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Abstract. Kollár proved that a very general n-dimensional complex hypersurface of degree at least
3⌈(n + 3)/4⌉ is not birational to a fibration in rational curves. This is most interesting when the hyper-
surface is Fano, in which case it is covered by rational curves. In this paper, we extend Kollár’s ideas
and show that for any genus g , there are Fano hypersurfaces (in more restrictive degree and dimension
ranges) that are not birational to fibrations in genus g curves. In other words, we show that the fibering
genus of these hypersurfaces can be arbitrarily large. The fibering genus of a variety has been studied in
work of Konno, Ein–Lazarsfeld, and Voisin, but this is the first paper to explore these ideas in the Fano
range. Following Kollár, we degenerate to characteristic p > 0 to rule out these fibrations. A crucial
input is Tate’s genus change formula and its generalizations, which imply that any regular curve of genus
g is smooth if p is sufficiently large compared to g .

1. Introduction

The purpose of this paper is to study which complex hypersurfaces X are birationally fibered in
curves of a given genus, using the specialization to characteristic p > 0 technique of Kollár. In the
Fano range, X is rationally connected, so it is always swept out by curves of genus 0. It is interesting to
ask however, if X can be swept out birationally by curves of genus 0 (or higher genus for that matter).
For very general Fano hypersurfaces X ⊂ ℙn+1

ℂ
of degree d ≥ 3⌈n+3

4 ⌉, Kollár proved that the answer is
no for genus 0, namely X is not birational to a ruled variety or to a conic bundle ([Kol95] and [Kol96,
Thm. V.5.14]). In this paper, we extend Kollár’s results to higher genus.

We consider an invariant called the fibering genus (Definition 2.2), defined to be the smallest integer
g such that X admits a rational fibration in genus g curves. For surfaces with trivial Albanese,
this coincides with the minimal geometric genus of a pencil of connected divisors on X and was
first studied by Konno [Kon08] in the context of smooth surfaces in ℙ3. Konno proved that in this
case, pencils of minimal genus are given by projection from a line. Ein–Lazarsfeld investigated this
invariant for polarized K3 surfaces and abelian surfaces [EL20] of Picard rank 1 and showed that these
invariants asymptotically grow like a constant times

√
L2, where L is a generator of the Picard group.

Most recently, Voisin [Voi22] studied the fibering genus and other related invariants for hyper-Kähler
manifolds. Our main result is that there are Fano hypersurfaces of arbitrarily large fibering genus.

Theorem A. Let X ⊂ ℙn+1
ℂ

be a very general hypersurface of degree d and dimension n ≥ 3. If

d ≥ p
⌈
n +

⌊
(g + 5)/2

⌋
p + 1

⌉
for some positive integer g ≥ 1 and prime p ≥ 2g + 3, then

fib.gen(X ) ≥ g + 1.

For example, if d ≥ 5
⌈n+3

6

⌉
, then X is not birational to a conic bundle or a genus one fibration.
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Every Fano variety is covered by genus 0 curves; however, as Theorem A shows, for every g there
exists a Fano variety of fibering genus ≥ g in sufficiently high dimension. In the case g = 0, our
methods also recover Kollár’s theorem on conic bundle structures mentioned above (see Remark 4.5).
The prime p in Theorem A is chosen to ensure that any regular curve of arithmetic genus g is smooth
in characteristic p (see §2.1). In the table below, we record some values ensuring lower bounds on the
fibering genus of a very general n-dimensional degree d hypersurface in ℙn+1

ℂ
(asymptotically in n):

fib.gen(X ) ≥ 1 2 3 5 6 8 9

p 3 5 7 11 13 17 19

d ≳ 3n/4 5n/6 7n/8 11n/12 13n/14 17n/18 19n/20

We also obtain a lower bound for fibering genus that, although less sharp than Theorem A, is
expressed explicitly in terms of n and d (Corollary 5.1). One particular consequence of our bound is:

Theorem B (Follows from Corollary 5.1). Let X ⊂ ℙn+1
ℂ

be a very general hypersurface of dimension n ≥ 3
and degree d ≥ n + 2 − 1

4

√
n + 2. Then

fib.gen(X ) ≥ 1
5

√
n + 2 − 1.

1.1. Comparison with previous results and other measures of irrationality. For g ≤ 2, there have
been previous works showing the non-existence of genus g fibrations of hypersurfaces. The techniques
of birational rigidity [Puk04] can be used to rule out genus 0 fibrations in some cases (e.g. smooth index
1 Fano hypersurfaces, see [Kol19]). For g = 1, Grassi and Wen showed that in dimensions 3 ≤ n ≤ 5,
smooth Calabi–Yau hypersurfaces do not admit genus 1 fibrations [Gra91, GW22]. Assuming the
existence and termination of klt flips, they also prove the same result for all n ≥ 3. For genus 1
fibrations with a section (i.e. Jacobian fibrations of dimension one), the first and fourth author proved
that very general hypersurfaces of degree d ≥ 5⌈n+3

6 ⌉ do not birationally admit this structure [CS], by
studying rational endomorphisms on hypersurfaces. Finally, complex varieties that have a birational
fibration in genus 2 curves (or more generally hyperelliptic curves) admit a birational involution whose
quotient is birational to the image of the relative canonical linear system of the fibration. One can rule
out the existence of such birational involutions (and therefore, genus 2 fibrations) for very general
Fano hypersurfaces of degree d ≥ 3⌈n+3

4 ⌉ using [CJS, Theorem A].

Several other measures of irrationality involving curves have been previously defined and studied.
For hypersurfaces, the covering gonality first appeared in work of Pirola–Lopez [LP95], where they
showed that the covering gonality of a smooth surface X ⊂ ℙ3 of degree d ≥ 4 is equal to cov.gon(X ) =
d − 2. This was later generalized to higher-dimensional hypersurfaces of large degree by [BDPE+17]
and [BCFS19]. Here cov.gon(X ) is the minimal gonality of the general fiber of a covering family
C → X of curves. One can similarly define the covering genus cov.gen(X ) to be the minimal genus of
such a covering family. We have the inequalities

cov.gon(X ) ≤
⌊
cov.gen(X ) + 3

2

⌋
≤

⌊
fib.gen(X ) + 3

2

⌋
.

The results of [BDPE+17, BCFS19] show that if Xd ⊂ ℙn+1
ℂ

is a general hypersurface of degree d , then
cov.gon(Xd ) ≥ d − n, thereby giving a lower bound on the fibering genus in the general type range
(see Example 2.4). Our results do not quite reproduce this bound for d ≫ n (we do get a lower bound
asymptotically linear in d − n but with a worse constant), but we give an improvement in the range
d ≲ n + 1

2

√
n.
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The first and fourth authors proved that if X ⊂ ℙn+1
ℂ

is a very general hypersurface of degree
d ≥ n + 1 − 1

4

√
n + 2, then irr(X ) ≥ 1

4

√
n + 2 [CS20], where the degree of irrationality irr(X ) is the

minimal degree of a dominant rational map X d ℙn (in fact, they showed that the same bound holds
for the minimal degree map to a ruled variety). However, there are no clear inequalities relating these
invariants to the fibering genus. As we point out in Remark 5.4, the main result of [CS20] can be used
to give a similar bound to Theorem B with 1

5 replaced by 1
8 , as long as one can show by other methods

that fib.gen(X ) ≠ 1. In the present paper, we directly rule out fibrations by low genus curves, using
an obstruction that applies uniformly to both genus ≤ 1 and ≥ 2 fibrations.

For an arbitrary hypersurface X ⊂ ℙn+1
ℂ

of degree d , one can always project from a lineℓ and define
a map fℓ : X d ℙn−1

ℂ
. Depending on whether the line ℓ is contained in X or not, the general fiber

of fℓ will be either a degree d − 1 or degree d plane curve (possibly singular). Therefore, we always
have the upper bounds fib.gen(X ) ≤ 1

2 (d − 1) (d − 2) and fib.gon(X ) ≤ d − 1, where fib.gon(X ) is the
minimal gonality of the general fiber of a fibration of X in curves.

Question 1.1. For Fano hypersurfaces over ℂ, can one give any obstructions to the existence of low
gonality fibrations?

It is worth mentioning that there is no analogue of Theorem 2.8 for gonality: one cannot guarantee
smoothness of curves in large characteristic by fixing only the gonality (see Example 2.7(2)).

1.2. Outline of argument. Theorem A is a consequence of Theorem 4.4, which we prove in three
parts. First, we show that the fibering genus can only drop under specialization (Proposition 3.6).
Then we apply a construction of Mori to degenerate from a very general complex hypersurface to
a `p -cover of a hypersurface in characteristic p > 0 (Construction 4.3). Finally, for these `p -covers,
we give lower bounds on the fibering genus using Kollár’s construction of (n − 1)-forms, thereby
giving a lower bound on the fibering genus for complex hypersurfaces. One technical point is that
Bertini’s theorem fails in characteristic p : it’s possible for a morphism between smooth varieties to
have everywhere singular fibers. In this last step, we apply Tate’s genus change formula (and its
generalizations, see Theorem 2.8) to ensure that these curve fibrations on the `p -covers have smooth
general fibers.

Acknowledgements. We would like to thank Johan de Jong, Louis Esser, Antonella Grassi, János
Kollár, Eric Riedl, and Ravi Vakil for enlightening conversations and discussions.

2. Background

By curve, we mean a separated finite type scheme over k of pure dimension 1. A variety X over k
is an integral separated scheme of finite type, and we denote its function field by k(X ). Note that by
our convention, not every curve is a variety.

Definition 2.1. Let C be a proper curve over k . The arithmetic genus of X over k is

pa (C /k ) B dimk H
1(C ,OC ).

Note that our definition differs from another definition, 𝜒k (OC ) −1, which is frequently used in the
literature. The two definitions coincide when H 0(C ,OC ) = k (e.g. if C is geometrically integral over
k). In particular, if C is smooth, proper, and geometrically integral over k , then pa (C /k ) is equal to
the geometric genus dimk H 0(C ,𝜔C ).
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In this paper, we will study the fibering genus of hypersurfaces by specializing to characteristic p .
For this reason, we give a definition that works over any field:

Definition 2.2. Let X be a proper variety over a field. The fibering genus, or fib.gen(X ), is the smallest
integer g ≥ 0 such that there exists a normal proper model X̃ of X and a morphism X̃ → B to a
variety B of dimension equal to dimX − 1 whose generic fiber is a geometrically irreducible curve of
arithmetic genus g over k(B).

Note that the fibering genus is always a non-negative integer. In characteristic 0, this definition
agrees with [Voi22, Definition 1.1].

Definition 2.3. Let C be an integral curve over an algebraically closed field k . We define the gonality
of C , gon(C ), to be the minimal degree of a map C̃ → ℙ1

k , where C̃ is the normalization of C .

If C is a smooth curve over an algebraically closed field with pa (C /k ) = g , then Brill–Noether
theory shows that [Poo07, Proposition A.1(v)]

(2.1) gon(C ) ≤
⌊
g + 3

2

⌋
.

We will use this inequality to give lower bounds on the genus of curves that appear in fibrations.

Example 2.4. The inequality (2.1) immediately implies

cov.gon(X ) ≤
⌊
cov.gen(X ) + 3

2

⌋
(see §1.1 for the definitions of covering gonality and genus). For smooth general type hypersurfaces,
combining this inequality with [BDPE+17, Theorem A] and the inequality cov.gen(X ) ≤ fib.gen(X )
shows that any smooth hypersurface X ⊂ ℙn+1

ℂ
of dimension n and degree d ≥ n + 2 has fib.gen(X ) ≥

2(d − n) − 3. However, we suspect that this bound is far from being optimal.

2.1. Properties of fibrations by curves and their generic fibers. In this section, we collect some
results about curve fibrations that we will use in positive characteristic. First, recall that the properties
of the geometric generic fiber reflect those of a general fiber.

Lemma 2.5. Let f : X →Y be a morphism of varieties over a perfect field.

(1) If the generic fiber is geometrically irreducible over k(Y ), then a general fiber is irreducible [Sta, Tag
0559].

(2) The generic fiber is geometrically normal (resp. smooth, geometrically reduced) over k(Y ) if and only if
a general fiber is normal (resp. regular, reduced) [PW22, Proposition 2.1].

The following result will allow us to ensure that the fibrations we use will have irreducible general
fibers, by taking the Stein factorization and using Lemma 2.5(1).

Lemma 2.6 ([Tan21, Propositions 2.1 and 2.2]). LetV be a proper variety over a field k .

(1) IfV is normal, then k is algebraically closed in k(V ) if and only if H 0(V,OV ) = k .
(2) If k is algebraically closed in k(V ), thenV is geometrically irreducible over k .

In every prime characteristic p, there exist fibrations by curves where the total space is normal but
every fiber is singular. The generic fiber of such a fibration is a curve over an imperfect field that is
regular but not smooth.

https://stacks.math.columbia.edu/tag/0559
https://stacks.math.columbia.edu/tag/0559
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Example 2.7. Let k0 be a perfect field of characteristic p > 0.

(1) If p = 2 or 3, consider a quasi-elliptic fibration over k0 [BM76, §1], and let C be the generic
fiber. Then C is regular but not smooth over k B H 0(C ,OC ), and pa (C /k ) = 1.

(2) (Rosenlicht, [KMT74, 6.9.3]) Assume p ≥ 3, let k = k0(s ) be the function field in 1 vari-
able, and let C be the normalization of the plane curve defined by y2z p−2 − xp + s z p . Then
H 0(C ,OC ) = k , the arithmetic genus is pa (C /k ) = 1

2 (p − 1), and the base change C ⊗k k1/p is
non-normal.

(3) Let k = k0(s ,t ) be the function field in two variables, and let C be the plane curve defined
by sxp + t y p + z p . Then C is a regular curve with H 0(C ,OC ) = k , the arithmetic genus is
pa (C /k ) = 1

2 (p − 1) (p − 2), and the base change C ⊗k k1/p is non-reduced.

When the characteristic of the field is large compared to the genus, such pathological behavior as
in Example 2.7 cannot occur. The following result generalizes Tate’s genus change formula [Tat52]:

Theorem 2.8 ([Tat52] in the geometrically integral case, [PW22] in general). LetC be a regular integral
proper curve over a field k of characteristic p > 0. AssumeH 0(C ,OC ) = k , and let g B pa (C /k ). If p ≥ 2g +3,
then C is smooth over k .

Proof. For g = 0, see [CTX15, Lemma 6.5]. If g = 1 and if p ≥ 5 then C is smooth over k by [PW22,
Corollary 1.8], so we may assume g ≥ 2 and p ≠ 2. We will show that if C is not geometrically
normal over k , then p ≤ 2g + 1. In this setting, let Y be the normalization of (C ⊗k k1/p )red and
𝜙 : Y → C the induced morphism. By [PW22, Theorems 1.1 and 1.2] and [NT23, Corollary 3.3] we
have 𝜙∗KC − KY ∼ (p − 1)D for some nonzero effective Weil divisor D . Taking degk and using that
degk (𝜙∗𝜔C ) = deg(𝜙) degk (𝜔C ) [Sta, Tag 0AYZ] and degk (𝜔C ) = 2g − 2 [Sta, Tag 0C19], we get

(2.2) (p − 1) [k1/p : k ] ≤ (p − 1) [k1/p : k ] degk1/p (OY (D)) = deg(𝜙) (2g − 2) − [k1/p : k ] degk1/p (𝜔Y ).

By [JW21, Lemma 5.4] and the fact that −degk1/p (𝜔Y ) ≤ 2 by [CTX15, Lemma 6.5], we have that

deg(𝜙) (2g − 2) − [k1/p : k ] degk1/p (𝜔Y ) ≤ [k1/p : k ] (2g − 2 − degk1/p (𝜔Y )) ≤ [k1/p : k ]2g .

Thus, after dividing (2.2) through by [k1/p : k ], we get p − 1 ≤ (p − 1) degk1/p (OY (D)) ≤ 2g . □

The bound in Theorem 2.8 is sharp for all g , as shown by Example 2.7(3) with p = 2 for g = 0, and
Example 2.7(2) for g ≥ 1 (noting that 2g + 2 is never prime for g ≥ 1).

3. Degenerations of curves and fibering genus

The main goal of this section is to prove that fibering genus specializes (Proposition 3.6). In order
to prove this result, we will first need a careful analysis of the numerical invariants of degenerations
of curves with normal total space. Throughout, we will work in the following setting:

Notation 3.1. Let (R,𝔪) be an excellent DVR with fraction field K = Frac R and residue field ^ = R/𝔪.

Definition 3.2. A degeneration of curves is a proper flat family X → Spec R over a DVR R where the
generic fiber XK is an integral normal projective curve over K .

Now let X → Spec R be a normal degeneration of curves, and consider the following data. Let
{Γi }ri=1 be the irreducible components of the reduced subscheme (X^)red of the special fiber, and let
Γa
i be the normalization of Γi . Define the following ^-algebras:

https://stacks.math.columbia.edu/tag/0AYZ
https://stacks.math.columbia.edu/tag/0C19
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(1) A = H 0(X^ ,OX^
),

(2) ^′ = H 0((X^)red,O(X^ )red),
(3) ^i = H 0(Γi ,OΓi ), and
(4) ^ai = H

0(Γa
i ,OΓa

i
).

Then A is an Artin local ^-algebra, and ^ ⊂ ^′ ⊂ ^i and ^i ⊂ ^ai are finite field extensions by [Sta, Tag
0BUG] and [Sta, Tag 04L2], since these schemes are connected and the last three are also reduced.

Proposition 3.3. Let X → Spec R be a regular degeneration of curves with H 0(XK ,OXK ) = K . Let {Γi }ri=1
be the irreducible components of (X^)red with reduced structure, and let Γa

i be the normalization of Γi . Then

r∑︁
i=1

pa (Γa
i /^ai ) ≤

r∑︁
i=1

pa (Γa
i /^i ) ≤

r∑︁
i=1

pa (Γi/^i ) ≤ pa (XK /K ).

Proof. Let mi be the multiplicity of Γi in X^ , let d B gcd(mi ), and define the effective Cartier divisor
D B

∑r
i=1(mi/d )Ci . By [Sta, Tag 0C68] and [Sta, Tag 0C69], D satisfies

(1) ^D B H 0(D ,OD ) is a finite field extension of ^, and
(2) 𝜒 (X^ ,OX^

) = d · 𝜒 (D ,OD ).

Hence, if g B pa (XK /K ) and gD B pa (D/^D ), we have

g − 1 = d [^D : ^] (gD − 1).

Therefore,

gD =
g − 1

d [^D : ^] + 1 ≤ g

since either g = 0, in which case gD = 0 and d = [^D : ^] = 1, or g > 0, in which case we see that
gD ≤ g . Furthermore, since (X^)red = Dred, we see that (X^)red is a proper ^D -scheme. In particular
^D ⊂ ^′ and also H 1(X^ ,OD ) ↠ H 1(X^ ,O(X^ )red). So we conclude that

pa ((X^)red/^′) ≤ pa ((X^)red/^D ) ≤ pa (D/^D ) = gD ≤ g = pa (XK /K ).

Next, we compare the arithmetic genus of (X^)red to that of its components. Consider the finite map
𝜋 :

⊔r
i=1 Γi → (X^)red splitting the irreducible components. This gives a sequence of sheaves,

0 O(X^ )red

∏r
i=1 OΓi C 0,

and since dim Supp (C) = 0, we have a surjection

H 1 ((X^)red,O(X^ )red

)
↠

r⊕
i=1

H 1(Γi ,OΓi ).

Hence,
r∑︁
i=1

pa (Γi/^i ) ≤
r∑︁
i=1

pa (Γi/^′) ≤ pa ((X^)red/^′) ≤ pa (XK /K ).

Finally, for each i , we have the inequality pa (Γa
i /^i ) ≤ pa (Γi/^i ) [Sta, Tag 0CE4]. □

Proposition 3.4. Let X → Spec R be a normal degeneration of curves over an excellent DVR, and assume
H 0(XK ,OXK ) = K . Let Γi ⊂ (X^)red be an irreducible component. Then pa (Γa

i /^i ) ≤ pa (XK /K ).

https://stacks.math.columbia.edu/tag/0BUG
https://stacks.math.columbia.edu/tag/0BUG
https://stacks.math.columbia.edu/tag/04L2
https://stacks.math.columbia.edu/tag/0C68
https://stacks.math.columbia.edu/tag/0C69
https://stacks.math.columbia.edu/tag/0CE4
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Proof. Since R is excellent, by [Lip78], there exists a strong desingularization 𝜋 : X̃ → X , meaning
that X̃ is regular and 𝜋 is an isomorphism over the regular locus of X . Then X̃ → Spec R is a
regular model of X̃K � XK and hence by Proposition 3.3 verifies the inequality. Since X̃ → X is an
isomorphism away from a finite set of points, for each Γi ⊂ X^ there is an irreducible component
Γ̃i ⊂ X̃s mapping birationally onto Γi . This induces a birational morphism on the normalizations
Γ̃a
i → Γa

i , which is an isomorphism. □

We now apply this to prove the following result, which we use in the proof of Proposition 3.6.

Corollary 3.5. Let f : X →Y be a morphism of relative dimension 1 between flat, proper, normal, integral
schemes over an excellent DVR R. Assume Y^ is integral and the map f^ : X^ → Y^ is dominant. Let [ ∈ Y
and b ∈ Y^ be the generic points. Let X1, . . . ,Xr be the irreducible components of (X^)red, and define the
multiplicities mi by

X^ =

r∑︁
i=1

miXi .

Let I ⊂ {1, . . . ,r } be the indices corresponding to the components Xi that dominateY^ . For i ∈ I , let Γi be the
generic fiber of Xi→Y^ , and let Γa

i → Γi be the normalization.

Then the following hold:

(1) Xb =
∑
i ∈I miΓi .

(2) For i ∈ I , set ^i B H 0(Γi ,OΓi ) and ^ai B H 0(Γa
i ,OΓa

i
). Then

pa (Γa
i /^ai ) ≤ pa (Γa

i /^i ) ≤ pa (X[/^ ([)).

In particular, the Stein factorization X a
i → Bi →Y^ has the property that the general fiber of Xi → Bi

is an irreducible curve, and the generic fiber Ci of Xi → Bi has genus pa (Ci/^ai ) ≤ pa (X[/^ ([)).

Proof. Part (1) follows from properties of localization and primary decomposition. For (2), first note
that sinceY is normal, D B OY,b is a DVR. Now consider XD → Spec D . Since XD is a localization of
the irreducible and normal scheme X , it is also irreducible and normal. The morphism XD → Spec D
is proper by base change, and it is flat since it is dominant. Therefore, as Γa

i and Ci are isomorphic
as curves over ^ai � k(Bi ), the genus inequalities in part (2) follow from Proposition 3.4. The state-
ment about irreducibility of the general fibers of the Stein factorization follows from Lemma 2.6 and
Lemma 2.5(1). □

Finally, we are ready to show that fibering genus can only drop under specialization. We note that
this property is known for covering gonality by [GK19, Proposition 2.2]; however, their argument,
which uses the Kontsevich moduli space, requires a base change in applying the valuative criterion of
properness for stacks, and so it will not work for fibering genus.

Proposition 3.6. Let R be an excellent DVR as above, and let X be a normal proper integral scheme that is
flat over R.

(1) If fib.gen(XK ) = g , then for every component X ′
^ ⊂ X^ , we have fib.gen(X ′

^ ) ≤ g .
(2) Suppose X ′

^ ⊂ X^ is a geometrically integral component of the central fiber that appears with multiplicity
1. If XK is geometrically integral with fib.gen(XK̄ ) = g , then fib.gen(X ′

^
) ≤ g .

Proof. Set fib.gen(XK ) = g , and let fK : XK d BK be a rational map computing the fibering genus
of XK , i.e. the generic fiber of the normalization of the graph of fK : XK d BK is geometrically
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irreducible of arithmetic genus g . Let B be a normal proper model of BK over R. The rational map
fK extends to a rational map f : X d B over R. Since X is normal, f is defined on all codimension 1
points. By an argument of Abhyankar and Zariski [Kol13, Lemma 2.22], for any codimension 1 point
𝛿 ∈ X , there is a birational morphism ` : B̃→B so that for the induced rational map

f̃ : XdB̃ ,

f̃ (𝛿) is a codimension 1 regular point of B̃ . Let 𝛿 now be the generic point of X ′
^ . Then the closure

of the image B ′
^ B f̃ (𝛿) ⊂ B̃^ is a codimension 1 subscheme of B̃ .

Now we use a standard argument to pass to morphisms. Consider the normalization of the closure
of the graph of f̃ , which we will denote by Γ. This admits a morphism

Γ → X ×R B̃

over R, with the projection maps 𝜋1, 𝜋2. Furthermore, the generic fiber of Γ → B is the normalization
of the graph of fK . The first projection 𝜋1 is proper and is an isomorphism away from a codimension
≥ 2 locus in X . The central fiber Γ^ has pure codimension 1, and since 𝜋1 is an isomorphism away
from a codimension ≥ 2 locus in X , there is a unique component Γ′

^ which dominates X ′
^ via the first

projection with degree one. Therefore, Γ′
^ is birational to X ′

^ .

This defines a morphism Γ → B̃ which restricts to Γ′
^ → B ′

^ satisfying all of the conditions in
Corollary 3.5. Applying Corollary 3.5 to Γ → B̃ over R gives the desired inequality on fibering genera
(noting that the normalization of the generic fiber of Γ′

^ → B ′
^ is the generic fiber of the morphism

Γ′
^
a → B ′

^ from the normalization [Sta, Tag 0307]). This proves part (1).

Part (2) follows from part (1) by base changing X by a (possibly ramified) finite extension R̃ of
the DVR R and applying part (1) to the normalization X̃ of the base change, as in the proof of
[Kol96, Theorem IV.1.6]. The assumptions on X ′

^ are to ensure that X̃ ˜̂ has a component birational
to (X ′

^ ) ˜̂. □

4. Lower bounds on fibering genus for Fano hypersurfaces

The main result of this section is Theorem 4.4, which will imply Theorem A and Corollary 5.1.

Definition 4.1. Let X be a variety over an algebraically closed field k , and let L be a line bundle
on X . We say that sections of L separate 𝛾 points on an open set U ⊂ X if for any 𝛾 distinct points
x1, . . . ,x𝛾 ∈ U , there is a section s ∈ H 0(X ,L) that vanishes on x1, . . . ,x𝛾−1 but not on x𝛾 .

This is slightly different from the notion of (BVA)p as in [BDPE+17, Definition 1.1]. For example,
a line bundle L is (BVA)1 if and only if it separates 2 points and tangent vectors on an open set. For
our purposes, we only require our line bundle to separate 𝛾 distinct points.

Lemma 4.2. Fix an integer 𝛾 ≥ 2, and let f : X → B a proper morphism of relative dimension 1 of normal
varieties over an algebraically closed field k , and assume the generic fiber is a smooth geometrically connected
curve over k(B). Let n = dimX . Suppose there is a line bundle L embedding in ΩkX for some 1 ≤ k ≤ n

𝜑 : L ↩→ ΩkX

whose sections separate 𝛾 points on an open set. Then the general fiber of f has gonality ≥ 𝛾 + 1.

Proof. Since X is normal and f has relative dimension 1, its singular locus does not dominate B , i.e.
a general fiber of f is contained in the regular locus of X . Thus, we can shrink B so that f , X , and

https://stacks.math.columbia.edu/tag/0307
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B are all smooth, and any fiber C is a proper, smooth, irreducible curve. Fix some fiber C that meets
the open set U on which L separates 𝛾 points. Then the conormal sequence

0 → IC /I2
C → ΩX |C → ΩC → 0

is an exact sequence of vector bundles, and since ΩC is a line bundle, there is an induced exact
sequence of vector bundles

0 →
∧k (IC /I2

C ) → ΩkX |C → (
∧k−1(IC /I2

C )) ⊗ ΩC → 0.

However, since C is a fiber of f we have IC /I2
C � On−1

C and hence
∧k−1(IC /I2

C ) � O(n−1
k−1)
C . Therefore,

we get
(n−1
k−1

)
projection maps:

L|C → ΩkX |C → ΩC .

The projection maps are all zero exactly if L|C ↩→ ΩkX |C factors through
∧k (IC /I2

C ) � O(n−1
k )

C (when
k = n, this just says that the projection map is nonzero). In this case, we could only have h0(C ,L|C ) ≠ 0
if L|C � OC , but that would imply that sections of L cannot separate more than one point on C ,
contradicting the assumption that 𝛾 ≥ 2. Therefore, one of the projections L|C → ΩC must be a
nonzero map of line bundles and hence injective, meaning that

H 0(C ,L|C ) → H 0(C ,ΩC )

must be injective. Since we chose C to be general, H 0(C ,L|C ) and hence H 0(C ,ΩC ) can separate
𝛾 points in some open (U ∩ C ) ⊆ C . Therefore gon(C ) ≥ 𝛾 + 1 by geometric Riemann–Roch (c.f.
[BDPE+17, Lemma 1.3]). □

In the proof of Theorem 4.4, we will use a construction of Mori to degenerate a very general
hypersurface to a `p -cover. We recall several key facts that Kollár showed about this family:

Construction 4.3 ([Kol95], [Kol96, Construction V.5.14.4]). Let p be a prime, and let n,e be positive
integers with n ≥ 3. Let R be a mixed characteristic DVR with algebraically closed residue field ^ of
characteristic p . There is a normal proper integral scheme X → Spec R with the following properties:

(1) The generic fiber XK is a hypersurface of degree pe in ℙn+1
K .

(2) The special fiber is a `p -cover X^ →Ye of a smooth degree e hypersurface in ℙn+1
^ . Moreover,

X^ admits a resolution of singularities [Kol95, paragraph 21]

X ′
^ X^ Ye ,

r

and the line bundle L B r ∗Oℙn+1
^

(pe + e − n − 2) injects into
∧n−1ΩX ′

^
[Kol95, line (15.3)].

We now prove the main result: a lower bound on fibering genus.

Theorem 4.4. Let Xn,d ⊂ ℙn+1
ℂ

be a very general hypersurface of degree d and dimension n ≥ 3. For any
prime p and positive integer e such that pe ≤ d , define the quantity 𝛾 B pe + e − n − 1. If 𝛾 ≥ 2, then

fib.gen(Xn,d ) ≥ min
{
p − 2

2
,2𝛾 − 1

}
.

Proof. First we consider the case d = pe . By Construction 4.3, a very general degree pe hypersurface
Xn,pe ⊂ ℙn+1

ℂ
admits a degeneration to X^ with a resolution of singularities X ′

^ → X^ . The line bundle
L = r ∗Oℙn+1

^
(𝛾−1) injects into

∧n−1ΩX ′
^

and separates 𝛾 points on an open set of X ′
^ . If X ′

^ birationally
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admits a fibration in curves such that the general fiber C is smooth, then Lemma 4.2 (applied to the
normalization of the graph of the rational fibration of X ′

^ and k = n − 1) implies that it has gonality
gon(C ) ≥ 𝛾 + 1. Here we use the assumption 𝛾 ≥ 2 here.

We will now obstruct low genus fibrations of Xn,pe . Assume for contradiction that Xn,pe birationally

admits a fibration by irreducible genus g curves for some g <
p−2

2 . Using the degeneration of Xn,d to X^

in characteristic p (Construction 4.3), we apply Proposition 3.6 to conclude that X^ birationally admits
a fibration whose general fibers are irreducible curves of arithmetic genus g ′ ≤ g . The condition that
p ≥ 2g + 3 ≥ 2g ′ + 3 implies that the general fiber C is smooth by Theorem 2.8 and Lemma 2.5(2).
Therefore,

(4.1) 𝛾 + 1 ≤ gon(C ) ≤
⌊
g + 3

2

⌋
,

and hence,

g ≥ 2(𝛾 + 1) − 3 = 2𝛾 − 1

proving the claim in the case d = pe .

For d > pe , we degenerate a very general Xn,d to the union of a very general Xn,pe and d − pe
hyperplanes. Proposition 3.6 then implies that

fib.gen(Xn,d ) ≥ fib.gen(Xn,pe ) ≥ min
{
p − 2

2
,2𝛾 − 1

}
.

□

Figure 1 gives a graphical representation of the lower bound from Theorem 4.4.

Proof of Theorem A. Define r B ⌊ g+3
2 ⌋ and e B ⌈n+r+1

p+1 ⌉. We have r ≥ 2 by the assumption that g ≥ 1.
Then

𝛾 = e (p + 1) − n − 1 ≥ n + r + 1 − n − 1 = r .

Suppose for the sake of contradiction that a very general Xn,pe admits a genus g ′ ≤ g fibration. Then
the proof of Theorem 4.4 shows that X^ , as defined in Construction 4.3, birationally admits a fibration
whose general fiber is a smooth (here we use p ≥ 2g + 3) irreducible curve C of genus at most g ′, and
hence C satisfies the inequalities

r + 1 ≤ 𝛾 + 1 ≤ gon(C ) ≤
⌊
g ′ + 3

2

⌋
≤

⌊
g + 3

2

⌋
.

This contradicts our choice of r . Thus, fib.gen(Xn,pe ) ≥ g + 1. The case d > pe follows from the
inequality fib.gen(Xn,d ) ≥ fib.gen(Xn,pe ), as in the proof of Theorem 4.4. □

Remark 4.5. For g = 0, taking p = 3 and r = 2 (instead of ⌊ g+3
2 ⌋) in the proof of Theorem A recovers

Kollár’s bound ruling out (birational) conic bundle structures in degrees d ≥ 3⌈n+3
4 ⌉.

5. Explicit bounds on the fibering genus in terms of the dimension and degree

In this section, we obtain an explicit lower bound for the fibering genus in terms of degree and
dimension, as another consequence of Theorem 4.4.
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Figure 1. Lower bounds on fib.gen(Xn,d ) from Theorem 4.4.

Corollary 5.1. Let X ⊂ ℙn+1
ℂ

be a very general hypersurface of degree d and dimension n ≥ 3. Then

fib.gen(X ) ≥ −] +
√︁
]2 + (9/2)d

9
− 1 where ] = n + 2 − d .

Note that if ] > 0, then X is Fano and ] is the Fano index of X .

The idea to prove Corollary 5.1 is to use Bertram’s postulate to find a simultaneous lower bound, in
terms of n and d , for both of the quantities in Theorem 4.4. This bound is less sharp than Theorem A
because for specific pairs (n,d ), a more optimal prime p can often be chosen to give better bounds
from a rough estimate using Bertrand’s postulate.

Proof. Let \ be the unique positive real number satisfying the quadratic equation

(\/2) − 2
2

= 2
(
d − \ + d

\
− 1 − n

)
− 3,

which can explicitly be written as

\ =
−] +

√︁
]2 + (9/2)d
9/4 .

We need to show that the fibering genus is at least \
4 − 1. There is nothing to show if \ < 2, so we may

assume that \ ≥ 2. By Bertrand’s postulate, we may choose some prime p satisfying 1
2\ ≤ p ≤ \. The

first inequality 1
2\ ≤ p implies p−2

2 ≥ (\/2)−2
2 . Furthermore, if we set e B

⌊
d
p

⌋
, then clearly e ≥ d

p − 1,
so the second inequality p ≤ \ implies

2(pe + e − n) − 3 ≥ 2
(
d − p + d

p
− 1 − n

)
− 3 ≥ 2

(
d − \ + d

\
− 1 − n

)
− 3 =

(\/2) − 2
2

.

Therefore, by Theorem 4.4, we have

fib.gen(X ) ≥ min
{
p − 2

2
,2(pe + e − n) − 3

}
≥ \

4
− 1.
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□

For Calabi–Yau hypersurfaces, i.e. the case that d = n + 2, Corollary 5.1 shows:

Corollary 5.2. Let Xn+2 ⊂ ℙn+1
ℂ

be a very general hypersurface of degree n + 2 and dimension n ≥ 3. Then

fib.gen(Xn+2) ≥
1

3
√

2

√
n + 2 − 1.

Thus, asymptotically the fibering genus of Calabi–Yau hypersurfaces grows by a factor of
√
n + 2.

We emphasize that Theorem 4.4 gives sharper bounds than Corollary 5.2.

Remark 5.3. As mentioned in the introduction, Grassi and Grassi–Wen showed that smooth Calabi–
Yau hypersurfaces do not birationally admit genus 1 fibrations (conditionally on standard MMP con-
jectures if n ≥ 6) [Gra91, GW22]. Our methods recover their bound for very general Calabi–Yau
hypersurfaces for n = 3, n = 5, and n ≥ 8 (unconditionally on the MMP).

Next, for any d , applying Jensen’s inequality to Corollary 5.1 yields the following bound for a very
general hypersurface X ⊂ ℙn+1

ℂ
of degree d and dimension n ≥ 3:

fib.gen(X ) ≥
1 + 2−1/2 sign(d − n − 2)

9
· (d − n − 2) +

√︂
d
36

− 1.

This result illustrates the expected behavior of fib.gen(X ). In the d ≫ n regime, there is a dominant
term linear in d − n, and in the regime d ≤ n, the dominant behavior is

√
d . However, the constants

that appear in this estimate are certainly not optimal.

Finally, we would like to point out how earlier work of the first author and fourth author can be used
to rule out fibrations in curves of geometric genus g ≥ 2 for very general complex Fano hypersurfaces
in a certain range. Recall that, using the methods in the present paper, one can obtain a similar bound
with an improved constant and without having to separately rule out the possibility that fib.gen(X ) = 1
(Theorem B).

Remark 5.4. Let X ⊂ ℙn+1
ℂ

be a very general hypersurface of degree d . If d > n + 1 − 1
4

√
n + 2 and

X d B is a fibration in curves of geometric genus g ≥ 2, then one can use the main result of [CS20]
to show that g ≥ 1 + 1

8

√
n + 2. Indeed, given a rational fibration X d B in curves of geometric genus

g ≥ 2, after resolving the map and resolving the source, we have a morphism 𝜋 : X̃ → B whose general
fiber is a smooth curve of genus g . Consider the composition of maps

X d ℙ𝜋∗𝜔x̃/B ≃bir. ℙ
g−1
B d ℙ1

B

where the last map is given by projecting away from g − 2 general rational sections. This map has
degree 2g −2. On the other hand, by [CS20] we know that the minimal degree map from X to a ruled
variety is ≥ 1

4

√
n + 2. So

2g − 2 ≥ 1
4

√
n + 2 =⇒ g ≥ 1 + 1

8

√
n + 2.
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