HOMEWORK 1 – MATH 632.

1. Let $k = \overline{k}$ be an algebraically closed field and let

$$f \in k[x_0, \cdots, x_n]$$

be a degree d homogeneous polynomial. Show that the complement $\mathbb{P}_k^n \setminus (f = 0)$ is affine.

2. Let X be a projective scheme over a field $k = \overline{k}$. Show that if X is affine then X is 0-dimensional.

3. Read Proposition I.7.1 and Theorem I.7.2 in Hartshorne (along with the proofs). No need to write anything.

4. Hartshorne Exercise II.7.3.

5. Let $Q = (xw - yz = 0) \subset \mathbb{P}^3_k$ be a quadric surface. Find a 1-dimensional, base-point free, linear system on Q; i.e. a map: $\phi \colon Q \to \mathbb{P}^1_k$.

Conclude $Q \ncong \mathbb{P}^2_k$.

6. Hartshorne Exercise II.7.1.

- 7. Hartshorne Exercise II.7.8.
- 8. Hartshorne Exercise II.7.9.
- **9.** The blow-up:

$$\mu \colon X \to = \mathbb{A}_k^n$$

of \mathbb{A}_k^n at the ideal (x_1, \dots, x_n) lives inside $\mathbb{A}_k^n \times \mathbb{P}_k^{n-1}$ and has *n* standard affine charts each isomorphic to \mathbb{A}_k^n given by considering the standard affine cover of \mathbb{P}_k^{n-1} .

(a) Write down these standard charts, i.e. write down the n maps

$$\mu_i: \mathbb{A}^n_k \to \mathbb{A}^n.$$

(b) What is the polynomial g_i that defines the exceptional divisor

$$\Xi=\mu^{-1}((0,\cdots,0))$$

in each of these charts?

(c) Let $f \in k[x_1, \dots, x_n]$ be a polynomial. Show that

$$g_i^m | \mu_i^* f \iff f \in (x_1, \cdots, x_n)^m.$$

(the maximum such *m* is the *multiplicity* of *m* at the point $(0, \dots, 0) \in \mathbb{A}_k^n$).

10. Now working over \mathbb{Z} .

- (a) Write down affine charts for the blow-up of the ideal (2, x) in $\mathbb{A}^1_{\mathbb{Z}}$ (or (p, x) for a prime p).
- (b) Write down the equation for the exceptional divisor in these charts.