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PREAMBLE
I had rather be hissed for a good verse than applauded for a bad one.

Vietor Hugo

Some scholars practicing what is called pure science are convinced that their ways
of doing science are theoretical, and hence superior io thai dome in what is called
apphied science. On the other hand, many scholars in the applied sciences stress that
superiorily of theory over practice is & myth, and that theory and practice cannot
be separaied. They coniinually poini oul the numerous possibilities of doing science
that miz pure theoretical research goals and applied research goals, eack worthy of
equal respect and dignity. The relationship between statisiicians and geographers
- the realm of spatial siatistice 15 a poini in quesiion here. The purpose of this
paper is for Martin io give his personal view of the application of spatial statistical
analysis in geographic research, mostly noting shoricoming of its use by selected ge-
ographers. Martin argues thai if geographers believe they have theoreiical resecarch
findings that contribule lo stalistics, then siafisticians should be allowed lo scru-
finize this research. Throughout! his discussion he hints tha! geographers do noi
have the ezperiise necessary for making such contributions, aend thai geographers
should restrict themselves to applications while enticing statisticians inlo underiak-
ing the requisite theoretical developmenis. A number of publicaiions concerning spa-
tial statistics have made clear that il is both an oversimplification end even an error
to mew geography as solely application-orienied, and statistics as theory-oriented,
for scholars in both areas hold o variety of talenis and viewpoints. Richardson sofi-
ens Martin's message, noting that all scholars have an inieresi in avoiding abusive
uses of statistics, and echoes Martin's belief that theoreiical developmenis in spatial
statistics need lo be hinked to relevant ezamples and realistic geographical problems.
In many ways, this paper effectively highlights the contrasts beiween statistical and
geographical approaches to spatial siatistics.

The Editor
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The Role of Spatial Statistical
Processes in Geographic Modelling
R. J. Martin

Department of Probability and Statistics, University of Sheffield, Sheffield S3 7RH, England

Overview:  In this paper I give a personal view of the role of spatial statistical
processes in geographic modelling. I consider models used by geographers, and com-
ment on the statistical shortcomings of their use. I discuss the role of the geographer
1n statistical research, and the role of the statistician in geographic research. I also ex-
pand on the discussion of two particular topics of interest to geographers—boundary
effects and missing values.

1. Introduction

There has been a considerable amount of published research in geography in which spatial
statistical models have been used or investigated—see for example the review papers of CLiff
and Ord (1975) and Bennett and Haining (1985), and the references therein. I will discuss in
this paper one particular part of this research—that part in which spatial stochastic processes
are used to model the dependence between observations on the same variable at different
spatial sites (or on different regions). This is the topic in Section 6 of CLff and Ord (1975),
and Sections 3.1 and 4.1 of Bennett and Haining (1985). Even in this restricted area I am
only going to discuss aspects of which I have some statistical knowledge. My viewpoint is
that of a theoretical statistician, and I claim no geographical knowledge or understanding.

In the discussion to Bennett and Haining (1985), I expressed my reservations (Martin,
1985) about the published research in geography that I had seen. Some stronger views
were given by Besag (1985). My reservations concerned two main aspects. Firstly, that the
models used by geographers did not appear to receive the validation from data that has be-
come standard in current statistical analyses, and there was no indication that geographers
felt that such validation was necessary. Secondly, that research by geographers that pur-
ported to advance statistical theory and methodology was being published in non-statistical

Journals, and was clearly receiving inadequate refereeing and not receiving the attention of
statisticians.

In Section 2 I shall discuss in detail the role of statistical models in geography, whilst in
Section 3 I shall discuss the role of the geographer in statistical research and of the statistician
in geographical research.

Two particular topics that have received much attention in geographical publications on
spatial statistics are boundary effects and missing values. I discussed boundary effects in
Martin (1987), and will reconsider some of that discussion in Section 4. In response to a
question from a geographer, I wrote up some research of mine on missing values in Martin
(1984). Some further comments are in Martin (1987). A subsequent publication (Haining,
Griffith and Bennett, 1989) has considered numerically one aspect of this—the information
loss. As a result I derived some theoretical results covering this aspect, which are in Martin
(1989a). I discuss and extend some of these results in Section 5.
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2. Statistical Models in Geography

2.1. Justification of models

I am not a geographer, and I have no basis for discussing geographic models unless these
models are statistical. Unfortunately, I have been unable to understand those statistical
models that I have seen used in geography. I mentioned in the introduction my concerns
about these models expressed in Martin (1985). In their reply, the authors (Bennett and
Haining, 1985) confirmed that the ‘model is paramount’, and justified this by stating that ‘It
must be remembered that in human geography and planning we are dealing with individuals
and social groups and this results in a problem of legitimizing models, and often in planning
applications, it requires the participation of individuals who often will be non-numerate.’,
and that data analytic methods are ‘not appropriate for planning a city’.

I will reply to this in two ways. Firstly, if the data are of no relevance to the model,
I do not see the point of presenting the models to statisticians and hoping that ‘a research
agenda ... may have stimulated the Fellows of the Society to help in their solution’. However,
whatever the context and whether or not individuals are involved, I would still be concerned
that models are not validated through an examination of relevant data. I also cannot see
the relevance of the possible non-numeracy of the participating individuals. My concern is
with the non-numeracy of the geographical researchers. Secondly, my comments were not
actually aimed at planning models, but at the spatial dependence models discussed below.
To concentrate the reply on one area, which did not appear to be represented in the paper,
15 misleading.

[ will now elaborate on my misgivings about models for spatial dependence. When it
1s possible to envisage a development over time, in which present events depend in some
way on previous events, it may be reasonable to attempt to model this development using a
‘generative’ model. For purely spatial data it is not possible to imagine such a development.
Besag (1974) says of spatial models that ‘... our models will not be mechanistic and must
be seen as merely attempts at describing the “here and now” of a wider process’. Some
of the early discussions in statistics over simultaneous and conditional models appeared to
depend on the belief that such generative models had some meaning outside describing the
data. This attitude still appears to pervade geographic research.

Thus, without consulting the data, it is forthrightly assumed that the covariance struc-
ture 1s modelled by, for instance, a one-parameter first-order conditional process or a one-
parameter first-order simultaneous process. For example, Haining, Griffith and Bennett
(1989) state that ‘a first-order conditional autoregressive model ... has ... a monotonically
decaying correlation function which seems appropriate for social and environmental spatial
data’. They then use the non-stationary edge-corrected version of this model on some re-
motely sensed data, with only a cursory check for suitability, although they do allow the pos-
sibility that the model represents the deviations from a second-order trend surface. I know
of no physical or geographic reason why the dependence should of necessity be adequately
fitted by this model. The data collection may require the participation of non-numerate
individuals (and instruments), but I would not find the argument convincing. There are of
course many other correlation functions that monotonically decay with lag.
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2.2. First—order models

Assume henceforth that for a given set of n sites or regions there is an n-vector of observations
y with mean g = E(y) and covariance (or dispersion) matrix Vo2, The one-parameter
first-order conditional process is usually taken in geographic modelling as specifying the
inverse covariance matrix V=" in the form I — 8W, where W is a symmetric matrix of
non-negative weights that are assumed known, and are usually taken as zero down the main
diagonal. In this form it is a very simple and convenient model. Parameter estimation is
particularly simple. Note that there is no need for the row sums of W to be constant, nor
any great advantage when they are; and that elements could be negative. Also, the diagonal

elements do not need to be zero, although the conditional means are not then linear in 3,
as noted below.

Gaussian maximum likelihood requires (see, for instance, Martin, 1984) the minimization
with respect to 8 of |V ~1|-1/%e'V~le  where e = Y —ji, and i is an estimate of p. This
involves the calculation of the quadratic form €'V’ ~le and the determinant |[VV~!|. Both of
these are very easy for a given 3, since e'V"~'e = e'e — fe'We and so is linear in 3, whilst
V=1 =TI(1 — BA;), where the ); are the eigenvalues of W .

Thus exact Gaussian maximum likelihood is easily performed using a one-dimensional
search over the admissable range of 8 (to ensure that V= is positive definite), which is in
general, provided A, < 0 and Amax > 0, [A&n,kﬁh}, where A = min;{};} and
Amax = max;{A;}. This is the appropriate range when the diagonal elements of W are zero.
Note that this range is more general than that given in many geographical publications—see,
for example, Haining (1987, 1988), and Haining, Griffith and Bennett (1989). For example, if
n = 3 and the off-diagonal elements of W are all 1/2, as used by Brandsma and Ketellapper
(1979), then the admissable range of @ is (=2, 1). Note also that that if W consists of non-
negative elements and does have constant row sums ¢, then Amax = ¢, so that we require
8 < ¢~'. Also, by the Perron-Frobenius theorem, Amin € —¢~!. Thus 8 has a simple
upper bound, rather than |3| having a simple bound, as was stated in Martin (1987).

The differential and second differential of the likelihood can also be easily found, so
that maximisation routines that use the differential can be used. For example, the Newton-
Raphson procedure given by Ord (1975) for the one-parameter first-order simultaneous
scheme can easily be adapted. In this case, using

£(8)=-n"1Y In(1 — BA;) — In(e'V le),
where €'V “le = e'e — fe'We, the iteration for @ becomes

.B‘.I‘-l—] = E‘rr - fﬁ(&r)ﬁfﬂﬂ{ﬁr}t
where
fa(B) =n"1 Y {N/(1-BA;)} - (e'We)/(e'V )
and
f8s(B) =n™" Y _{Ai/(1 - BA;)} — {(e'We)/(e'Vte))2

However, care should be taken to ensure numerical accuracy and to monitor COnVergence, as
3 is often close to the upper limit of its admissable range. Ripley (1988, Section 2.1) notes
that the Newton-Raphson procedure may fail for some data sets.
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For some configurations of the sites, the eigenvalues are known theoretically. For exam-
ple, for an n; by nj rectangular lattice with W containing ones for immediate horizontal
or vertical neighbours, the nyn, eigenvalues of W are given by

Aij = 2cos{mi/(n1 + 1)} + 2cos{mj/(ny + 1)} fori =1,...,ny and j = 1,...,my.

Gasim (1988) has obtained eigenvalues of W~ when further neighbours are included, al-
though it is difficult to see the practical use of such W (he actually obtains his results for
a one-parameter simultaneous process, but they hold equally for the conditional). In other
situations the eigenvalues of W need only be calculated numerically once.

Results on the (Fisher) information under Normality can also be easily obtained for this
model. Formula for the information, defined as the expected value of the second differential
of the log likelihood, are given by Mardia and Marshall (1984 )—see also Martin (1984). Now,

2yr=1 : .
when V! =T — AW we get % = 0, so that the most convenient form to take for twice

a3
&% In(1-8x)}

#ln v

the information on 8 1s 2Jg5 = ——5g7» Which 15 — 5 . Therefore, 21g5 is
S {Ai/(1 - BA;)}?. Since & = 1, another convenient form for 2145 is
a1 -1 _ﬂ']."'l 1 .
’ - = v ,
trace( | 38 | a8 ) = trace{( 53 )}

For small n, this 1s easiest found as the sum of squares of the elements of V' g_iEE—_’ = VW,

using trace(4?) = £Xa? ; when A is symmetric. Otherwise, we can use the fact that the trace

of a matrix is the sum of its eigenvalues, and that the eigenvalues of —VW = (I — W )~'W
are A;/(1 —BA;), i =1,...,n, so that those of (—VW)? are {X;/(1 — 8A;)}2.

If we want to get the asymptotic variance of B, the maximum likelihood estimator

of 3, then we also need Ig 2. The simplest form for 20® times this is trace( —1"—53—5"‘_]],

which is therefore } {A;/(1 — 8A;)}. Although the previous result on Igg has been used
by geographers, this result on J4 2 has not—see Haining, Griffith and Bennett (1989), and

Martin (1989a). These results give a simple formula for the asymptotic variance of A as
2 over the corrected sum of squares of the A;/(1 — 8;), ¢« = 1,...,n, (Martin, 1989a),
although asymptotically equivalent forms are easier to use. The latter are considered in
Besag and Moran (1975) and Besag (1977b).

It is important to realise that the form V™! = ] — 8W is not the inverse variance
matrix of a second—order stationary one-parameter first—order conditional process when the
sites or regions form a finite regular lattice. That is, V' is not proportional to a correlation
matrix. There are several ways of seeing this. A simple way is to invert numerically a
given 1'7', and note that, for instance, the diagonal elements are not constant. Although
geographers are becoming more aware of this fact—see, for instance, Haining (1987)—there
does still appear to be some confusion. For example, Haining, Griffith and Bennett (1989)
use V™! =T — W, but also appear to assume | proportional to a correlation matrix—see
my comments in Martin (1989a).

For a given W with zeroes on the main diagonal, the one-parameter first-order condi-
tional process can be written in the form

Blyil-)=pi+8 Y wijly; —pj), with var(y; |-) = o2,
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where the conditioning is on all other values, y;, j # i. Note that the assumption that all
sites have the same conditional variance is often not reasonable for a finite set of sites—in
particular, it is usually preferable that the conditional variance is smaller for the interior
points. It is possible to postulate unequal conditional variances for the one-parameter first-
order conditional process, but W must then be asymmetric with w; 7% = wjo;?, where
var(y; |-) = o;° (Besag, 1975). Another possibility would be to use a symmetric W, but
for W to have non-zero diagonal elements. Then, provided 1 — Bwy; > 0 ¥, var(y;|) =
oy°/(1 — Bw,;). However, the conditional mean would now have the form

8
Eyi|-)=pi+ mzwu{ﬂ — p5)
J#
which is non-linear in 3.

On an infinite lattice, the second-order stationary process is such that w; ; only depends
on the lag ¢ — 7. For a finite lattice, define an interior site as a site ¢ for which all the sites
appearing in the expression for E(y;|-) are observed. Then, part of the confusion about
stationary is due to the fact that provided either site i or site j is an interior site, the (i, i)
element of Vg ', where S denotes the stationary form, is precisely that element of J — AW .
This is easily seen by direct multiplication of Vs and Vg !, and using known relationships
between the correlations—see equation (5.12) of Besag (1974).

Therefore, many results obtained for V=1 = I — AW do hold for interior sites of the
stationary process without modification. Nevertheless, there are many results that do not
simply carry over from one form to the other. Of particular importance are the results of
Guyon (1982), who showed that using Gaussian maximum likelihood for one form may lead
to estimators with undesirable properties for a different form. Thus, great care should be
taken to precisely define which form is being postulated. This care is not yet sufficiently in
evidence.

Similarly, the one—parameter first-order simultaneous process has V= of the form
(I —BW)(I - W),

where in this case W does not need to be symmetric. Note that the diagonal elements of
W'W usually differ, and are usually greater for interior sites, so that the conditional variance
at these sites is reduced. In fact, assuming wy; = 0, var(y;|-) = o2/(1 + 8° ijfi], Whilst
it may be desirable that the conditional variance is smaller for interior sites, the precise
variances arise from the modelled neighbours, rather than being directly specified.

This model has also been used without question—for instance, see Haining (1987). The
model s also simple and convenient, although not as simple as the conditional process.
Since |A'A| = |A|*?, exact Gaussian maximum likelihood can easily be performed using
the eigenvalues of W (Ord, 1975), although these eigenvalues may be complex if W is not

symmetric. In many cases, the postulated W is the same as a possible W for the conditional
process, in which case W is symmetric and has the same eigenvalues as before.

In this common case that W is symmetric, it is possible to get simple results for the
information. Then V~! = (I =AW )2, so that its eigenvalues are {(1-8X;)*},and V and W

commute. Therefore —V%l = 2W(I — BW)™?, with trace 25 {};/(1 — BA;)}. Since W
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and W' have the same eigenvalues, this formula also holds even when W is not symmetric.

Also . l
F o _:'F -
Vﬂ”if Fﬂl
ag a8
with trace 4X{A;/(1 — 8);)}*. These are just multiples (2 and 4) of the values for the
conditional process. The asymptotic variance of 3 is therefore exactly one quarter of the
value for the conditional process, which was discussed above. Since Haining (1987) uses
a symmetric W, the general formulee misquoted from Ord (1975), and the approximation
given, are quite unnecessary. Note that Ord’s (1975) a should be —X{};/(1 — 8X;)}2.

= 4W3I - gW )2

2.3. More general models

Extensions to the one-parameter conditional or simultaneous forms have been suggested.
For instance it is easy to extend the conditional form for V~! to the two-parameter form
I — 81W; — B2W,, which either extends the range of dependence or can be used for the
same range of dependence as before, but with W split into two parts to allow different
degrees of dependence in different directions. This extension, at least in the simultaneous
form, is usually attributed in the geographic literature to Brandsma and Ketellapper (1979),
although the idea was hardly new to statistics. Even in spatial statistics the use of more
than one parameter is well established—see Whittle (1954). The simultaneous process can
itself, at least on an infinite lattice, be represented as a special case of a conditional form
with separate parameters for each of the immediate horizontal or vertical neighbours, the

immediate diagonal neighbours, and the lag-two horizontal or vertical neighbours—see Besag
(1974).

However, if it is wished to keep some of the simplicity of the one—parameter conditional
or simultaneous forms, there are not many extensions available. The ability to obtain eigen-
values of 1V~ that are linear in the parameters 3; is hampered by the requirement that the
W; matrices need to commute. Using powers of W is possible, but is not always satisfactory.
Unless W is triangular, W? has some diagonal elements positive, so that the conditional
variance for those sites is reduced. For a rectangular lattice the most general conditional
form with known eigenvalues that does not use powers has V= = I — ;W; — 85 W5 — B33,
where W, is for horizontal neighbours, Wa for vertical neighbours, and W3 for the four
diagonal neighbours. Squaring this gives the most general simultaneous form.

Note that whenever V' (or V~!) has a simple eigenvalue/eigenvector decomposition,
V = PAP' where the columns of P are the standardized (or normalized) eigenvectors of
V' and A 1s a diagonal matrix of the corresponding eigenvalues, then a simulation is easily
obtained using y = g + PAY2P' | where A1/? is a diagonal matrix of the square Toots
of the eigenvalues, and ¢ is a vector of simulated independent random variables with mean
zero and variance . There is no need to numerically find the Cholesky square root of V',
as suggested by Haining, Griffith and Bennett (1983). Similarly, if V' has the simultaneous
form B'B where B has a simple eigenvalue/eigenvector decomposition, B = PAP~!, we
can use B! = PA~1P~! where A~! is a diagonal matrix of the inverses of the eigenvalues,
so that y = p + B~'e. This should be preferable to numerically inverting B, as suggested
by Haining, Griffith and Bennett (1983), and reasonable for even moderately large n.

Another simple extension is to use the above forms for V-1 as forms for V —finite
dependence or moving-average models. Note that the finite dependence models are per-
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fectly reasonable models of the covariance, although the attempt to derive them through
a ‘generating’ mechanism in CHff and Ord (1981, p. 150) is incorrect. The eigenvalues
of V' will again be linear in the parameters. The quadratic form e'l ~le can be quickly
computed as f'A7'f, where f = Pe and V has the eigenvalue/eigenvector decomposition

FAP'. Simple results can be obtained for the information using, this time, trace(V %lj

and trace( 1/ %—1 V i%—l}, so that essentially the same results are obtained as before. The

rapid decay to zero of the covariances makes this form less attractive in many practical sit-

uations. It is also possible to combine the two forms, and still keep the same eigenvectors
provided the W; matrices commute,

One other possible extension that does preserve some simplicity in the likelihood is the
errors-in-variables formulation (Besag, 1977a). Essentially, this approach uses one of the
above V' matrices, and adds to it al, so that var(y) = (V + al)o?. This is useful when
the sample correlation function does not appear to tend to 1 as the lag tends to 0, as when
there is an extra independent error, such as measurement error, at each site. The quadratic
form e'V"~le is found in the same way as when V is specified.

Another extension for data on a rectangular lattice is to the separable processes, which
can often be very easily fitted (Martin, 1990). These processes are somewhat restrictive
in the range of possible covariance structures—in particular correlations must be reflection
symmetric and decay exponentially—but the ease of specification and fitting makes them
attractive whenever the assumption is reasonable. Simulation of a separable process is rela-
tively easy provided the sites can be represented as a subset of a rectangular lattice, since on
an ny by ny rectangular lattice V' is a Kronecker product of dispersion matrices of orders
n; and nj, and square roots of these matrices are usually easily found (Martin, 1990).

2.4. Comparison of models

From a data analytic point of view, it is important to be able to fit different models, and
compare their fits. If the models are hierarchical, each more general than the previous, then
standard statistical tests often can be used as a guide, although the theoretical justification
is frequently lacking. Note that if n is not too large, say less than 100, then provided care is
taken to ensure numerical accuracy, any model can be fitted, whether or not V has simple
eigenvalues. If computing problems are ignored, it is easy, for regularly arranged sites or
regions, to postulate a series of models, each more general than the previous one, with natural
orderings of the neighbours (with, in general, different parameters for the two directions, but
the possibility that the two parameters are the same). The next extension is to include the
four diagonal neighbours (again, in general there would be different parameters for the two
directions). For the subclass of separable processes, this procedure can actually be easily
accomplished, because of the ease of fitting most processes (Martin, 1990).

It is much harder to say what should be done with irregular sites or regions. Note
that despite the attempts at developing theory on a rectangular lattice, it is the irregular
sites or regions that are most common for natural geographical data. Irregular sites can
still be modelled with a particular dependence structure, and the form for V deduced from
it. Irregular regions cause the most problems. Modelling for data on irregular regions
has tended to be extremely arbitrary. A particular form is postulated, such as the one-
parameter conditional form of V™! = I — AW, and then the weights w;; also are arbitrarily
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chosen from a wide range of possibilities. These include functions of the distance between
arbitrary centroids, and functions of the common boundary length (see Besag, 1975). In
most applications the weights are more like parameters than known constants.

It is easy to criticise, but less easy to make constructive suggestions. My own belief
is that for a given set of neighbours the elements of W; should be parameterized in terms
of a small number of parameters, so that different choices of W; can be compared using
standard statistical theory. This approach also has been suggested by Brandsma and Ketel-
lapper (1979). Unfortunately, separability does not appear to have any relevance for data
on irregular regions.

So far, I have discussed the modelling of the covariance structure. Of course there are
other considerations. The mean structure can also be specified, and may be dogmatically
specified, or chosen after examination of the data. The use of a trend surface to represent the
large scale variation, as in Haining (1987), is fraught with difficulties when the dependence
1s also modelled through the covariance. Even a second-order stationary process can exhibit
trend-like behaviour, so that the partition into a fixed trend and a random component is
not clear. In addition, a parameterized trend surface is usually far too inflexible over a large
region, and may require many parameters. Unless there is a clear planar trend over the sites,
many statisticians would prefer to model the trend-like behaviour through differencing, or
the use of the intrinsic processes introduced in geostatistics (see, for example, Journel and
Huijbregts, 1978; and, the extension to intrinsic autoregressions of Kiinsch, 1987).

Another consideration is the distribution. Normality is almost always assumed, often
implicitly. There is usually no check on normality; and, where there is, it usually consists of a
univariate histogram of the original data. Apart from the necessity of correcting for the mean
function, I have remarked before (Martin, 1983) on how misleading the marginal histogram
can be for correlated data. The histogram of normal correlated data can often be multimodal
and skewed. The need for correcting the significance values of a goodness—of-fit test for two-
dimensional data was shown by Patankar (1954). My view (see Martin, 1990) is that some
attempt should be made to obtain approximately uncorrelated residuals, on which standard
tests of normality (for example, using as a test statistic the sample correlation coefficient
associated with a normal probability plot) can be approximately used.

Note that, whilst it is important to check the distributional properties when simulating
data, there is no point in checking the derived data, as suggested in Haining, Griffith and
Bennett (1983). It 1s better and simpler to check that the original simulated data for ¢
satisfy the assumptions of normality, constant variance, and independence.

3. Statisticians and geographers

There have been calls for statisticians to become involved in geographic research (see, for
instance, CLff and Ord, 1975; Bennett and Haining, 1985). My own involvement has been by
a somewhat strange route. The published research in geography, which uses spatial statistics,
held, and still holds, no particular interest to me. As I already have mentioned, I cannot see
the point of most of it, and much is riddled with statistical errors. If that published research
were concerned with applications in geography, I would probably have remained uninvolved.
However, somewhat to my surprise I found that the vast majority of the publications that
I had seen were not about geography at all. Although published in geographical journals,
they were claiming to contain advances in statistical theory (by statistical theory I mean any
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non-trivial mathematical manipulations performed within a statistical context).

I take care to seek opinions and comments, before submission of a paper, from others
who may have more knowledge of the topics in the paper. I do not find it easy to get my
papers published in statistical journals. I rigorously check any paper many times between
the first draft and the final proof version for errors and misprints. I therefore was disturbed
by the apparent ease with which these papers were able to appear in geographical journals,
the kudos the authors received, the statistical errors the papers contained, and the lack of
generality of reported results. Of course, there are poor papers in statistical journals, and
there is good statistical work done by members of disciplines other than statistics. There also
are many papers abusing statistics of which I am thankfully unaware. It seems unfortunate
to me that non-statisticians who publish statistics, however flawed, are held in high esteem
in their professions, whilst statisticians who publish statistics, however good, are seen as
doing no more than trade. I can only say that I became aware of these “geographical”
papers, and responded to them.

My first response (Martin, 1984) was a purely statistical work, but resulted from seeing
some tentative beginnings by geographers. In this case I had already looked at the theory,
but had not had the time (or the stimulus) to prepare it for publication (see my comments in
Section ). My second response (Martin, 1987) was a direct result of seeing published work
by geographers. In that paper 1 attempted to straighten out what I saw as some muddled
thought (see my comments in Section 4), and to correct some of the errors I had noted. To
the credit of the geographic community, this response was published. However, this credit
1s somewhat diminished by the fact that I was not made aware of the reply (Griffith, 1988),
nor given an opportunity to comment on it before or after publication. My third response
(Martin, 1989a) also was a purely statistical work; it attempted to give the theory behind
some numerical results obtained by geographers. This work was interesting in that it would
never have occurred to me to obtain the results if it had not been for the other paper. Indeed,
I still doubt that the results have any practical significance (see my discussion in Section 5).
This present paper constitutes an invited fourth response, which I have used to develop my
previous arguments.

I thus have four papers that may be of interest to geographers, but I still do not see
mysell as being, or wanting to be, a statistician interested in geographical research. I have
reacted to geographical research, and may continue to do so. However, I have long thought
that I would have nowhere near enough time, even if it were my only aim, to keep up with,
and correct, statistical publications by geographers in the area of my research interest.

Perhaps fortunately, I am not kept in touch with current geographical research in this
area, so that I only find out about it on the rare occasions that I am asked to referee a
paper, or a paper appears in a journal that I notice. In connection with this, Bennett and
Haining (1985) note, on geographic modelling, that I appeared unaware of “an extensive
methodological discussion of these points ... in the social sciences and geography.” I am
happy to acknowledge my unawareness of this discussion. I feel that if geographers wish
statisticians to become involved in their research, then the onus is on them to help make
their research accessible to statisticians. It is quite unreasonable to expect a statistician to
keep abreast of all the research in all the areas that use or abuse statistics.

My second point in Martin (1985) was that research purporting to contain statistical
advances should be submitted to the scrutiny of statisticians. My hope was that better
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refereeing would result in better papers, and that more statisticians would become aware of
the research. I am pleased to see that there are now submissions to statistical journals: for
example, Haining (1987, 1988), and Haining, Griffith and Bennett (1989). The drawback is
that the statistical community must now share the blame for any criticisms of these papers.
That I do have criticisms can be seen from my comments in Martin (1989a), and in this
paper. As an additional example, I will mention that the reference to Matérn’s lower bound
of —0.403 (Haining, 1987, p. 464) is incorrect. This bound is for an isotropic process in
continuous space, and has no relevance in discrete space. Even the concept of “isotropy” has
little meaning or relevance for regional data, such as pixel measurements.

However, worse things are still occurring in quantitative geographical journals. For
instance, Griffith (1987) gives (p. 72) an 11-line derivation of the simple result E(x) =
(1 —p) 'pel when x = (1 — pC)~ ¥, E(£) = pel, and C has row sums equal to one (and
does not achieve this result). The paper contains several errors, admittedly relatively minor
once the necessary assumptions have been deduced. Also, the torus limit of p g, must equal

the planar value (see Martin, 1986).

Poor published research does not represent a step forward, but several steps backwards.
It sets a standard for subsequent publications, and deters those who might have worthwhile
contributions to make. I wonder what the reaction of the geographic community would be
if a statistician published, in a statistical journal, articles suggesting the present state of,
and future research necessary in, geography. I wonder why people wishing to do research in
statistics do not liase with statisticians who are expert in that area of research. I wonder
why geographers do not concentrate on the many interesting geographic problems that are
amenable to a sensible use of statistics.

As examples, I would like to see geographers investigating, by examining many relevant
data sets, what models are reasonable for the sorts of data that arise in geographical appl-
cations. I would like to see investigations of different methods of predicting “missing values”
in geographical situations in which an answer is actually required.

I also would like to see geographers who meet a statistical problem actively seeking the
views and help of statisticians well before the stage of seeking publication. I am confident
that many statisticians would be interested in such investigations and ready to help, when
asked, with any necessary theoretical developments.

4. Boundary effects

There have been several papers discussing the “problem” of boundary values, and possible
solutions to this “problem” (see Griffith, 1980, 1983, 1985, 1987; Griffith and Amrhein, 1083;
Ord, 1981). In Martin (1987), written before I had seen Griffith (1987), I examined the
“problem” and came to the conclusion that the published research was unsuccessful because
the problem had not been sufficiently well defined, and the research had not considered
problems that might be of interest. Some of the discussion is worth elaborating on here.

Much of the previous discussion on the topic of the “boundary value problem” appeared
to assume that the problem was a well-defined one, and that a statistical solution to the
problem was possible. I suspect that some of the confusion was due to the use of the term
“boundary value,” which has certain connotations in Applied Mathematics. In solutions
to differential or difference equations, a general solution is found that depends on certain
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nitial conditions. Once these initial conditions are specified, the solution is unique. Also, a

geographical boundary between sites is different from the boundary sites at which “boundary
values” may oceur.

However, the spatial statistical models used by geographers are of a different kind. I
already have stated my view that these models are only descriptive of the covariance of
the data, and have no meaning as generative models of the data. This still applies even
when the model can be expressed in a “generative” or “causal” form. Thus the fact that
these “generative” models include, for some “boundary” sites, dependence on unobserved
sites, is irrelevant. Also irrelevant is any attempt to predict these boundary values in order
to estimate parameters (Martin, 1987). Even the definition of what are boundary sites is
unclear. One definition was used here in Section 2, but many others are possible.

A simple example is given by the first-order autoregression in one dimension, namely
z; = azr;_; +¢;, where {¢;} is a sequence of uncorrelated random variables with zero mean
and constant variance. With finite data {z;},i =1,2,...,n, it appears that an assumption
about z needs to be made. However, for spatial data we could equally well “assume” that
the data were “generated” from the right, with the model z; = az;;; + €, so that now it
appears that we need an assumption on z,+;. If we write the model in conditional form,
then E(z;|-) = B(zi-1 + zis+;), where E(z;|-) denotes the mean of #; given all other zs
and 8 = a/(1 + a?), so that in this formulation we need assumptions about both zy and
Zyp+1. All these requirements concern what I term “exterior boundary” values: but it also is
possible to formulate the problem in such a way that we need assumptions about z, and/or
T ,—what I term “interior boundary” wvalues.

A preferable way of considering the problem is through the covarance structure of
T1,T3,...,&n. If the covariance matrix is 17, then the only elements that change under
the different assumptions on the first-order autoregression are the (1,1) and/or the (n,n)
elements of V=1, We therefore essentially require assumptions about these. It also is pos-
sible to define the covariance structure of a larger set of zs, for instance zg,21,...,Zn41,
and then derive V' from this. This is discussed in Martin (1987), and eight different forms
that have been suggested for V! are given in Kunert and Martin (1987). Note that it is
quite unnecessary to believe that the data were generated temporarily from an infinite past,
or spatially from an infinite space, in order for V' to have the stationary form. Thus the use
of a finite geographic region does not, of itself, rule out the use of the stationary V. How-
ever, doubtlessly it is true that when the region considered has natural boundaries, it may
be reasonable to expect those sites on the geographic boundary to have different properties
from those sites in the geographic interior.

Note that we can produce identical effects by including different assumptions on the
variances of some of the “innovations.” For instance, the assumptions that zo = 0 and
var(e;) = ¢2/(1 — a?) lead to the stationary form for V1.

Thus the first possible boundary effect is that for a given model different “boundary”
assumptions lead to different dispersion matrices. Since it is unlikely that even a large data
set would allow statistical differentiation between mildly different “boundary” assumptions,
the choice is largely a matter of convenience, unless there are strong prior arguments for one
form over all other forms. The specification of a reasonable model for the “interior” sites
usually will be more important than the specification of the precise form of the model to be
used, although attempts should always be made to incorporate good prior information.
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In more that one dimension there is another problem. The stationarity assumption for
many statistical models does not lead to a V' or a V'~! that can easily be numerically
calculated. This means that exact likelihood is not feasible. Since it is, at least for the finite
conditional or simultaneous schemes, the “boundary” sites that cause problems for V-l
we have a second possible boundary effect, which is that some stationary models cannot,
at present, sensibly be fitted by exact likelihood. This, together with results reported by
Guyon (1982) on approximate likelihood not necessarily being /n-consistent, suggest that
we should not attempt to fit the stationary form, but one of the other forms that is associated
with different “boundary” assumptions.

The third possible boundary effect is that estimators may be biased, and that different
“boundary” assumptions may reduce this bias. Whilst this is undoubtedly true, it is not at all
clear in what way some boundary assumptions reduce the bias for estimators of parameters of
V' for the same, or other, forms; nor is it clear whether changing the “boundary” assumptions
15 a good way to reduce estimator bias, or even whether the bias is large enough to cause
COICETITL.

The geographical discussion of “boundary effects” is greatly complicated by the lack of
clear definitions of what are the effects that are causing concern, and what are the attempted
solutions to them. It is difficult to comment on ambiguous or unclear work, since there is
always the possibility that there are hidden assumptions that make the analysis correct. A
step forward in research would be for all assumptions and aims to be clearly stated.

5. Missing Values

Although I had locked at the theory for estimation of the parameters of a spatial model
when observations at some sites are not available as early as 1978, it was not until 1983,
when I was told that geographers were working on a special case of the problem and were
encountering difficulties, that I completed and wrote up the work (Martin, 1984). The results
were circulated earlier, and mentioned in Martin (1983). This work covered in full generality
the estimation of parameters using exact maximum likelihood for a Gaussian process. The
work was referred to in several subsequent publications by geographers—see for example
Bennett, Haining and Griffith (1984), Griffith, Haining, and Bennett (1985), and Haining,
Griffith and Bennett (1984, 1989), although not always correctly, as I pointed out in Martin
(1987).

There are two aspects to ‘missing values’. One is the ability to use, with possibly minor
modifications, known estimation methods on a given configuration of sites, usually a regular
rectangular lattice. The results are of most usefulness when the covariance matrix, or its
inverse, is of a known simple form on a given configuration, and m, the number of unobserved
sites, is small. The other aspect is the prediction of the unobserved values.

Much of the oniginal impetus for the interest of geographers appears to have been as a
possible ‘solution’ to the ‘boundary problem’. As I discussed in Martin (1987), and have
commented again above, missing value techniques are quite irrelevant to the ‘boundary
problem’. Since then, more realistic problems have been proposed in which missing value
techniques may be valuable. One is in the area of analysis of remotely-sensed data. For such
data, 1t is possible to have unobserved sites for several reasons. Two possibilities are cloud
cover when a passive sensor is used, and instrument malfunction. The former will result in
unobserved data in all bands over a region on the ground, whilst the latter may result in the
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loss of data on individual pixels or lines of pixels, and may only affect one band. Another
situation in which ‘missing data’ arises is when the data contain possible outliers, that is
observations that appear unusual amongst the others, or influential observations, that is data
which have a large effect on the analysis. It may then be desirable to perform any analysis
with such observations omitted. Some general theory on influence and residuals for known
V' is in Martin (1989b). It may even be sensible to routinely calculate such ‘leave-k —out
statistics’ as a diagnostic procedure—see the time series case in Bruce and Martin (1989).
Procedures for dealing with an unknown mean and an unknown dispersion matrix require
further investigation (Martin, 1989c).

Although the application to remotely-sensed data has been mentioned recently (Hain-
ing, Gnffith and Bennett, 1989), the example given is unsatisfactory, in that there is little
indication that the chosen covariance structure, the one-parameter first—order conditional
process, is an adequate representation.

The main purpose of that paper appears to be to advance statistical theory on the loss
in information (here meaning the Fisher information) when some sites are unobserved. The
interest appeared to be on how the loss varies over different spatial configurations of the
spatial sites. Results were obtained numerically for the special case of the one-parameter
conditional process on a rectangular lattice.

The paper does not explain what the purpose of obtaining these results is. Since in any
application the unobserved sites are given, and are not in the control of the investigator, it is
difficult to see what the point is in comparing different configurations and different numbers
of unobserved sites. However, if we assume that the results are of interest, it is easy to obtain
theoretically much more powerful results. I have given the appropriate theoretical results
in Martin (1989a). Special cases can easily be found—all the cases considered by Haining,
Griffith and Bennett (1989) are also given in Martin (1989a). Many other special cases can
also be considered, although it is only for the one-parameter conditional process that the
formule are at all simple. Mrs. T. Krug at Sheffield has obtained formulz for more sites
and for the one-parameter firsi—order simultaneous model.

Assuming that there is an interest in these results, I shall outline some of them, elaborate
on some of the details omitted in Martin (198%a), and include some new results. Assume
that the n—vector of observations (strictly the random variable) is u, with dispersion matrix
var(u) = Vo?, where o7 is a scale parameter and V' depends on 8. Although it is possible
to allow the mean to include trend and other fixed effects, I shall just discuss here the case
of a constant mean, so that E(u) = u1,,, where 1, is an n—vector of ones. Also, it is easy
to generalize to the case that V' is a function of the g—vector .

Assume also that data are unavailable at m of the sites, and that u is permuted into x,
where the first n —m elements of x are y and correspond to the observed sites, while the last
m elements are z and correspond to the unobserved sites. Similarly, let var(x)/e? = Vi,

be partitioned as
( Vig Ve )
sz Ve

Vw Ve
V=¥ p'u): s
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Then, in general, the loss in information on g when m sites are not observed is c'(V*)"1eo?,
where ¢ = V*1,,. For the one-parameter conditional process with V' =! = | — BW , we find
that V** = I — BW,,, where W is partitioned similarly to V. Also, for any interior site
of the first-order process on a rectangular lattice, ¢ = alm,, where @ = 1 — 48, Thus the
information loss then becomes 1,'(] — AW ..)"!1,, times aZo?.

Exact formulee can be obtained for this situation. Some general results, plus particular
formule for the different configurations when m = 1,2, 3,4 are given in Martin (1989a).
Note that when m = 4, one of the configurations was omitted by Haining, Griffith and
Bennett (1989). For this case one configuration is

XX

X

and the loss is 1%—+aﬁ.ﬂ times a’s®. This is intermediate in its loss between cases 3(d) and

3(e) of Haining, Griffith and Bennett (1989). For the values of 3 they consider, 0.075, 0.150,
and 0.225, the loss is 2.218, 0.840, and 0.063 respectively.

Exact results can be obtained for greater values of m , although the number of essentially
different configurations increases rapidly with m, as does the difficulty in general in obtaining
the formulz for the elements of (V' **)~!. The recursion given below is often useful. However,
good approximations are also possible. Provided that |3] is not too large, the information
loss on @ for m missing sites is approximately {m + 2m.8 + 2(m) + m3)B?%} times a?e?,
where m; is the number of ‘links’ of length one among the missing sites, and ms is the
number of ‘links’ of length two. These links are found using the usual city-block metric.

As an example, consider the case m = 5. There are several cases in which not all the
sites are joined, but I will only consider those four cases in which all sites are connected.

Case 1 Case 2 Case 3 Case 4
X XX X

XX XX 00 00X
X

The pair of numbers associated with each configuration are (mi1,m32). The figure below
shows how these are obtained for Case 1.

The 4 links of The 6 links of
length 1 length 2

X X

X b

In general, the exact result requires the inversion of V**. However, using results on
partitioned matrices, it is possible to obtain recursively formula for the information loss.
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Partition the m sites into m — 1 and 1, so that

V= = A b
~\b' d

where A is an m — 1 square matrix, b is an m — 1 vector and d is a scalar. Then

(V51 AloN 1 —A7'b\ [-A"'b)'
N0 o) Td-bA b\ 1 1 '

Thus, if ¢ = al,,, which is so for interior points for conditional and simultaneous
schemes, then the loss in information on p is the loss for the m — 1 sites,

(1, _ A "1 1)e?e?,

. 1-b'A"11,,.1)° . i
plus a’e? times ( ey ..-I‘Th 1)° This latter additional term can be very easy to calculate

if the extra point is carefully selected. For instance, for the one-parameter first-order con-
ditional process, if in Case 1 above the centre point is chosen, then 4 = I; and b = —A1,.

2
Thus the loss is a?e? times 4 + %EL.

Note that the above result can easily be extended to m sites being partitioned into
m —m' and m'.

Results for the one-parameter first—order simultaneous model can be obtained, but are
nowhere near as simple. There are several reasons for this. Firstly, (17**)~! does not have
the form (I — 8W..)'(] —BW.:). Secondly, because V' =! has non-zero terms for (1,1) and
(2,0) lags, there are more cases to consider. For example, when m = 2 there are 3 different

configurations, and when m = 3 there are 12. The numbers for the conditional process are
2 and 3 respectively.

Thus, when m = 2 the four cases are:

Case 1] Case 2 Case 3 Case 4
immediate lag 2 diagonal all other
neighbours neighbours neighbours configurations
xx X-X x-
"X

For the conditional process Cases 2 and 3 are included with Case 4. An interesting point
with the simultaneous process is that when 8 > 0, the smallest loss is not associated with
Case 4, but with Case 3. This follows from the element of V' ~! associated with diagonal
neighbours being 28%, which is positive. The next smallest is for Case 2, as the element of
V=1 associated with lag 2 neighbours is 82, which is also positive.

So far I have considered the easier case of the loss of information on p. The loss of
information on 8 was also considered in Haining, Griffith and Bennett (1989), and Martin
(1989a). This is more complicated for several reasons. Firstly, there are more configurations
to consider, and secondly, the formule involve both V** and (V**)~!. Because of the
second point, the formulee depend not just on the configuration of sites, but also on the
actual positions of the sites. However, provided attention is restricted to interior points of
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the stationary process, then the result only depends on the configuration. Although Haining,
Griffith and Bennett (1989) do evaluate their results for the stationary process, it appears
that they are also assuming V=1 =T — W .

Note that if the loss of information on # is being considered because of an interest in
var(3), then the information required is that for 3 conditicnal on ¢?, which was considered
in Section 2.

The formulee for the loss of information on # are most easily obtained by using the
missing information principle of Orchard and Woodbury (1972). 1 take their principle to be
their equations (2.13) and (2.15); that is, the use of the expectation with respect to z of
the conditional likelihood of z|y. Setting the mean u to 0, since its value does not affect
the information on 8, the distribution of zly is Normal with mean —(V#)=1V#y and
dispersion matrix (V' **)~1g?,

Since the second differential with respect to 3 of both V% = —W gy and V= =T AW,
is 0, the second differential of the conditional log likelihood becomes

- lﬁzlnﬁ’r:” 1 aﬂ{}rrv pz“;::]—lv.ty},}
2 0p8* 202 ap? :

The first term can be evaluated as before. Taking the expectation over y of the second term
gives

1 aﬂ{v*y:(v.::}—lvly}
Etl‘ﬂ.{‘.‘ﬂ Vaw RE :

Now, V¥(V=)=1y = = g2W (I — BW..)"'W,y, and so its second differential with
respect to G is 2W,. (I — BW,,)73W,, {compare this with the second differential with
respect to x of 22/(1 — az), which is 2/(1 —az)® }. Then using (VE)y"IWWaY, = -V,
see Martin (1984)] and V., V¥ + V.,V ** = ] it follows that this expectation becomes

g? trace {(V **)"*V,;,W,. } = B2 trace {(V**)"1V,, — (VE=)72)

The second term here can be evaluated as before, using the sum of squares of the elements
of (V**)7! for small m. The first term involves V., as stated above. For small m, exact
formulee can be found (Martin, 198%a). Again, approximate formule can be derived—see
Martin (1989a).

Also, these formulee can be extended to larger m, and to other processes. Although the
mathematics is interesting, I feel that further theory should be justified by practical needs.

Which models are reasonable for a given application needs to be discovered, as well as why
it is of interest to know the loss in information.

6. Conclusion

[ have given a personal view of some of the spatial statistical models used in geography, and
of some of the publications concerning these models. I hope that the papers in this volume
will lead to an improvement in modelling, and in published research. If geographers stimulate

statisticians by presenting problems of practical interest, then valuable joint research should
result.
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If my comments have been unduly negative, I should say that 1 have been heartened by
the apparent willingness with which geographers accept criticism of their mistakes, although
I would prefer that the mistakes were not made. I should also emphasize that similar
comments could be made about workers in other disciplines, or even within the statistical
community. I have tried to ensure there are no mathematical or statistical errors in this

paper, and will endeavour to correct any that I notice subsequently or that are bought to
my attention.
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DISCUSSION

“The role of spatial statistical processes
in geographic modelling”
by R. J. Martin

Statistical models of spatial dependence have been used quite commonly in geographic re-
search. In his presentation, the author both reviews and comments on their use. He further
takes up the topics of boundary effects and missing values, attempting to clarify the former
and giving some new results on the latter.

The paper starts with a substantial section (Section 2) on models that includes mathe-
matical details on their fitting as well as the author’s view on how a modelling exercise should
be justified. Computations for fitting first-order models are thoroughly discussed, and the
author gives convenient, simple forms for the Fisher information matrix of the parameters,
both for the conditional and the simultaneous versions. Then restrictions of first—order mod-
els are developed, leading to a review of selected extensions, still using contiguity matrices,
which would allow some form of non-isotropy for the dependence or an increase of its range.

The author omits from his review a class of models where the covariance between sites
i and j is not modelled through arbitrarily defined contiguity matrices, but rather has
a parametrised functional form. This class of models rarely has been used in geographical
studies, although it has received attention in the statistical, epidemiological and geostatistical
literature (Ripley, 1988; Cook and Pocock, 1983; Mardia and Marshall, 1984; Vecchia, 1988)
it would be interesting to see applications of this model in geography.

Section 2 starts and ends with some methodological considerations about justification
and comparison of models. This is certainly an important area that, until now, has not
received enough attention, and the author's emphasis and suggestions are most welcome.
I would add that the strategy used to justify or compare different models depends upon
whether the aim of the modelling exercise is explanatory, for forecasting purposes, or to be
used in a generalised regression framework.

Section 3 recounts some of the arguments that have arisen between the author and
geographers concerning the application of statistics. Although part of this section may be
difficult to follow for a reader who does not have all of the quoted papers on hand, the author
develops a convincing case on the desirability of constructive discussions between statisticians
and geographers that should benefit both professions. It is in everyone’s interest to avoid
mncorrect uses of statistics. Discussions of this kind often stimulate new research.

Section 4 is of a general nature and argues for a precise definition of what is called
the boundary value problem, whether it influences the dispersion matrices or the bias in
estimators. In contrast, the final section gives some results on the loss of information due
to mussing values on the mean g and the parameter 8 of the first-order conditional or
simultaneous process. Since the author wanted to expand on some new results, this section
1s the least self-contained. Useful approximations for the loss of information are given when
the number of missing sites becomes large.
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In this paper the author presents original and thoughtful considerations on the use of
spatial statistics in geography, emphasising throughout the need to link theoretical develop-
ments (like those arising for missing values) to relevant examples, and to relate models to
geographical problems.
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