Using the webapp Framework
Google Application Engine
University of Michigan - Informatics

This handout describes the basics of the Google Application Engine web application
framework - webapp. The webapp library takes care of many of the mundane
details of the Hypertext Transport Protocol (HTTP) interactions. The webapp
framework handles all details like parameter parsing, multiple parameter formats,
etc.

While code using the webapp framework may look a little more complex than the
lower-level code looking at the variables and input directly, in the long run your
web applications will be far smaller and fully compliant with the subtle details HTTP
protocol - they won’t break because you missed some small detail in the protocol
that you did not notice until some user started using a different browser than the
ones that you used for testing.

A Basic WebApp Application

The following is a basic web application (ae-03-webapp) :

import logging
import wsgiref.handlers
from google.appengine.ext import webapp

class MainHandler (webapp.RequestHandler):

formstring = """<form method="post" action="/"
enctype="multipart/form-data">

Zap Data: <input type="text" name="zap">

Zot Data: <input type="text" name="zot">

File Data: <input type="file" name="filedat">

<input type="submit">

</form>"""

def get(self):
logging.info("Hello GET")
self.dumper ()

def post(self):
logging.info("Hello POST")
self.dumper ()

def dumper(self):

self.response.out.write(self.formstring)
self.response.out.write("<pre>\n")
self.response.out.write('Request parameters:\n')
for key in self.request.params.keys():

value = self.request.get(key)

if len(value) < 100:

self.response.out.write(key+':'+value+'\n'")

else:
self.response.out.write(key+': '+str(len(value))+
' (bytes long)\n')
self.response.out.write('\n')

def main():
application = webapp.WSGIApplication(]
('/.*', MainHandler)],
debug=True)
wsgiref.handlers.CGIHandler().run(application)

if _name == '__main__ ':

main()

The first thing that you notice is the use of the main program pattern. There is a
main() function that is defined which is called when the code is running as a main
program (i.e. running as a web server). This pattern is primarily used to keep the
main() code from running if this file were imported into some other bit of Python -
perhaps a testing framework.

When the request does come in the code is running as a main program so Python
parses the entire file and then runs the code in main().

The code in main:

def main():
application = webapp.WSGIApplication(]
('/.*', MainHandler)],
debug=True)
wsgiref.handlers.CGIHandler().run(application)

[s setting up several things - it is creating WGSIApplication object in the variable
application and then “starting” the web application up. This allows the webapp
framework to handle the incoming request.

When the run(application) is called, the wgsi system starts up, takes a look at the
incoming request and decides what to do. We give the framework a routing table in
the form of:

[('/.*', MainHandler)]

This is a list indicated by square brakets [] of tuples indicated by parenthesis ()
where each tuple consists of a pattern to match in the URL and a bit of code to call
(MainHandler) when the pattern matches. Translated to English, that this means is
“send all urls to the MainHandler”. We do this because the program is simpler.

[t might be easier to look at a later program with two URL handlers its call to
WGSIApplication looks as follows:

application = webapp.WSGIApplication([

('/grades', GradeHandler),
('/.*', MainHandler)],
debug=True)

Translating this routing list to English, it is saying, “route urls of the form /grades to
the GradeHandler and all the rest of the urls to the MainHandler”.

So this list of tuples gives the webapp framework an indication of where to call us
back depending on the pattern of the URL - this is a URL routing table.

Back to our example, we are telling the framework to call us back once it has looked
at the HTTP request using the MainHandler code that we provide:

def main():
application = webapp.WSGIApplication(]
('/.*', MainHandler)],
debug=True)
wsgiref.handlers.CGIHandler().run(application)

The Call Back Pattern

The call-back pattern is very common in Object Oriented programming. The basic
idea is that we hand over the main responsibility for handling something to a
framework (i.e. a large amount of code we did not write) - and then let the
framework call one of our objects back - at some important moment when it wants
us to participate in the handling of the request.

This pattern is used in many situations ranging from graphical user interfaces to
message/event handling. We initially communicate to the framework those
“happenings” or event that we are interested in and give the framework a bit of our
code to call to “handle” those events.

That is why we use the convention of naming these bits of code with “Handler” in
their names - they are designed to “Handle” something.

The pattern is as follows:

GET/
—
<html> "

our code framework

The incoming HTTP request arrives to our main program. Instead of handling the
request directly, we simply set up the framework and tell it under what conditions
(urls that match /.*) and where (MainHandler) to call us back when it needs some
“assistance” from us.

Then the framework starts up and looks at the HTTP request, figuring out which
kind of request it is — parsing all of the data, converting file input if necessary - and
then calls out MainHandler - using either the get() or post() method as
appropriate.

Looking at the Handler Code

First, we will look at a trivial variant of the MainHandler to get a sense of the basic
structure of handlers:

class MainHandler (webapp.RequestHandler):

def get(self):
logging.info("Hello GET")

def post(self):
logging.info("Hello POST")

The first thing to notice is that the MainHandler extends the
webapp.RequestHandler class - this means that our handler inherits a lot of
functionality from this class - and whatever we do in our class is in addition to the
functionality in the webapp.RequestHandler class.

There are two methods which we provide to the framework in out Handler class - a
get() method and a post() method. The framework will look at the incoming request
and call the proper method for us. If the request is a GET request the framework
will call the get() method and if the request is a POST request, the framework will
call our post() method. The framework saves us from figuring out which kind of
request we have.

get()

GET/ —
P E—
—
<html> . ¢

post()

our code framework

We should be making up a response to the request in our methods - but since this is
a trivial handler, all we do is issue a log message.

Web Server Logs

Since our software takes incoming HTTP Requests and Produces an HTTP response,
often in some end-user’s browser half-way around the world, it is a little hard to
figure out what happened when something goes wrong. Usually if your program
fails, the user will shake their head and switch to another web site in disgust.

They will never call you and talk for a while about what they did that went wrong
and what strange messages they saw - frankly - you do not want them calling you at
all hours of the night when they encounter an error - you would be far happier if in
the morning - you could see what went wrong over night and get some detail as to
what went wrong overnight.

This is the purpose of a “log”. Alog is generally a file or window that contains
messages from your program.

You have been using logs all along - this is an example log:

Python

charles-severances-macbook-pro:apps csev$ dev_appserver.py ae-01-trivial

INFO 2008-10-19 19:56:14,143 appcfg.py] Server: appengine.google.com

INFO 2008-10-19 19:56:14,155 appcfg.py] Checking for updates to the SDK.

INFO 2008-10-19 19:56:14,277 appcfg.py] The SDK is up to date.

WARNING 2008-10-19 19:56:14,278 datastore_file_stub.py] Could not read datastore data
from /var/folders/W/jW3AfyxcGF@9fub-nVQ5uE+++TM/-Tmp-/dev_appserver.datastore

WARNING 2008-10-19 19:56:14,278 datastore_file_stub.py] Could not read datastore data
from /var/folders/iW/jW3AfyxcGF@9fub-nVQSuE+++TM/-Tmp-/dev_appserver .datastore.history
WARNING 2008-10-19 19:56:14,284 dev_appserver.py] Could not initialize images API; yol
are likely missing the Python "PIL" module. ImportError: No module named PIL

INFO 2008-10-19 19:56:14,288 dev_appserver_main.py] Running application ae-@1-tri
al on port 8080: http://localhost:8080

INFO 2008-10-19 19:56:16,782 dev_appserver.py] "GET / HTTP/1.1" 200 -

INFO 2008-10-19 19:56:16,792 dev_appserver_index.py] Updating /Users/csev/Desktop/(
pps/ae-01-trivial/index.yaml

INFO 2008-10-19 19:56:16,800 dev_appserver.py] "GET /favicon.ico HTTP/1.1" 200 -
INFO 2008-10-19 19:56:17,861 dev_appserver.py] "GET / HTTP/1.1" 200 -

INFO 2008-10-19 19:56:17,875 dev_appserver.py] "GET /favicon.ico HTTP/1.1" 200 -

When the AppEngine server is running the log streams out to the window in which
you started the AppServer. When you upload your application to the Google
Infrastructure - it still maintains a log that you can check in a browser.

drchuck@gmail.com | My Account | Help | Sign out

~aaole
(u :\’g,

« Show All Applications

simplelti ~+ Version: 1

Dashboard Filte'rr Logs
o Minimum Severity: g0~ & Options
Datastore Tip: Click a log line to show or hide its details + Expand logs
Indexes + 10-17 10:07AM 55.555 /upload 500 85ms 276mcycles Okb
Kata Migwer E 10-17 10:07AM 55.636
Administration + 10-17 08:40AM 26.858 /upload 500 22ms 59mcycles Okb
Application Sellings E 10-17 08:40AM 26.877
Leveleeers + 10-14 10:08PM 17.189 /upload 500 308ms 995meycles Okb
Yersions E 10-14 10:08PM 17.489

So you can look at the log of a running web application any time and see what is
going wrong. You can see both successful activities in the log and get a sense of
patterns of interaction as well as seeing errors in the log such as the following:

bash

charles-severances-macbook-pro:apps csev$ dev_appserver.py ae-01-trivial
ERROR 2008-10-19 19:33:37,013 dev_appserver_main.py] Fatal error when loading
application configuration:
Invalid object:
Unknown url handler type.
<URLMap
static_dir=None
secure=never
script=None
url=/.*

static_files=None
upload=None
expiration=None
login=optional
mime_type=None

>
in "ae-@1-trivial/app.yaml", line 8, column 1
charles-severances-macbook-pro:apps csev$ D

After a while - you will get used to the logs and their patterns and rhythms - once
you become familiar with your application - it is almost like watching the screens in
the Matrix - after a while - it just starts to make sense to you.

Back here in the real world, we have our trivial Handler code:

class MainHandler (webapp.RequestHandler):

def get(self):
logging.info("Hello GET")

def post(self):
logging.info("Hello POST")

All this code does is log a message (at the info logging level) that indicates whether
this is a POST or a GET - this is a good way to make sure things are routed to the
right place.

When the program is executing you will see the log entries popping up as shown
below:

Python X bash X bash X vim

charles-severances-macbook-air:apps csev$ dev_appserver.py ae-03-webapp/

INFO 2008-10-21 09:50:50,668 appcfg.py] Server: appengine.google.com

INFO 2008-10-21 09:50:50,690 appcfg.py] Checking for updates to the SDK.
INFO 2008-10-21 09:50:51,084 appcfg.py] The SDK is up to date.

WARNING 2008-10-21 09:50:51,085 datastore_file_stub.py] Could not read datastor
e data from /var/folders/jW/jW3AfyxcGF@9fub-nVQ5uE++—+TM/-Tmp-/dev_appserver.data
store

WARNING 2008-10-21 09:50:51,085 datastore_file_stub.py] Could not read datastor
e data from /var/folders/jW/W3AfyxcGF@9fub-nVQ5uE+++TM/-Tmp-/dev_appserver.data
store.history

INFO 2008-10-21 09:50:51,189 dev_appserver_main.py] Running application ae-9
3-webapp on port 8080: http://localhost:8080

INFO 2008-10-21 09:50:55,896 index.py] Hello GET

INFO 2008-10-21 09:50:55,904 dev_appserver.py] "GET /grades HTTP/1.1" 200 -
INFO 2008-10-21 09:50:55,921 dev_appserver_index.py] Updating /Users/csev/De
sktop/teach/a539-f08/apps/ae-03-webapp/index. yaml

INFO 2008-10-21 99:50:55,937 index.py] Hello GET

INFO 2008-10-21 09:50:55,944 dev_appserver.py] "GET /favicon.ico HTTP/1.1" 2
00 -

1

This allows you to track your program internally and is particularly helpful when
things are not going well - you can put a message in the log when you encounter
strange or error conditions.

Since the user does not see the log - you can add plenty of detail to help you figure
out the source of the problem - particularly given that you will be looking at the log
hours after the actual error occurred in your application.

You can see why some of the error messages err on the side of verboseness and
provide far more detail than you might need - because you often need to

reconstruct what happened - only by looking at the log.

Reference: http://code.google.com/appengine/articles/logging.html

Looking at the Real Handler Code

The actual handler code does more than just placing a message in the log. The get()
and post() methods actually look as follows:

class MainHandler (webapp.RequestHandler):

def get(self):
logging.info("Hello GET")
self.dumper ()

def post(self):
logging.info("Hello POST")
self.dumper ()

After they pt a friendly message in the log, they call another method in the same
class called dumper(). We call dumper regardless of whether or not the request is a
GET or POST - because we just want to dump everything.

The code for dumper is as follows:

formstring = <form method="post" action="/"
enctype="multipart/form-data">
Zap Data: <input type="text" name="zap">

Zot Data: <input type="text" name="zot">

File Data: <input type="file" name="filedat">

<input type="submit">
</form>"""

def dumper(self):
self.response.out.write(self.formstring)
self.response.out.write("<pre>\n")
self.response.out.write('Request parameters:\n')
for key in self.request.params.keys():
value = self.request.get(key)
if len(value) < 100:
self.response.out.write(key+':'+value+'\n')
else:
self.response.out.write(key+': ' '+str(len(value))+
' (bytes long)\n')
self.response.out.write('\n')

Don’t be alarmed by the syntax of the fromstring assignment statement. Python
uses triple quotes (“””) to indicate a string that can cross line boundaries - the string
continues until a closing triple quote. This allows us several lines of text into a
single string.

In the dumper() code - we don’t use the print statement - instead we call
self.response.out.write() and pass it a string for each bit of output we are
producing - this is complex syntax for a simple concept.

Instead of writing directly to the output using print, we are to hand our response
text back to the webapp framework in the self.respnse object. By doing this we
allow the Google Application Engine some flexibility in how it actually handles the
request and its output.

Looking through the code - the first thing we do is add a form to the response from
the formstring. Then we loop through the request parameters using a dictionary of
the input data in self.request.parms.

We check to see how long the parameter value is and only print out the length of the
data for longer parameter values. This is because the webapp framework has
completely handled the parsing of normal or multi-part form encoded data
including automatically converting any uploaded files that are part of the form.

Here is what the screen looks like after a GET request to http://localhost:8080/

Zap Data:
Zot Data:

File Data: Choose File) no file selected

" Submit)

Reguest parameters:

Then we will in the form with some data:
Zap Data: Some Data
ZotData: Some More Data
File Data: m no file selected

" Submit)

Reguest parameters:

And press Submit:

Zap Data:
Zot Data:
File Data: (Choose File) no file selected

" Submit)

Reguest parameters:
zap:Some Data
zot:Some More Data
filedat:

To see the data printed out.

If we select a file and upload it, the output looks as follows:

Zap Data:
Zot Data: |
File Data: (Choose File) no file selected

(Submit

Reguest parameters:
zap:This Time

zot:We put in a File
filedat:388 (bytes long)

You can see that the webapp framework converted the multipart form data and has
just handed us the contents of the file in the filedat parameter.

So while the code seems initially more compley, if you recall the complexity of
multipart form data from our raw dumper program, you can appreciate the value of
using the webapp framework to handle the details of parsing and converting the
incoming requests for us.

CONTENT_TYPE : multipart/form-data; boundary=----WebKitFormBoundaryJéxgTM1AiTZSKBYD
HTTP_ACCEPT_ENCODING : gzip, deflate

—————— WebKitFormBoundaryJéxgTM1AITZSKBYD

Content-Disposition: form-data; name="zap"
Important Data
~~~~~~ WebKitFormBoundaryJéxgTM1AITZSKBYD

Content-Disposition: form-data; name="zot"

Not so important
—————— WebKitFormBoundaryJéxgTM1AITZSKBYD
Content-Disposition: form-data; name="filedat"; filename="file.rtf"

Content-Type: text/rtf

{\rtfllansilansicpgl252\cocoartf949\cocoasubrtf3is?
{\fonttbl\f0\fswiss\fcharset0 Helvetica;}

{\colortbl;\red255\green255\blue255;}

Summary



The Google Application Engine webapp framework moves us towards an object-
oriented approach to handling out HTTP requests and responses. We initially set
things up by creating a web application and giving it a routing table to call us back to
handle the incoming requests.. Then the framework parses and interprets the
incoming request and calls the correct methods in our handler code to process the
input data and prepare the HTTP response.

We also took a look at how application logs are used in a web application to help you
monitor what is happening when your application is running and potentially

experiencing errors - and you are not in contact with the ultimate end-users of your
application.

This materials is Copyright Creative Commons Attribution 2.5 - Charles Severance

Comments and questions to csev@umich.edu www.dr-chuck.com



