Google Application Engine
Templates for HTML
University of Michigan - Informatics
Charles Severance

While it is possible to generate all of the HMTL of your application from within
strings in the Python, this is generally a poor way to author HTML. In particular, it
means that every time you want to change a bit of the generated HTML you need to
dig through the program, find the strings and then change the HTML code:

formstring = """<form method="post" action="/"
enctype="multipart/form-data">
Zap Data: <input type="text" name="zap">

Zzot Data: <input type="text" name="zot">

File Data: <input type="file" name="filedat">

<input type="submit">
</form>"""

At the same time, our web application needs to have some parts of the web pages be
generated dynamically as part of the code of the web application - either based on
the user’s input or based on some information retrieved from the database.

The compromise for this is to introduce the notion of a “template”. A template is a
file that contains mostly HTML - but there are specially marked areas of the
template that is replaced by data handed to the template from the Python code
when the template is to be rendered.

There are many different templating languages and syntaxes. The default template
syntax used by the Google Application Engine is from the Django project.

Template Syntax

The template syntax in Google Application augments the HTML using curly braces to
identify template directives. The template for our dumper program:

<form method="post" action="/"
enctype="multipart/form-data">

Zap Data: <input type="text" name="zap">

Zzot Data: <input type="text" name="zot">

File Data: <input type="file" name="filedat">

<input type="submit">

</form>

<pre>

Request Data:

{{ dat }}

</pre>

The area in the template that will be replaced with data from Python is the area in
double curly braces. In between the double curly braces "dat” is a key that is used to
determine which piece of data from the Python code to put into the template to
replace the {{ dat }} in the template.

By convention, we put the templates into a directory named “templates”. This way
we can easily keep HTML templates separate from the Python code.

ae-04-template
app.yaml
index.py
templates
index.htm

Naming the folder “templates” is not a rule - it is a convention. It is a good
convention because it means that other developers will immediately know where to
find the templates.

Using the Templates from Python

To display the template in Python we add code to “render” the template and then
print the output of the render process to the HTTP response. Here is some simple
code which accomplishes renders the index.htm file:

import os
from google.appengine.ext.webapp import template

temp = os.path.join(os.path.dirname(file), 'templates/index.htm')
outstr = template.render (temp, {'dat': ‘Hello There’})
self.response.out.write (outstr)

The first line is a bit complex looking - it calls the Python operating system library
(os) to look up the location of the index.htm file in the folder named templates.

The real work is done in the template.render() line. This takes two parameters -
the first is the location of the template file and the second is a Python dictionary
object which contains the strings to be placed in the template where the {{ dat }}
entries are found. The results of the substitution of the variables into the template
are returned as a string in the variable outstr.

Then the string that (outstr) is returned from the render operation is then written
out as the HTTP response. The text returned from the render process will look as

follows:

<form method="post" action="/"

enctype="multipart/form-data">
Zap Data: <input type="text" name="zap">

Zot Data: <input type="text" name="zot">

File Data: <input type="file" name="filedat">

<input type="submit">
</form>
<pre>
Request Data:
Hello There
</pre>

The data from the Python dictionary is now substituted into the template as it is
rendered. The following is a diagram of the process.

<hI>Hi!</h|>
<pre>

{{ dat }}
</pre> \

template.render()

{‘dat’ :‘Fun Stuff’ }

<hI>Hi!</h|>
<pre>

Fun Stuff
</pre>

The process is simple - render engine looks for the “hot spots” in the template and
when it finds a spot where a substitution is required, the renderer looks in the
Python dictionary to find the replacement text.

The template language is actually quite sophisticated - we will look at the
capabilities of the template language in more detail later.

Overall Flow

To go back to our example and put it all in context, we can see how our dumper
program has evolved:

def dumper (self):

prestr = ' !
for key in self.request.params.keys():
value = self.request.get (key)
if len(value) < 100:
prestr = prestr + key+':'+value+'\n'
else:

prestr = prestr + key+':'+str(len(value))+' (bytes long)\n'

temp = os.path.join(os.path.dirname(file), 'templates/index.htm’)
outstr = template.render (temp, {'dat': prestr})
self.response.out.write (outstr)

The first half of the dumper() method loops through the request parameters and
instead of writing the parameter information to the response, the information is
appended into the predat string including labeling information, the parameters
themselves and newlines (“\n”).

Then the predat string is then passed into the template.render() as in a dictionary
under the key “dat”.

The render engine then merges the data from the Python code with the HTML
template and returns the resulting HTML that is written out as the response.

Abstraction and Separation of Concerns - “Model View Controller”

For complex web programs it is very important to be organized - and for each area
of functionality to have its place. Following commonly understood patterns helps
us keep track of the bits of the program as it becomes increasingly complex.

One of the most common programming patterns in web-based applications is called
“Model-View-Controller” or MVC for short. Many web frameworks such as Ruby on
Rails and Spring MVC follow the Model-View-Controller pattern.

The MVC pattern breaks the code in a web application into three basic areas:

* Controller - The code that does the thinking and decision making

* View - The HTML, CSS, etc. which makes up the look and feel of the
application

* Model - The persistent data that we keep in the data store

In a Google Application Engine program, the index.py is an example of Controller
code and the HTML in the templates is an example of a View.

We will encounter the Model in a later chapter and then we will revisit the MVC
pattern and explore it in more detail.

Multiple Templates
Real applications have many different views (screens) so now we will explore how

to support multiple templates in our application. We will build a simple application
which has three screens and navigation between the screens.

e - M APP Engine - HTML
< & | © hup://localhost:8080/index.htm & ~(Q; » < ¢ | htp://localhost:8080/topics.htm & ~/Q » < & | € hup://flocalhost:8080/sites.htm ~(Q; »

App Engine

@

tes Topics App Engine Sites Topics App Engine Sites Topics

Application Engine: About Application Engine: Topics AppEngine: Sites

Welcome to the site dedicated to learning the Google Application « Python Basics Here are some sites we hope you find useful
Engine. We hope you find www.appenginelearn.com useful e Python Functions

« Python Python Objects o Python Learn

* Hello World * App Engine Learn

e The WebApp Framework « Google AppEngine Site

« Using Templates

This application uses CSS to make the navigation appear at the top of the screen.
Looking at the application layout, we see one template for each HTML page.

ae-05-templates
app.yaml
index.py
static
glike.css
templates
index.htm
sites.htm
topics.htm

The templates folder contains the templates that are used to create output
dynamically (rendered) in the Python code (index.py) - the static folder contains
files that do not change - they may be CSS, Javascript, or image files.

Static Files

We indicate that the static folder holds these “un-changing” files by adding an entry
to the app.yaml file:

application: ae-05-templates
version: 1

runtime: python

api version: 1

handlers:
- url: /static
static_dir: static

- url: /.*
script: index.py

We add a new handler entry with the special indicator to map URLs which start with
/static to the special static folder. And we indicate that the material in the static
folder is non-dynamic.

The order of the URL entries in the handler section is important - it first checks to
see if an incoming URL starts with “/static” - if there is a match - the content is

served from the static folder. If there is no match, the “catch-all” URL (/.*) routes all
URLs to the index.py script.

The convention is to name the folder “static”. You technically could name the folder
and path (/static) anything you like. The static_dir directive (like the script
directive) is a directive and cannot be changed. But the simple thing is to always
follow the pattern and name the folder and path “static”.

The advantage of placing files in a static folder is that it does not use your program
(index.py) for serving these files. Since you may be paying for the CPU usage of the
Google servers - avoiding CPU usage on serving static content is a good idea. The
static content still counts against your data transferred - it just does not incur CPU
costs.

Even more importantly, when you indicate that files are static, it allows Google to
distribute these files to many different servers geographically and leave the files
there. This means that retrieving these files from different continents may be using
Google servers closest to the user of your application. This means that your
application can scale to far more users efficiently.

Referencing Static Files

Once you put a file in the static folder, you simply reference those files with absolute
paths which start with /static as follows:

<html xmlns="http://www.w3.0rg/1999/xhtml">
<head>
<title>App Engine - HTML</title>
<link href="/static/glike.css" rel="stylesheet" type="text/css" />
</head>
<body>
<div id="header">

When the AppEngine sees the URL, it routes it to one of its many distributed copies
of the file and serves up the content.

Generalizing Template Lookup with Multiple Templates

In the above example (ae-04-template) there was only one template so we hard-
coded the name of the template when we wanted to do the render operation.
Sometimes you are in a handler that knows the exact name of the template so it can
follow that pattern. Other times, you want to have a bunch of templates and serve
them up with paths such as:

http://localhost:8080/index.htm
http://localhost:8080/topics.htm
http://localhost:8080/sites.htm

And we do not want to have to write special code to look up each template
separately. We can create general purpose code to lookup a template based on the
incoming path of the request - and if we find a matching template, we use that
template and otherwise we use the index.htm template.

Here is the controller code to accomplish this:

class MainHandler (webapp.RequestHandler) :

def get (self):

path = self.request.path

try:
temp = os.path.join(os.path.dirname(__ file), 'templates' + path)
outstr = template.render(temp, { })
self.response.out.write (outstr)

except:
temp = os.path.join(os.path.dirname(file), 'templates/index.htm')
outstr = template.render (temp, { })
self.response.out.write (outstr)

We first pull in the path from self.request.path and append the path to templates -
we try to perform a render using this file - and if it fails, we go to the except:
processing and render using the index.htm template.

The self.request.path variable shows the path within the application that is being
requested. In the log output below, you can see each path being requested using a
GET request.

lerminal Python 90x21

bash (%] bash

]

Python

charles-severances-macbook-air:apps csev$ dev_appserver.py ae-05-templates/

INFO 2008-10-21 23:54:42,058 appcfg.py] Server: appengine.google.com

INFO 2008-10-21 23:54:42,079 appcfg.py] Checking for updates to the SDK.

INFO 2008-10-21 23:54:42,248 appcfg.py] The SDK is up to date.

WARNING 2008-10-21 23:54:42,249 datastore_file_stub.py] Could not read datastore data fro
m /var/folders/3W/jW3AfyxcGF@9fub-nVQ5uE+++TM/-Tmp-/dev_appserver.datastore

WARNING 2008-10-21 23:54:42,250 datastore_file_stub.py] Could not read datastore data fro
m /var/folders/iW/jW3AfyxcGF@9fub-nVQ5uE+++TM/-Tmp-/dev_appserver.datastore.history

INFO 2008-10-21 23:54:42,321 dev_appserver_main.py] Running application ae-@5-template
s on port 8080: http://localhost:8080

INFO 2008-10-21 23:54:45,803 dev_appserver.py] "GET /index.htm HTTP/1.1" 200 -

INFO 2008-10-21 23:54:45,922 dev_appserver_index.py] Updating /Users/csev/Desktop/teac
h/a539-f08/apps/ae-05-templates/index. yaml

INFO 2008-10-21 23:54:45,949 dev_appserver.py] "GET /static/glike.css HTTP/1.1" 200 -
INFO 2008-10-21 23:54:47,400 dev_appserver.py] "GET /sites.htm HTTP/1.1" 200 -

INFO 2008-10-21 23:54:47,422 dev_appserver.py] "GET /static/glike.css HTTP/1.1" 200 -
INFO 2008-10-21 23:54:49,445 dev_appserver.py] "GET /topics.htm HTTP/1.1" 200 -

INFO 2008-10-21 23:54:49,469 dev_appserver.py] "GET /static/glike.css HTTP/1.1" 200 -

[

You can see the browser requesting a path like “/sites.htm” which renders from the
template and then when the browser sees the reference to the “/static/glike.css” the

browser then does another GET request to retrieve the CSS which is stored in the
static folder.

The self.request.path starts with a slash (/) so when it is appended to “templates”
the path we hand to the render engine looks like

templates/sites.htm
Which is exactly where we have stored our template.
Extending Base Templates

We have only begun to scratch the surface of the capabilities of the templating
language. Once we have successfully separated our views from the controller, we
can start looking at ways to manage our views more effectively.

If you look at the example HTML files used as templates in this application, you will
find that the files are nearly identical except for a few small differences between
each file. Most of the content of the file is identical and copied between files.

<head>
<title>App Engine - HTML</title>
<link href="/static/glike.css" rel="stylesheet" type="text/css" />
</head>
<body>
<div id="header">
<hl>
App Engine</hl>
<ul class="toolbar">
Sites</1li>
Topics</1li>

</div>
<div id="bodycontent">
<hl>Application Engine: Topics</hl>

<1li>Python Basics</1li>
<1li>Python Functions</1i>
<1li>Python Python Objects</1li>
Hello World
<1i>The WebApp Framework
<1i>Using Templates</1li>

</div>
</body>
</html>

The only things that change between the files is which link is selected (i.e.
class="selected”) and the information in the “bodycontent” div. All the material in
the <head> area and nearly all material in the header div are identical between
files.

We cause a significant maintenance problem when we repeat this text in many
(perhaps hundreds) files in our application. When we want to make a change to
this common content — we have to edit all the files and make the change - this
becomes tedious and error prone. It also means that we have to test each screen
separately to make sure it is updated and working properly.

To solve this, we create a special template that contains the common material for
each page. Then the page files only include the material that is different. Here is a
sample page file that is making use of the base template. Here is the new index.htm
template file:

{% extends " base.htm" %}
{% block bodycontent %}
<hl>Application Engine: About</hl>
<p>
Welcome to the site dedicated to
learning the Google Application Engine.
We hope you find www.appenginelearn.com useful.
</p>
endblock %}

—~—
o°

The templating language uses curly braces to indicate our commands to the render
engine. The first line of says this page starts with the text contained in the file
“_base.htm”. We are starting with _base.htm and extending it.

The second line says, “when you find an area marked as the “bodycontent block” in
the _base.htm file - replace that block with the text in between the block and
endblock template commands.

The _base.htm file is placed in the template directory along with all of the rest of the
template files:

ae-06-base
app.yaml|
index.py
static
glike.css
templates
_base.htm
index.htm
sites.htm
topics.htm

The contents of the _base.htm file are the common text we want to put into each

page plus an indication of where the body content is to be placed:
<head>
<title>App Engine - HTML</title>

<link href="/static/glike.css" rel="stylesheet" type="text/css" />
</head>
<body>
<div id="header">
<hl>
App Engine</hl>
<ul class="toolbar">
Sites</1li>
Topics</1li>

</div>
<div id="bodycontent">
{% block bodycontent %}
Replace this
{% endblock %}
</div>
</body>
</html>

We include a template engine directive in the base template to indicate the
beginning and end of the block that will be replaced by each template that uses
(extends) _base.htm. The text “Replace this” will not appear in the resulting HTML
after the render has been completed.

Base

Template Template il

\ l / Data

Rendered
Output

We do not need to make any change to the Controller code - the use of a base
template is something that is completely handled in the template.render() call.

Conditional HTML using ifequal

Out application has several pages - and while we have moved most of the repeated
text into a base file, there is one area in the _base.htm that needs to change between
files. If we look at the pages, we see that as we move between pages, we want to
have the navigation links colored differently to indicate which page we are currently
looking at.

App E e - HTM APP Engine - HTML
< ¢ O hup://localhost:8080/topics.htm - (i » « ¢ hup://localhost:8080/sites.htm ~(Q- »

App Engine Sites Topics App Engine Sites Topics

Application Engine: Topics AppEngine: Sites

« Python Basics Here are some sites we hope you find useful:
« Python Functions

o Python Python Objects e Python Learn

o Hello World « App Engine Learn

* The WebApp Framework * Google AppEngine Site

.

Using Templates

We make this change by using the selected class in the generated HTML. For
example on the topics.htm file we need the “Topics” link to be indicated as
“selected”:

<ul class="toolbar">

Sites</1li>

Topics</1li>

We need to generate this text differently on each page and the generated text
depends on the file we are rendering. The path indicates which page we are on - so
when we are on the Topics page, the path is “/topics.htm”.

We make a small change to the controller to pass in the current path in to the render
process as follows:

def get (self):

path = self.request.path

try:
temp = os.path.join(os.path.dirname(file), 'templates' + path)
outstr = template.render (temp, { 'path': path })
self.response.out.write (outstr)

except:
temp = os.path.join(os.path.dirname(file), 'templates/index.htm')
outstr = template.render (temp, { 'path': path })
self.response.out.write (outstr)

With this change, the template has access to the current path for the request. We
then make the following change to the template:

<ul class="toolbar">
<a href="sites.htm"
{% ifequal path '/sites.htm' %}
class="selected"
{% endifequal %}
>Sites</1i>
<a href="topics.htm"
{% ifequal path '/topics.htm' %}
class="selected"

{% endifequal %}
>Topics</1i>

This initially looks a bit complicated. At a high level, all it is doing is adding the text
class="selected” to the anchor () tag when the current path matches
“/topic.htm” or “/sites.htm” respectively.

We are taking advantage of the fact that whitespace and end-lines do not matter in
HTML. The generated code will look one of the following two ways:

<a href="topics.htm"
class="selected"
>Topics</1i>

or

<a href="topics.htm"
>Topics</1i>

While it looks a little choppy - it is valid HTML and our class="selected” appears
when appropriate. Looking at the code in the template, we can examine the ifequal
template directive:

{$ ifequal path '/topics.htm' %}
class="selected"
{% endifequal %}

The ifequal directive compares the contents of the path variable with the string
“/topics.htm” and conditionally includes the class="select” in the generated
output.

The combination of the two ifequal directives means that the links give us the
properly generated navigation HTML based on which page is being generated. This
is quite nice because now the entire navigation can be included in the _base.htm
file, making the page templates very clean and simple:

{% extends " base.htm" %}
{% block bodycontent %}
<hl>Application Engine: About</hl>
<p>
Welcome to the site dedicated to
learning the Google Application Engine.
We hope you find www.appenginelearn.com useful.
</p>
endblock %}

—~—
oe

This approach makes it very simple to add a new page or make a change across all
pages. In general when we can avoid repeating the same code over and over, our
code is easier to maintain and modify.

More on Templates

This only scratched the surface of the template directives. The Google Template
Engine comes from the Django project (www.django.org). You can read more about

the template language features at:

http://docs.djangoproject.com/en/dev/ref/templates/builtins/?from=olddocs

This materials is Copyright Creative Commons Attribution 2.5 - Charles Severance

Comments and questions to csev@umich.edu www.dr-chuck.com

