HOMEWORK 3 – MATH 632.

1. (Counterexample to Bertini over finite fields) Show that

$$X = (xw^q - x^qw + yz^q - y^qz = 0) \subset \mathbb{P}^3_{\mathbb{F}_q}$$

is a smooth surface. Further show that for any plane

$$H = (ax + by + cz + dw = 0) \subset \mathbb{P}^3_{\mathbb{F}_a}$$

with coefficients *a*, *b*, *c*, $d \in \mathbb{F}_q$, the intersection $H \cap X$ is singular.

2. (The projective dual curve) Let $k = \overline{k}$ and let $C \subset \mathbb{P}^2_k$ be a smooth curve. Let $p \in C$ and let $\mathbb{T}_p(C) \in (\mathbb{P}^2)^{\vee}_k$ be the projective tangent space to C at p (thought of as a point in the dual projective space). Show that the map:

 $\mathbb{T}: C \to (\mathbb{P}^2)_k^{\vee}$ given by $p \mapsto \mathbb{T}_p C$

is an algebraic map. As a challenge, compute the degree of the image curve.

3. (Adjunction for divisors) Let X be a smooth variety over an algebraically closed field.

- (A) If $D \subset X$ is a smooth variety, prove that $\omega_{D/k} \cong (\omega_{X/k} \otimes \mathcal{O}_X(D))|_D$.
- (B) Show that if $X = \mathbb{P}^1 \times \mathbb{P}^1$ then $\mathcal{O}_X(a, b)$ is very ample if and only if a, b > 0.
- (C) If $k = \mathbb{C}$, use adjunction to compute the genus of a smooth curve $C \subset \mathbb{P}^1 \times \mathbb{P}^1$.

4. (The Atiyah flop) Consider the Segre embedding:

$$\mathbb{P}^1 \times \mathbb{P}^1 \to Q = (xw - yz = 0) \subset \mathbb{CP}^3$$

given by $[a:b] \times [c:d] \mapsto [ac:ad:bc:bd]$. Q has two families of lines (the image of $[a:b] \times \mathbb{P}^1$ or $\mathbb{P}^1 \times [c:d]$; e.g. $L_1 = (z = w = 0)$ is the image of $[1:0] \times \mathbb{P}^1$ and $L_2 = (x = z = 0)$ is the image of $\mathbb{P}^1 \times [0:1]$). Let $X \subset \mathbb{CP}^4$ be the cone over Q. This is a singular threefold. Consider:

 $\pi_i: X_i \rightarrow X$

the blow-up of X at the the planes P_i that are the cones over L_i . Prove:

- (A) X_1 and X_2 are smooth.
- (B) The maps π_i are isomorphisms away from the cone point $P = [0:0:0:0:1] \in X$.
- (C) $\pi_i^{-1}(P) \cong \mathbb{P}^1$. (Conclude the planes P_i are not Cartier divisors in X.)
- (D) Show that the varieties X_i are not isomorphic over X.

5. Give an example (with proof!) of a smooth projective complex curve that is not isomorphic to a plane curve.

6. Let *C* be a smooth projective curve over $k = \overline{k}$. Show that a line bundle \mathcal{L} on *C* is very ample \iff for every pair of (possibly nondistinct) point $P, Q \in C$:

$$\dim_k \Gamma(C, \mathcal{L}(-P-Q)) = \dim_k \Gamma(C, \mathcal{L}) - 2.$$

- **7.** A curve C is called *hyperelliptic* if there is a degree two map $\pi: C \to \mathbb{P}^1_k$.
 - (A) Show that there are hyperelliptic curves of any genus $g \ge 0$.
 - (B) Use the previous exercise to prove that if C is hyperelliptic then Ω_C is not very ample.