(E) ≥
(
r
2

)
deg(L) + r(2g − 2) + 3

thenM is very ample and 3 general sections ofM give a map φ : D → P2 such that the induced
maps π × φ : D → C × P2 and ψπ,φ : C → P2[n] are embeddings. Under the embedding ψπ,φ the
restriction of OP2(1)[n] to C is precisely E , proving Theorem D. �

We now proceed with the proof of the Key Lemma.

Lemma 3.1. If a subvariety X ⊂ E of a globally generated vector bundle E over a smooth curve C has
codimension ≥ 2 then a generic section of E avoids X . If X ⊂ E is a reduced divisor then a generic
section of E meets X transversely.

Proof. This is an elementary dimension count using generic smoothness in characteristic 0 and the
incidence correspondence:

I = {(w, ex, x) ∈ W × E|x × C | w(x) = ex} ⊂ W × E,
where W is a subspace of sections of E → C that globally generate E. The key point is the
projection from I → E is an affine bundle, so the total space of I is smooth. �
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If H is the total space of End(E) ⊗ L, and C = L ⊕ · · · ⊕ L⊗n then there is a map ε : H → C

which sends an L-twisted endomorphism to the coefficients of its characteristic polynomial. There
is a reduced and irreducible divisor in U ⊂ C which consists of characteristic polynomials which
have multiple roots. Let V ⊂ H be the scheme-theoretic inverse of U.

Lemma 3.2. V is reduced and irreducible. If a section s : C → H meets V transversely and avoids
the locus in V of with more than 1 repeated eigenvalue or an eigenvalue of multiplicity ≥ 3, then the
corresponding spectral curve is smooth.

Proof. First, local trivialization of H, U, V and L implies it is enough to check on a fiber. Over a
point x ∈ C we have H|x ∼= Matn×n(k), C|x ∼= An, V|x is the locus of matrices whose eigenvalues
have multiplicity ≥ 2, and U|x is the discriminant locus. Irreducibility of V|x follows from [Arn71,
§5.6] and the fact that it is reduced follows from the observation that dε|x,M has maximal rank for a
general matrixM ∈ U|x. For the last statement in the lemma it suffices to verify smoothness for an
eigenvalues cover associated to a 1-dimensional family of matrices which meets the discriminant
locus transversely at matrices with exactly 1 repeated eigenvalue, this is a straightforward local
calculation. �

Proof of Key Lemma. Semistability of E and degL ≥ 2g implies End(E) ⊗ L is globally generated.
By Lemma 3.1 and the first part of Lemma 3.2 a generic section s of End(E) ⊗ L meets V trans-
versely and avoids the locus with more than 1 repeated eigenvalue or an eigenvalue of multiplicity
of ≥ 3. By the second part of Lemma 3.2 the associated spectral curve is smooth. By construction
of the spectral curve Cs we have:

π∗OCs
∼= OC ⊕ ...⊕ L−(n−1).

As we assumed L is ample, H0(Cs,OCs) = H0(C, π∗OCs) = H0(C,OC) is 1-dimensional. Thus
Cs is connected and smooth, so it is irreducible. �

4. Perturbation of Polarization and Stability

The goal of this section is to prove (in Proposition 4.7) that the pullback of a stable bundle to a
product is stable with respect to a product polarization. Proposition 4.7 was important in the proof
of Theorem A. We also prove that stability of the tautological bundles with respect to the natural
Chow divisors implies stability with respect to nearby ample divisors. Our approach to proving
both of these facts involves considering stability with respect to numerical classes of curves so
that we can apply ideas of convexity. In particular our approach follows ideas appearing recently
in [GT13] and [GKP14] and we recommend looking at these articles to see how these ideas can be
developed further and systematically.

Throughout this section denote by X a normal complex projective variety of dimension d. Let
γ ∈ N1(X)R be a real curve class and E be a torsion-free sheaf on X. For any sheaf Q on X , we
denote by Sing(Q) the closed locus where Q is not locally free.

Definition 4.1. The slope of E with respect to γ, denoted by µγ(E), is the real number:

µγ(E) :=
c1(E) · γ
rank(E)

.

Remark 4.2. Fixing an ample class H ∈ N1(X)R it is true that µH(E) = µH
d−1

(E). Nonetheless,
to distinguish the concepts we use subscripts to denote slope with respect to an ample divisor and
superscripts to denote slope with respect to a curve class.
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Definition 4.3. We say E is slope (semi)stable with respect to γ if for all torsion-free quotients of
intermediate rank E → Q → 0:

µγ(E) <
(≤)

µγ(Q).

A benefit of working with slope (semi)stability with respect to curves rather than divisors is that
we can apply ideas of convexity.

Lemma 4.4. If γ, δ are classes in N1(X)R such that E is semistable with respect to γ and E is stable
with respect to δ then E is stable with respect to aγ + bδ for a, b > 0. �

If C ⊂ X is an irreducible curve we would like to relate the stability of E|C and the stability
of E with respect to the class of C . However if Q is a coherent sheaf and C meets Sing(Q) it is
possible that c1(Q|C) 6= c1(Q)|C . Thankfully we can say something if C is not entirely contained
in Sing(Q).

Proposition 4.5. Let E → Q → 0 be a torsion-free quotient which destabilizes E with respect to the
curve class γ. Suppose C ⊂ X is a smooth irreducible closed curve which represents γ, avoids Sing(E),
and avoids the singularities of X . If C is not contained in Sing(Q) then E|C is not stable on C .

Proof. First, we can reduce to the surface case by choosing a normal surface S ⊂ X containing C
such that S is smooth along C , S meets Sing(Q) properly, and S meets Sing(E) properly. This
is possible because when the dimension of X is greater than 3 a generic, high-degree hyperplane
section containing C is normal, smooth along C , and meets both Sing(Q) and Sing(E) properly.
Once such a surface is chosen

c1(Q)|S = c1(Q|S) = c1(Q|S/Tors(Q|S))

c1(E)|S = c1(E|S) = c1(E|S/Tors(E|S))

because both Sing(Q) ∩ S and Sing(E) ∩ S are zero-dimensional. Thus

E|S/Tors(E|S)→ Q|S/Tors(Q|S)→ 0

is a torsion-free quotient on S which destabilizes E|S/Tors(E|S) with respect to the class of C . So
we have reduced the proposition to the case X is a surface.

Let X be a surface. It is enough to show c1(Q|C) = c1(Q)|C . The restriction c1(Q)|C is
computed via the derived pullback:

c1(Q)|C =
∞∑
i=0

(−1)ic1(Tori
OX (Q,OC)),

where the Tori
OX (Q,OC) are thought of as modules on C (see [Ful98, §15.1] for the smooth case).

Further, C is a Cartier divisor on X , so OC has a two term locally free resolution. So the
TorOX

i (Q,OC) vanish for i > 2 and TorOX
1 (Q,OC) = 0 because Q is torsion-free. Therefore

c1(Q)|C = c1(Tor0
OX (Q,OC)) = c1(Q|C).

So E|C is not slope stable. �

An immediate corollary is the following coarse criterion for checking slope stability with respect
to γ.
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Corollary 4.6. Let π : CT → T be a family of smooth irreducible closed curves in X with class γ. For
t ∈ T we write Ct to denote π−1(t). Suppose E is a vector bundle on X such that E|Ct is stable for all
t ∈ T . If the curves in CT are dense in X then E is stable with respect to the curve class γ.

Proof. Suppose for contradiction that E is unstable with respect to γ. Then there exists a torsion-
free quotient E → Q → 0 with µγ(Q) ≤ µγ(E). As Q is torsion-free, Sing(Q) has codimension
≥ 2. The curves in CT are dense in X so there is a t ∈ T such that Ct is not contained in Sing(Q).
Then Proposition 1.6 guarantees that E|Ct is not stable which contradicts our hypothesis. �

Proposition 4.5 can be adjusted so that Corollary 4.6 also holds if stability is replaced by
semistability. As a consequence we prove the following basic result about slope stable vector
bundles, which we have already used in the proof of Theorem A.

Proposition 4.7. Let X and Y be smooth projective varieties of dimension d and e respectively. Let HX

be an ample divisor on X (resp. HY ample on Y ) and let p1 (resp. p2) denote the projection from X × Y
to X (resp. Y ). If E is a vector bundle on X which is slope stable with respect to HX then p∗1(E) is slope
stable on X × Y with respect to the ample divisor p∗1(HX) + p∗2(HY ).

Proof. By [MR84, Theorem 4.3] if k � 0 and C is a general curve which is a complete intersection
of divisors linearly equivalent to kHX then E|C is stable. Let F ⊂ |kHX |d−1 be the open subset of
the cartesian power of the complete linear series of kHX defined as

F :=

{
(H1, ..., Hd−1) ∈ |kHX |d−1

∣∣∣ C = H1 ∩ ... ∩Hd−1 is a smooth complete
intersection curve and E|C is stable

}
⊂ |kHX |d−1.

We write CF for the natural family of smooth curves in X parametrized by F . Likewise the fiber
product CF ×F (F × Y ) is naturally a family of smooth curves in X × Y parametrized by F × Y .
The image of CF ×F (F × Y ) in X × Y is dense, and for any (f, y) ∈ F × Y the restriction of
p∗1(E) to C(f,y) is stable. Therefore by Corollary 1.7 p∗1(E) is stable with respect to the numerical
class of C(f,y) which we denote by γ.

For l � 0 the divisor lHY is very ample on Y and a general complete intersection of divisors
linearly equivalent to lHY is smooth. Let G ⊂ |lHY |e−1 be the open subset of the cartesian power
of the complete linear series of lHY defined as

G :=

{
(H1, ..., He−1) ∈ |lHY |e−1

∣∣∣ H1 ∩ ... ∩He−1 is a smooth complete
intersection curve

}
⊂ |lHY |e−1.

As before there is a natural family DG of smooth curves in Y parametrized by G. The fiber product
DG×G (X×G) is a family of smooth curves in X×Y parametrized by X×G. For (x, g) ∈ X×G
the restriction of p∗1(E) to D(x,g) is a direct sum of trivial bundles thus the restriction is semistable.
Therefore by applying Corollary 1.7 in the semistable case, p∗1(E) is semistable with respect to the
curve class of D(x,g) which we write δ.

Finally,

(p∗1HX + p∗2HY )d+e−1 =

(
d+ e− 1

e

)
(HY )e

kd−1
· γ +

(
d+ e− 1

d

)
(HX)d

le−1
· δ.

Therefore by Lemma 4.4 p∗1(E) is slope stable with respect to p∗1(HX) + p∗2(HY ). �

This completes the proof of Theorem A. We now give a proof of the perturbation argument.
The idea is to use [GKP14, Theorem 3.4] on openness of stability along with the fact that the
natural Chow divisors are lef in the sense of [dCM02, Definition 2.1.3].
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Proposition 4.8. Let H be a nef divisor and A an ample Q-divisor on X a normal complex projective
variety. Suppose E is a rank r torsion-free sheaf on X which is slope stable with respect to the class of
Hd−1. Assume

− ∩Hd−2 : N1(X)R → N1(X)R
ξ 7→ ξ ·Hd−2

is an isomorphism, then E is stable with respect to H + εA for ε sufficiently small.

This implies we can perturb our Chow polarization to obtain stability of tautological bundles
with respect to nearby ample divisors.

Corollary 4.9. If E is a vector bundle on S a smooth projective surface which is stable with respect to
H an ample divisor, then E [n] is stable with respect to an ample divisor near the Chow divisor Hn.

Proof of Corollary. By [dCM02, Theorem 2.3.1] we know Hn is lef, so E [n] and Hn satisfy the condi-
tions of Proposition 3.8. Therefore E [n] is stable with respect to ample divisors close to Hn. �

Proof of Proposition 4.8. Identifying the tangent space of a vector space with the vector space, the
derivative of the (d− 1)st power map N1(X)R → N1(X)R at H is given by

− ∩ (d− 1)Hd−2 : N1(X)R → N1(X)R.

The assumption that the intersection with Hd−2 map is an isomorphism implies the (d−1)st power
map is locally an isomorphism.

It follows from [GKP14, Theorem 3.4] that there is a nonempty convex open set U ⊂ N1(X)R
whose closure contains [Hd−1] such that for all γ ∈ U , E is stable with respect to γ. More precisely
if δ ∈ N1(X)R represents the (d− 1)st power of an ample divisor then E is stable with respect to
the perturbed curve class [Hd−1] + ε · δ for ε sufficiently small. By estimating the (d− 1)st power
map by its derivative (which is an isomorphism at H ) and by our ability to perturb linearly towards
ample curve classes we see that for small enough ε, (H + εA)d−1 maps into U. Therefore for ε
sufficiently small E is stable with respect to H + εA. �
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