MATH 732: CUBIC HYPERSURFACES: EXERCISES

DAVID STAPLETON

1. Cohomology

Exercise 1. Assume $X \subseteq \mathbf{P}^{n+1}$ is a smooth hypersurface of degree d > 1 and $\mathbf{P}^{\ell} \subseteq X$ is a linear subspace contained in X. Show that $\ell \leq n/2$.

Exercise 2. Conversely, prove that if $\ell \leq n/2$ then there exist smooth hypersurfaces of every degree that contain \mathbf{P}^{ℓ} . For which d does every degree d hypersurface in \mathbf{P}^{n+1} contain a \mathbf{P}^{ℓ} ?

Exercise 3. Assume that $X \subseteq \mathbf{P}^{n+1}$ is a smooth hypersurface of degree d > 1. Let $h \in \mathrm{H}^2(X, \mathbf{Z})$ represent the restriction of the hyperplane class. Prove that

$$\mathrm{H}^{2k}(X,\mathbf{Z}) = \begin{cases} \mathbf{Z}h^k & 0 < 2k < n \\ \mathbf{Z}h^k/d & n < 2k < d. \end{cases}$$

2. Hodge Numbers

Exercise 4. Prove that if X is a variety and

$$0 \to \mathcal{E}_1 \to \mathcal{E}_2 \to \mathcal{L} \to 0$$

is a short exact sequence of vector bundles (with \mathcal{L} a line bundle), then for any p > 0

$$0 \to \wedge^p \mathcal{E}_1 \to \wedge^p \mathcal{E}_2 \to (\wedge^{p-1} \mathcal{E}_1) \otimes \mathcal{L} \to 0.$$

Exercise 5. Assuming the cohomology of line bundles on \mathbf{P} , prove the Bott Vanishing theorem using the Euler sequence and its exterior powers.

Exercise 6. Compute the canonical bundle of $X: \omega_X := \wedge^n \Omega_X$.

Exercise 7. Show that the cotangent bundle Ω_X of a smooth hypersurface of degree $d \ge 3$ is stable.

DAVID STAPLETON

3. Universal Hypersurfaces

Exercise 8. Filling in some things from class:

(1) Prove the map of sheaves

$$\mathrm{H}^{0}(\mathbf{P}, \mathcal{O}(d)) \otimes_{k} \mathcal{O}_{\mathbf{P}} \to \mathcal{O}_{\mathbf{P}}(d-1)^{\oplus n+2} \quad (F \mapsto \oplus \partial_{x_{i}}F)$$

is surjective.

(2) Prove that for any $p \in \mathbf{P}$, the generic hypersurface that is singular at p has an ordinary double point at p (i.e. the tangent cone at p is a non-singular quadratic form).

Exercise 9. As we mentioned in our example, the discriminant locus D(2,n) of the universal quadratic form corresponds to those whose associated bilinear form is singular (i.e. has nullity ≥ 1).

- (1) Reprove the theorem on the degree of the discriminant for these forms.
- (2) Prove that the singular locus of D(2,n) corresponds to the set of bilinear forms whose matrix has nullity ≥ 2 .
- (3) (Optional) Can you figure out what happens in characteristic 2?

4. Monodromy and Lefschetz Pencils

Exercise 10. (1) Show that a local system on [0,1] is trivial.

- (2) Show that any local system L on $B \times [0,1]$ is isomorphic to the inverse image: $p_1^{-1}(L|_{B\times 0})$.
- (3) Given a local system L on B, conclude that for any 2 homotopic paths between $x, y \in B$:

$$\gamma_1, \gamma_2: [0, 1] \to B$$

there is an induced isomorphism $L_x \simeq L_y$ which is independent of the choice of path.

Exercise 11. In the case n = 0 and d = 3, prove that the monodromy group of the family $X_{U(3,0)} \rightarrow U(3,0) \subseteq \mathbf{P}^3$ is \mathfrak{S}_3 . The discriminant locus $D(3,0) \subseteq \mathbf{P}^3$ is singular along a curve. What is this curve (and prove your answer)?

5. Classical constructions

Exercise 12. Let

 $X=\left(x_0^3+\cdots+x_{n+1}^3=0\right)\subseteq \mathbf{P}$

be an even dimensional Fermat cubic hypersurface and let

$$\Lambda = (x_0 + x_1 = \dots = x_n + x_{n+1} = 0) \subseteq \mathbf{P}$$

Show that the corresponding quadric fibration is singular along the union of n/2 + 1 hyperplanes and the cubic hypersurface:

$$X \cap (x_0 - x_1 = \cdots x_n - x_{n+1} = 0)$$

thought of as a subset of $\mathbf{P}^{n/2}$.

6. CHERN CLASS PROBLEMS

Exercise 13. Prove that if \mathcal{E} is a rank 2 vector bundle on X with a section s that is transverse to the 0-section of \mathcal{E} . Let

$$i: Y = (s = 0) \hookrightarrow X.$$

Assume \mathcal{E} is an extension of line-bundles:

 $0 \to \mathcal{L}_1 \to \mathcal{E} \to \mathcal{L}_2 \to 0.$

Define:

$$\xi_i = \operatorname{cl}(\mathcal{L}_i) \in A^2(X)$$

Assume (for convenience of proof) that the induced section of \mathcal{L}_2 is transverse to the 0-section. Prove that

$$[Y]_A = \xi_1 \cdot \xi_2 \in A^4(X).$$

(Similarly, one can prove a result for a filtered vector bundle of higher rank.) What does this say if the section is nowhere vanishing?

Exercise 14. Given rank r vector bundle \mathcal{E} on X, prove that there is a smooth projective variety $\mu: Y \to X$ such that

(1) $\mu^* \mathcal{E}$ is a successive extension of line bundles, and (2) $\mu^*: A^*(X) \to A^*(Y)$ is injective.

Exercise 15. Let X be a variety and \mathcal{E} a vector bundle of rank r. Use the splitting principle to compute the following Chern classes.

(1)
$$c_{\bullet}(\mathcal{E}^{\vee}) = 1 - c_1(\mathcal{E}) + c_2(\mathcal{E}) - \cdots,$$

(2) $c_{\bullet}(\text{Sym}^2(\mathcal{E})),$

DAVID STAPLETON

(3) c_•(E^{⊗2}),
(4) c_•(∧²E),
(5) c_•(∧^rE),
(6) c_•(E ⊗ L) for a line bundle L.
(7) Compute the total Chern classes of T_{Pⁿ} and T_{P¹×P¹}.

7. FANO SCHEMES

Exercise 16. Prove that a subscheme $T \subseteq \mathbf{G}$ is contained in F(X,r) if and only if $s_F|_T \equiv 0$. In other words:

$$\mathbf{F}(X,r) = (s_F = 0) \subseteq \mathbf{G}.$$

Moreover, use the fact that $\operatorname{Sym}^{d}(S^{\vee})$ is globally generated to show that for general F the section s_{F} is transverse to the zero section (so it is smooth and its class computes the top Chern class of $\operatorname{Sym}^{d} S^{\vee}$).

8. 27 Lines

Exercise 17. Prove that the if \mathcal{E} is a globally generated vector bundle on a projective variety X then a general section $s \in H^0(X, \mathcal{E})$ meets the zero section transversely.

Exercise 18. Count the number of lines in a general quintic threefold $X \subseteq \mathbf{P}^4$.

Exercise 19. Count the number of lines in a general septic (degree 7) fourfold $X \subseteq \mathbf{P}^5$.

4