MATH 732: CUBIC HYPERSURFACES: EXERCISES

DAVID STAPLETON

1. Cohomology

Exercise 1. Assume $X \subseteq \mathbf{P}^{n+1}$ is a smooth hypersurface of degree $d>1$ and $\mathbf{P}^{\ell} \subseteq X$ is a linear subspace contained in X. Show that $\ell \leq n / 2$.

Exercise 2. Conversely, prove that if $\ell \leq n / 2$ then there exist smooth hypersurfaces of every degree that contain \mathbf{P}^{ℓ}. For which d does every degree d hypersurface in \mathbf{P}^{n+1} contain a \mathbf{P}^{ℓ} ?

Exercise 3. Assume that $X \subseteq \mathbf{P}^{n+1}$ is a smooth hypersurface of degree $d>1$. Let $h \in \mathrm{H}^{2}(X, \mathbf{Z})$ represent the restriction of the hyperplane class. Prove that

$$
\mathrm{H}^{2 k}(X, \mathbf{Z})= \begin{cases}\mathbf{Z} h^{k} & 0<2 k<n \\ \mathbf{Z} h^{k} / d & n<2 k<d\end{cases}
$$

2. Hodge Numbers

Exercise 4. Prove that if X is a variety and

$$
0 \rightarrow \varepsilon_{1} \rightarrow \varepsilon_{2} \rightarrow \mathcal{L} \rightarrow 0
$$

is a short exact sequence of vector bundles (with \mathcal{L} a line bundle), then for any $p>0$

$$
0 \rightarrow \wedge^{p} \mathcal{E}_{1} \rightarrow \wedge^{p} \mathcal{E}_{2} \rightarrow\left(\wedge^{p-1} \mathcal{E}_{1}\right) \otimes \mathcal{L} \rightarrow 0
$$

Exercise 5. Assuming the cohomology of line bundles on \mathbf{P}, prove the Bott Vanishing theorem using the Euler sequence and its exterior powers.

Exercise 6. Compute the canonical bundle of $X: \omega_{X}:=\wedge^{n} \Omega_{X}$.
Exercise 7. Show that the cotangent bundle Ω_{X} of a smooth hypersurface of degree $d \geq 3$ is stable.

3. Universal Hypersurfaces

Exercise 8. Filling in some things from class:
(1) Prove the map of sheaves

$$
\mathrm{H}^{0}(\mathbf{P}, \mathcal{O}(d)) \otimes_{k} \mathcal{O}_{\mathbf{P}} \rightarrow \mathcal{O}_{\mathbf{P}}(d-1)^{\oplus n+2} \quad\left(F \mapsto \oplus \partial_{x_{i}} F\right)
$$

is surjective.
(2) Prove that for any $p \in \mathbf{P}$, the generic hypersurface that is singular at p has an ordinary double point at p (i.e. the tangent cone at p is a non-singular quadratic form).

Exercise 9. As we mentioned in our example, the discriminant locus $D(2, n)$ of the universal quadratic form corresponds to those whose associated bilinear form is singular (i.e. has nullity ≥ 1).
(1) Reprove the theorem on the degree of the discriminant for these forms.
(2) Prove that the singular locus of $D(2, n)$ corresponds to the set of bilinear forms whose matrix has nullity ≥ 2.
(3) (Optional) Can you figure out what happens in characteristic 2?

4. Monodromy and Lefschetz Pencils

Exercise 10. (1) Show that a local system on $[0,1]$ is trivial.
(2) Show that any local system L on $B \times[0,1]$ is isomorphic to the inverse image: $p_{1}^{-1}\left(\left.L\right|_{B \times 0}\right)$.
(3) Given a local system L on B, conclude that for any 2 homotopic paths between $x, y \in B$:

$$
\gamma_{1}, \gamma_{2}:[0,1] \rightarrow B
$$

there is an induced ismorphism $L_{x} \simeq L_{y}$ which is independent of the choice of path.

Exercise 11. In the case $n=0$ and $d=3$, prove that the monodromy group of the family $X_{U(3,0)} \rightarrow U(3,0) \subseteq \mathbf{P}^{3}$ is \mathfrak{S}_{3}. The discriminant locus $D(3,0) \subseteq \mathbf{P}^{3}$ is singular along a curve. What is this curve (and prove your answer)?

5. Classical constructions

Exercise 12. Let

$$
X=\left(x_{0}^{3}+\cdots+x_{n+1}^{3}=0\right) \subseteq \mathbf{P}
$$

be an even dimensional Fermat cubic hypersurface and let

$$
\Lambda=\left(x_{0}+x_{1}=\cdots=x_{n}+x_{n+1}=0\right) \subseteq \mathbf{P} .
$$

Show that the corresponding quadric fibration is singular along the union of $n / 2+1$ hyperplanes and the cubic hypersurface:

$$
X \cap\left(x_{0}-x_{1}=\cdots x_{n}-x_{n+1}=0\right)
$$

thought of as a subset of $\mathbf{P}^{n / 2}$.

6. Chern class problems

Exercise 13. Prove that if \mathcal{E} is a rank 2 vector bundle on X with a section s that is transverse to the 0 -section of \mathcal{E}. Let

$$
i: Y=(s=0) \hookrightarrow X
$$

Assume \mathcal{E} is an extension of line-bundles:

$$
0 \rightarrow \mathcal{L}_{1} \rightarrow \mathcal{E} \rightarrow \mathcal{L}_{2} \rightarrow 0 .
$$

Define:

$$
\xi_{i}=\operatorname{cl}\left(\mathcal{L}_{i}\right) \in A^{2}(X)
$$

Assume (for convenience of proof) that the induced section of \mathcal{L}_{2} is transverse to the 0-section. Prove that

$$
[Y]_{A}=\xi_{1} \cdot \xi_{2} \in A^{4}(X)
$$

(Similarly, one can prove a result for a filtered vector bundle of higher rank.) What does this say if the section is nowhere vanishing?

Exercise 14. Given rank r vector bundle \mathcal{E} on X, prove that there is a smooth projective variety $\mu: Y \rightarrow X$ such that
(1) $\mu^{*} \mathcal{E}$ is a successive extension of line bundles, and
(2) $\mu^{*}: A^{*}(X) \rightarrow A^{*}(Y)$ is injective.

Exercise 15. Let X be a variety and \mathcal{E} a vector bundle of rank r. Use the splitting principle to compute the following Chern classes.
(1) $c_{\bullet}\left(\mathcal{E}^{\vee}\right)=1-c_{1}(\mathcal{E})+c_{2}(\mathcal{E})-\cdots$,
(2) $c_{0}\left(\operatorname{Sym}^{2}(\mathcal{E})\right)$,
(3) $c_{\cdot}\left(\varepsilon^{\otimes 2}\right)$,
(4) $c_{\bullet}\left(\wedge^{2} \varepsilon\right)$,
(5) $c_{\bullet}\left(\wedge^{r} \mathcal{E}\right)$,
(6) $c_{\bullet}(\mathcal{E} \otimes \mathcal{L})$ for a line bundle \mathcal{L}.
(7) Compute the total Chern classes of $T_{\mathbf{P}^{n}}$ and $T_{\mathbf{P}^{1} \times \mathbf{P}^{1}}$.

7. FANO SCHEMES

Exercise 16. Prove that a subscheme $T \subseteq \mathbf{G}$ is contained in $\mathrm{F}(X, r)$ if and only if $\left.s_{F}\right|_{T} \equiv 0$. In other words:

$$
\mathrm{F}(X, r)=\left(s_{F}=0\right) \subseteq \mathbf{G} .
$$

Moreover, use the fact that $\operatorname{Sym}^{d}\left(\mathcal{S}^{\vee}\right)$ is globally generated to show that for general F the section s_{F} is transverse to the zero section (so it is smooth and its class computes the top Chern class of $\left.\mathrm{Sym}^{d} \mathcal{S}^{\vee}\right)$.

8. 27 LINES

Exercise 17. Prove that the if \mathcal{E} is a globally generated vector bundle on a projective variety X then a general section $s \in \mathrm{H}^{0}(X, \mathcal{E})$ meets the zero section transversely.
Exercise 18. Count the number of lines in a general quintic threefold $X \subseteq \mathbf{P}^{4}$.

Exercise 19. Count the number of lines in a general septic (degree 7) fourfold $X \subseteq \mathbf{P}^{5}$.

