Regular Expressions

Chapter ||
Python for Informatics: Exploring Information
www.pythonlearn.com

QPpeN.Mmichigan

Unless otherwise noted, the content of this course material is licensed under a Creative
Commons Attribution 3.0 License.
http://creativecommons.org/licenses/by/3.0/.

Copyright 2011- Charles Severance

UNIVERSITY OF MICHIGAN L\ information
av

M

Regular Expressions

In computing, a regular expression, also referred to as
"regex" or "regexp", provides a concise and flexible
means for matching strings of text, such as particular
characters, words, or patterns of characters.A regular
expression is written in a formal language that can be
interpreted by a regular expression processor.

http://en.wikipedia.org/wiki/Regular_expression

Regular Expressions

Really clever "wild card" expressions for matching
and parsing strings.

http://en.wikipedia.org/wiki/Regular_expression

Regular expression - Wikipedia, the free encyclopedia

<[» | [@] [+ |Whttp://en.wikipedia.org/wiki/Regular_ =3 ¢ | (Qr Google
More than 100 matches (<« » Q regular Done
& Log in / create account j
7 T
A= N
f * w 3
¥ 09 5 Article Discussion Read Edit View history Q
%
“
N 1

WikieepiA | Regular expression

The Free Encyclopedia From Wikipedia, the free encyclopedia

In computing, a regular expression, also referred to as regex or regexp, provides a
concise and flexible means for matching strings of text, such as particular characters,
words, or pattems of characters. A regular expression is written in a formal language that
can be interpreted by a regular expression processor, a program that either serves as a
parser generator or examines text and identifies parts that match the provided
specification.

Main page
Contents

Featured content
Current events
Random article
Donate to Wikipedia
The following examples illustrate a few specifications that could be expressed in a regular

~ Interaction .
Help expression:
About Wikipedia « The sequence of "car" appearing in any context, such as in
Community portal "car", "cartoon", or "bicarbonate"
Recent changes « The sequence of characters "car" occurring in that order with other characters between
Contact Wikipedia them, such as in "Icelander” or "chandler"

Really smart "Find" or "Search"

Understanding Regular
Expressions

® Very powerful and quite cryptic
® Fun once you understand them
® Regular expressions are a language unto themselves

® A language of "marker characters" - programming with
characters

® Itis kind of an "old school" language - compact

WHENEVER T LEARN A

OH NO! THE KILLER || BUT TO FIND THEM WED HAVE T0 SEARCH
MUST HAVE ROLLOWED | | THROUGH 200 MB OF EMAILS LOOKING FOR
HER ON VACATION! || SOMETHING FORMATTED LIKE AN ADDRESS!

i e

T KNOW REGULAR,
EXPRESSIONS.

f% /5 Xf htep://xked.com/208/

A

$
\s
\S

*
*7
+

+?

[aeiou] Matches
[AXYZ] Matches

Regular Expression Quick Guide

Matches the beginning of a line

Matches the end of the line

Matches any character

Matches whitespace

Matches any non-whitespace character

Repeats a character zero or more times

Repeats a character zero or more times (non-greedy)

Repeats a chracter one or more times

Repeats a character one or more times (non-greedy)
a single character in the listed set
a single character not in the listed set

[a-z0-9] The set of characters can include a range

C
D)

Indicates where string extraction is to start
Indicates where string extraction is to end

The Regular Expression Module

® Before you can use regular expressions in your program, you must

import the library using "import re"

® You can use re.search() to see if a string matches a regular expression
similar to using the find() method for strings

® You can use re.findall() extract portions of a string that match your
regular expression similar to a combination of find() and slicing:

var[5:10]

Using re.search() like find()

hand = open('mbox-short.txt')
for line in hand:
line = line.rstrip()
if line.find('From:") >= 0:
print line

import re
hand = open(‘'mbox-short.txt')
for line in hand:
line = line.rstrip()
if re.search('From:!, line) :
print line

Using re.search() like startswith()

hand = open('mbox-short.txt')
for line in hand:
line = line.rstrip()
if line.startswith('From:") :
print line

import re
hand = open('mbox-short.txt')
for line in hand:
line = line.rstrip()
if re.search("*From?', line) :
print line

We fine-tune what is matched by adding special characters to the string

Wild-Card Characters

® The dot character matches any character

® [f you add the asterisk character, the character is "any number of

times"

X-Sieve: CMU Sieve 2.3
X-DSPAM-Result: Innocent
X-DSPAM-Confidence: 0.8475

X-Content-Type-Message-Body: text/plain

AX *

Wild-Card Characters

® The dot character matches any character

® [f you add the asterisk character, the character is "any number of
times"

X-Sieve: CMU Sieve 2.3 Match the start of the Il\ne &my times
X-DSPAM-Result: Innocent
X-DSPAM-Confidence: 0.8475 AX ke

X-Content-Type-Message-Body: text/plain

Match any character

Wild-Card Characters

® The dot character matches any character

® [f you add the asterisk character, the character is "any number of
times"

X-Sieve: CMU Sieve 2.3 Match the start of the Il\ne &my times
X-DSPAM-Result: Innocent
X-DSPAM-Confidence: 0.8475 AX ke

X-Content-Type-Message-Body: text/plain

Match any character

Fine-Tuning Your Match

® Depending on how "clean" your data is and the purpose of your
application, you may want to narrow your match down a bit

Match the start of the line Many times

\ /7
AX *:

X-Sieve: CMU Sieve 2.3
X-DSPAM-Result: Innocent

X Plane is behind schedule: two weeks

Match any character

Fine-Tuning Your Match

® Depending on how "clean" your data is and the purpose of your
application, you may want to narrow your match down a bit

One or more

X-Sieve: CMU Sieve 2.3 Match the start of the I\lne /tlmes

X-DSPAM-Result: Innocent
AX-\S+:

X Plane is behind schedule: two weeks

Match any non-whitespace character

Matching and Extracting Data

® The re.search() returns a True/False depending on whether the string
matches the regular expression

® If we actually want the matching strings to be extracted, we use

re.findall()
>>> import re
[O_9]+ >>> x = 'My 2 favorite numbers are 19 and 42’
>>>y = re.findall('[0-9]+',x)
1 >>> print y
One or more digits ['2,'19','421

Matching and Extracting Data

® When we use re.findall() it returns a list of zero or more sub-strings
that match the regular expression

>>> import re

>>> x = 'My 2 favorite numbers are 19 and 42'
>>>y = re.findall('[0-9]+',x)

>>> print'y

[l2l, ' I 9!, |42|]

>>>y = re.findall('[AEIOU]+'x)

>>> print'y

(

Warning: Greedy Matching

® The repeat characters (* and +) push outward in both directions

(greedy) to match the largest possible string
One or more

>>> import re characters
>>> x = 'From: Using the : character' /
>>>y = re.findall('AF+:, x) AF +-

>>> print y

['From: Using the :"] / \

First character in the Last character in the
Why not 'From:"? match is an F match is a :

Non-Greedy Matching

® Not all regular expression repeat codes are greedy! If youadda?

> + .
character - the + and * chill out a bit... One or more

characters but

>>> import re / not greedily
>>> x = 'From: Using the : character'

>>>y = re.findall('AF+?:', x) AF +7?-

>>> print'y N

[From:" / \

First character in the Last character in the
match is an F matchisa:

Fine Tuning String Extraction

® You can refine the match for re.findall() and separately determine
which portion of the match that is to be extracted using parenthesis

From stephen.marquard@uct.ac.za Sat Jan 5 ©09:14:16 2008

>>>y = re.findall(\S+@\S+',x)

>>> print y + +
['stephen.marquard@uct.ac.za'] \S @\S
>>>y = re.findall("AFrom:.*? (\S+@)\S+)',x) \ l
£>> print y At least one

['stephen.marquard@uct.ac.za'] non-whitespace

character

Fine Tuning String Extraction

® Parenthesis are not part of the match - but they tell where to start
and stop what string to extract

From stephen.marquard@uct.ac.za Sat Jan 5 ©09:14:16 2008

>>>y = re.findall(\S+@\S+',x)

>>> printy AFrom (\S+@\S+)
['stephen.marquard@uct.ac.za']

>>>y = re.findall("*From (\S+@\S+)',x) \ /
>>> print y

['stephen.marquard@uct.ac.za']

21 31
1 1

From stephen.marquard@uct.ac.za Sat Jan 5 09:14:16 2008

>>> data = 'From stephen.marquard@uct.ac.za Sat Jan 5 09:14:16 2008’
>>> atpos = data.find('@')

>>> print atpos

21

>>> sppos = data.find(' ',atpos)
>>> print sppos

31

>>> host = data[atpos+| :sppos]
>>> print host

uctac.za

Extracting a host
name - using find
and string slicing.

The Double Split Version

® Sometimes we split a line one way and then grab one of the pieces of
the line and split that piece again

From stephen.marquard@uct.ac.za Sat Jan 5 09:14:16 2008

The Double Split Version

® Sometimes we split a line one way and then grab one of the pieces of
the line and split that piece again

From stephen.marquard@uct.ac.za Sat Jan 5 09:14:16 2008

words = line.split()
email = words[]
pieces = email.split(@')
print pieces[1]

stephen.marquard@uct.ac.za

['stephen.marquard', 'uct.ac.za']

'uct.ac.za'

The Regex Version

From stephen.marquard@uct.ac.za Sat Jan 5 ©09:14:16 2008

import re

lin = 'From stephen.marquard@uct.ac.za Sat Jan 5 09:14:16 2008’
y = re.findall ('@ ([~ 1%*)',61lin)

print y

['uct.ac.za']

e[1%

Look through the string until you find an at-sign

The Regex Version

From stephen.marquard@uct.ac.za Sat Jan 5 09:14:16 2008

import re

lin = 'From stephen.marquard@uct.ac.za Sat Jan 5 09:14:16 2008’
y = re.findall('@([* 1%*)',61lin)

print y

['uct.ac.za']

e[1*)!

Match non-blank character ~ Match many of them

The Regex Version

From stephen.marquard@uct.ac.za Sat Jan 5 09:14:16 2008

import re

lin = 'From stephen.marquard@uct.ac.za Sat Jan 5 09:14:16 2008’
y = re.findall('@([* 1%*)',6lin)

print y

['uct.ac.za']

e(r 1%)!
N\ /

Extract the non-blank characters

Even Cooler Regex Version

From stephen.marquard@uct.ac.za Sat Jan 5 ©09:14:16 2008

import re

lin = 'From stephen.marquard@uct.ac.za Sat Jan 5 09:14:16 2008’
y = re.findall('~From .*@([* 1*)',6lin)

print y

['uct.ac.za']

"“From .*Q([*]1%*)'

/

Starting at the beginning of the line, look for the string 'From '

Even Cooler Regex Version

From stephen.marquard@uct.ac.za Sat Jan 5 ©09:14:16 2008

import re

lin = 'From stephen.marquard@uct.ac.za Sat Jan 5 09:14:16 2008’
y = re.findall('~From .*@([* 1*)',6lin)

print y

['uct.ac.za']

"“From .*Q([*]1%*)'

[\

Skip a bunch of characters, looking for an at-sign

Even Cooler Regex Version

From stephen.marquard@uct.ac.za Sat Jan 5 09:14:16 2008

import re

lin = 'From stephen.marquard@uct.ac.za Sat Jan 5 09:14:16 2008’
y = re.findall('~From .*@([* 1*)',6lin)

print y

['uct.ac.za']

"“From .*Q([*]1%*)'

/

Start 'extracting’

Even Cooler Regex Version

From stephen.marquard@uct.ac.za Sat Jan 5 09:14:16 2008

import re

lin = 'From stephen.marquard@uct.ac.za Sat Jan 5 09:14:16 2008’
y = re.findall('~From .*@([* 1*)',6lin)

print y

['uct.ac.za']

"“From .*Q([*]1%*)'

Match non-blank character ~ Match many of them

Even Cooler Regex Version

From stephen.marquard@uct.ac.za Sat Jan 5 ©09:14:16 2008

import re

lin = 'From stephen.marquard@uct.ac.za Sat Jan 5 09:14:16 2008’
y = re.findall('~From .*@([* 1*)',6lin)

print y

['uct.ac.za']

"“From .*Q([*]1%*)'

/

Stop 'extracting’

Spam
import re
hand = open('mbox-short.txt') Confidence
numlist = list()
for line in hand:

line = line.rstrip()

stuff = re.findall('AX-DSPAM-Confidence: ([0-9.]+), line)
if len(stuff) != | : continue

num = float(stuff[0])

numlist.append(num)

python ds.py
Maximum: 0.9907

print 'Maximum:', max(numlist)

Regular Expression Quick Guide

A Matches the beginning of a line

$ Matches the end of the line

. Matches any character

\s Matches whitespace

\S Matches any non-whitespace character

* Repeats a character zero or more times

*7? Repeats a character zero or more times (non-greedy)
+ Repeats a chracter one or more times

+7 Repeats a character one or more times (non-greedy)
[aeiou] Matches a single character in the listed set

[AXYZ] Matches a single character not in the listed set
[a-z@-9] The set of characters can include a range

(C Indicates where string extraction is to start

) Indicates where string extraction is to end

Escape Character

® [f you want a special regular expression character to just
behave normally (most of the time) you prefix it with '\

>>>import re At least one
>>> x = 'We just received $10.00 for cookies.' or more
>>>y = re.findall(\$[0-9.]+'x) /

>>> printy

['$10.001] \$[0-9.]+

/7 N\
A real dollar sign A digit or period

Summary

Regular expressions are a cryptic but powerful language for
matching strings and extracting elements from those strings

Regular expressions have special characters that indicate
intent

