HOMEWORK 4 - MATH 632.

1. Let $0 \le m \in \mathbb{Z}$. Use Čech cohomology to compute $H^1(\mathbb{P}^1, \Omega_{\mathbb{P}^1}(-m))$. Give a perfect pairing

$$H^0(\mathbb{P}^1, \mathcal{O}(m)) \times H^1(\mathbb{P}^1, \Omega_{\mathbb{P}^1}(-m)) \rightarrow H^1(\mathbb{P}^1, \Omega_{\mathbb{P}^1}).$$

2. Let \mathcal{F} and \mathcal{G} be quasicoherent sheaves on a separated Noetherian scheme X. Using Čech cocycles show there is a bilinear map:

$$H^{i}(X, \mathcal{F}) \times H^{j}(X, \mathcal{G}) \rightarrow H^{i+j}(X, \mathcal{F} \otimes \mathcal{G}).$$

Conclude that $H^*(X, \mathcal{O}_X) = \oplus H^i(X, \mathcal{O}_X)$ is a graded ring and $H^*(X, \mathcal{F})$ is a module over that ring.

the Hartshornes

- 3. Hartshorne III.2.3.
- **4.** Hartshorne III.4.1.
- **5.** Hartshorne III.4.3.
- 6. Hartshorne III.4.5.
- 7. Hartshorne III.4.6.
- 8. Hartshorne III.5.5.

9. Let *C* be a smooth projective curve, let *L* be a very ample line bundle on *C*, and let $h_L(m)$ be the Hilbert polynomial — i.e. the linear function that asymptotically computes $h^0(C, L^{\otimes m})$. Show that

$$h_L(m) = \chi(C, \mathcal{L}^{\otimes m})$$

and conclude that the arithmetic genus p_a of C equals $h^1(C, \mathcal{O}_C)$.

10. Let *C* be a smooth projective curve. Riemann-Roch says that for any line bundle *L* on *C*:

$$\chi(C, L) = \deg(L) + \chi(C, \mathcal{O}_C)$$

Let \mathcal{E} be a rank r vector bundle on C. Find and prove an expression for $\chi(C, \mathcal{E})$ involving r and deg(det(\mathcal{E})) (hint: use Hartshorne II.8.2.).