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PREAMBLE

"Tis a lesson you should heed:
Try, try, try again.

If at first you don’t succeed,
Try, try, try again.

W. E. Hickson, Try and Try Again

In 1980 Griffith proposed the notion thai the Jacobian term for spatial autoregres-
sive models converges upon some constani as the sample size increases to infinity.
Several subsequently published pieces severely criticized this idea, using very cogeni
arguments. Griffith’s mivition led him o numerical investigations concerning this
issue, and in 1988 he reported convincing but noi totally conclusive results sup-
porting il. The purpose of this paper is to repori quile conclusive numerical results
obtained from supercomputer ezperimenis. Given this brief history, the author is
truly optimistic about findings confained in this technical repori, even though he con-
stantly bumps into scholars who do not share his enthusinsm [for ezample, Martin's
contribution to this volume). Some of both this enthusiastic and this disheariening
viewpoint may be sensed in Ord’s commentary on the paper, as he raises questions
concerning the sensibleness of answers, on the one hand, and computational man-
ageabilily, on the other hand.

The Editor
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A Numerical Simplification
for Estimating Parameters of
Spatial Autoregressive Models

Daniel A. Griffith*
Department of Geography, Syracuse University, Syracuse, NY, 13244-1160, U. §. A.

Overview:  The Jacobian term appears in likelihood functions to ensure that the
use of variable transformations still leads to probability density functions whose com-
plete integration yields unity. This term is particularly troublesome when dealing
with spatial autoregressive models, since it does not disappear in the optimization
process, and hence requires numerically intensive solutions to the parameter esti-
mation problem. For these sorts of autoregressive models the Jacobian term is a
function of the eigenvalues of the connectivity matrix that depicts the geographic
configuration of those areal units under study. For a tessellation of n areal units,
then, the eigenvalues of an n-by-n matrix need to be calculated. Ord has stated
the equations for these eigenvalues when a regular lattice configuration is superim-
posed upon an infinite surface. Griffith has shown what the algebraic expression of
the Jacobian term converges to for this same infinite surface situation. The prob-
lem addressed in this paper asks what implications these two simplifications have on
parameter estimation for geographically referenced data.

1. Introduction

One reason spatial regression accommodating geographic dependence is so numerically in-
tensive is that the Jacobian of the transformation from an autocorrelated space to an unau-
tocorrelated space must be included in parameter estimation procedures. A Jacobian term
15 some function of the number of areal units as well as the degree of spatial dependence.
Ord (1975) states that the eigenvalues of a binary configuration matrix for a regular lattice
are given by the equation

M = 2{coslkr/ (n + 1)] + cos(lr/ (n + 1)]} (1.1)

More specifically, the spatial autoregressive parameter is a function of the geographic config-
uration characterized by this Jacobian, which in most popular models is written in terms of
the eigenvalues of the n? matrix for this transformation determinant. Questions concerning
the accuracy and feasibility of numerically exiracted eigenvalues for a given Jacobian, derived
from matrices of such large dimensions, have been posed by spatial analysts, and apparently
represents a barrier to the dissemination of spatial statistics and spatial econometrics. A
frequency distribution for geographic data set size would be sinuscidal or reverse-J shaped:
there are numerous data sets where n 1s quite small, virtually none where n is of moderate
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size, and some where n is extremely large (most of which are generated from remotely sensed
satellite images). The purpose of this paper is to explore ways of mathematically simplifying
the calculation of this Jacobian term, especially to help in the analysis of intermediate and
large size data sets, and is part of a comprehensive attempt to remove obstacles hindering
the diffusion of spatial statistical technology.

1.1. Background

In some respects this present investigation is an extension of two previous undertakings.
Gnffith (1988a) began exploring possible mathematical simplifications of the Jacobian term
for a simultaneous autoregressive model that is based upon a binary connectivity matrix
and a regular square lattice configuration of areal units; his study was aimed at remotely
sensed data situations. His findings included (1) that there are certain systematic regular-
ities in the Jacobian term as n increases, and (2) even using the analytical equations to
compute eigenvalues resulted in considerable rounding error for 10, 000-by-10, 000 lattices
using double-precision FORTRAN on a DEC VAX mainframe. Based upon the numerical
findings that were tabulated and reported by Griffith (1988a), searches for the analytical
expression describing convergence of the Jacobian term could be restricted to three possible
candidates; however, the serious rounding error that prevailed prevented identification of the
correct expression from these three.

More recently Griffith (1990) has examined the computation of the Jacobian term, in
some cases using double precision, on a Cray 2 supercomputer. His reported results show
conclusively that (1) the eigenvalues of a matrix can be computed with a high degree of
accuracy for at least n = 100,000,000 (this is equivalent to a 10, 000-by-10, 000 regular
square lattice), (2) for a regular square lattice, as n goes to infinity, the Jacobian term for
a conditional autoregressive model (which will be the subject of this paper) converges upon
the expression

- T / " {1 - 2plcos(81) + cos(8)] /2 db b (1.2)
0 JO

which can be numerically integrated (see Table 1), and (3) that the parameter estimation
impact of the Jacobian term diminishes in importance as n goes to infinity. Equation (1.2)
is the continuous version of and is converged upon by

m

_ Z 2111[1 — 2p{coslkm/(m + 1)] + cos[lx/(m + 1}]}] /n, (1.3)

k=] l=1

where m? = n (or m = /n), which represents the Jacobian term for finite square lattices.
As one can see from expressions (1.2) and (1.3), the Jacobian term is a mean; it should not
be surprising from a statistical perspective, then, to find that this quantity converges as n
goes to infinity.

These two previous studies have set the stage for the analysis presented in this paper.
Here attention will be restricted to the Jacobian term for a conditional autoregressive model.
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TABLE 1
SELECTED RESULTS FOR THE NUMERICAL SOLUTION OF EQUATION (1.2)
rho integral value error rho integral value error
0.025 0.0012535321 0.0000000000 0.150 0.0505218648 0.0000000000
0.050 0.0050573165 0.0000000000 0.200 0.1014553111 0.0000000000
0.100 0.0209735079 0.0000000000 0.250 0.2200507460 0.0000000003

NOTE: Numerical integration has been achieved with the IMSL10 routine E2LSF.

2. A Jacobian term equation with p varying for selected n

Two interesting limiting cases of n for which one might assess variation in the Jacobian
term as the spatial autoregressive parameter p changes are its lower limit, where for a regular
square lattice /n = 2, and its upper limit, where for a regular square lattice v/n = oc. Five-
hundred-and-one Jacobian terms were computed for each of these two cases, using values
of p that started with the limiting parameter space boundary —0.25, and were sequentially
incremented by 0.001, until 0.25 was reached. An analysis of these two sets of results lead to
the formulation of an equation describing how the Jacobian term changes over the possible
natures and degrees of spatial dependence. Next, various intermediate values of \/n were
studied, using twenty—-one uniformly spaced values of p across the feasible parameter space
(namely, £0.25, +£0.225, +£0.2, £0.175, £0.15, £0.125, £0.10, £0.075, 0.5, +0.025, and
0.0), and yielded the tabulated numerical results presented in Table 2. General tendencies
present in this table include (1) a mean squared error value that increases with n, but never
to a non-negligible level, (2) asymptotically converging estimates for the two parameters Sy,
and n, with very little difference in subsequent values for these parameters beyond n = 900
(the correlation between results for n = 22 and n = oo is 0.987), and (3) a value of 8, which
1s approximately twice the value of 45,. To illustrate these findings within their equational
context, the two limiting cases would vield the following equations:

vr=2: J=1In(0.5)/2 - 0.25 In(0.5 + p) — 0.25 In(0.5 — p), and
Vvn =o0o: J = —0.377580 — 0.150659 In(0.285620 + p) — 0.150659 In(0.285620 — p).

These findings imply that the Jacobian term is a concave-upwards function, whose general
form is

J = 2Bpln(yn) = Buln(yn + p) — Bnln(yy — p), (2.1)

having an increasingly shallower trough as mn increases. This feature is consistent with
the aforementioned contention that the importance of the Jacobian term diminishes as n
increases. As is indicated by their subscripts, the parameters @, and v, are functions of
the number of areal units under study.

As y/n increases toward infinity, a slight bias seems to appear in the computations of 8y,
and yn. This slight bias may well be attributable to the residual heteroscedasticity stem-
ming from some systematic error component arising in the numerical eigenvalue extraction
algorithm, or possibly from specification error.

Presumably for a regular rectangular lattice equation (2.1) would become

J =ap = Brln(yn +p) = Buln(yn - p), (2.2)
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TABLE 2
NONLINEAR REGRESSION PARAMETER ESTIMATES
OF SELECTED JACOBIAN TERMS

vn of vn of
square [, *n MSE square 3, Tn MSE
lattice lattice
2 0.250000 0.500000 0.000000000 54 0.153506 0.289884 0.000001983
4 0.185791 0.354859 0.000000029 56 0.153498 0.289733 0.000002005
f 0.173667 0.327639 0.000000155 58 0.153405 0.289592 0.000002026
8 0.168056 0.315926 0.000000331 60 0.153318 0.289461 0.000002045
10 0.164745 0.309377 0.000000512 62 0.153237 0.280338 0.000002064
12 0.162536 0.305183 0.000000680 64 0.153162 0.289224 0.000002081
14 0.160951 0.302264 0.000000830 66 0.153091 0.289116 0.000002097
16 0.159752 0.300112 0.000000963 68 0.153023 0.289014 0.000002112
18 0.158816 0.208462 0.000001080 70 0.152958 0.288917 0.000002127
20 0.158058 0.207151 0.000001183 2 0.152800 0.288828 0.000002142
22 0.157433 0.206087 0.000001275 T4 0.152842 0.288741 0.000002155
24 0.156909 0.295205 0.000001357 76 0.152787 0.288660 0.000002168
26 0.156462 0.294461 0.000001430 T8 0.152736 0.288583 0.000002179
28 0.156077 0293826 0.000001495 B0 0.152687 0.288510 0.000002191
30 0.155742 0.293278 0.000001555 82 0.152640 0.288440 0.000002202
32 0.155446 0.292798 (0.000001609 84 0.152594 0.288373 0.000002213
34 0.155184 0.292376 0.000001658 86 0.152551 0.288310 0.000002223
36 0.154950 0.292002 0.000001704 BR 0.1562512 0.288250 0.000002233
38 0.154737 0.201666 0.000001745 90 0.152470 0.288191 0.000002243
40 0.154547 0.291365 0.000001783 92 0.152434 0.288136 0.000002252
42 0.154375 0.291093 0.000001818 94 0.152397 0.288083 0.000002260
44 0.154217 0.290845 0.000001850 96 0.152363 0.288033 0.000002268
46 0.154072 0.290620 0.000001881 98 0.152330 0.287984 0.000002277
48 0.153940 0.290413 0.000001909 100 0.152298 0.287937 0.000002284
al 0.153816 0.290222 0.000001935 1000 0.150835 0.285857 0.000002664
52 0.153703 0.280047 0.000001960 00 0.150659 0.285620 0.000002712

NOTE 1: The case of infinity had the Jacobian terms computed with IMSL10 subroutine E2LSF
(see Table 1).

NOTE 2: Using a division of the feasible parameter space [—0.25, 0.25] into 501 values resulted in
almost exactly the same values for the case of \/n = 2, but noticeably different values for V= oo
(Boo = 0.163846, 9o = 0.2893988, and MSE = 0.000001457). This latter inconsistency suggests
that either the numerical integration, or the numerical eigenvalue extraction, is plagued with error.

NOTE 3: For the above cases R? = 1.000, the Wilk-Shapiro statistic = 0.969 for v/n = 2 and
asymptotically converges on 0.931 as n increases, the Durbin-Watson statistic = 2.82 for yn=2
and apparently converges in an oscillatory fashion on 2.10 as n increases, and there is no apparent
heteroscedasticity displayed by the residuals for \/n = 2, with increasingly systematic, complex,
nonlinear heteroscedasticity displayed by the residuals as n increases, together with extreme values
becoming influential estimation points as n increases.

where the parameter ap no longer is constrained to be a function of 8, and Yn [such as
the term 28nln(y,) appearing in equation (2.1)], and for an irregular lattice equation (2.1)
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would become
J = ay "“.lal,'n;hl{"fl,n +p) - rgﬂ,nln("f!,n - p) (2.3)
These last two conjectures require considerable subsequent investigation.

Given equation (2.1), the log-likelihood function, say In(L), to be optimized when cal-
culating a maximum likelihood estimate of the spatial autoregressive parameter p becomes

K — (n/2)n(0®) — (n/2)[2Bnyn — Baln(yn + p) = Bnln(yn — p)]
— (X = p1)(I - pC)(X - p1)/(202), (2.4)

where K = —(n/2)ln(27) is a constant, X is an n-by-1 data vector, 1 is an n-by-1
vector of ones, and C is an n-by-n binary geographic configuration matrix (upon which
the Jacobian term is based). Parameter estimation based upon equation (2.4) currently
requires nonlinear optimization techniques.

3. Parameter estimation based upon the simplified Jacobian term

Four different estimation cases can be explored for the likelihood function portrayed by
expression (2.4), each referring to a combinatorial possibility of unknown parameter values.
In the first of these cases, suppose that only p is unknown (in other words, let g and o2 be
known). Optimizing expression (2.4) with respect to p yields

al;iL} = —(n/2)[=Bn/(yn + p) + Bn/(vn — p)] + (X —p1)*C(X _#1)]};{252] 0,

which when solved produces a quadratic equation in p having roots
p=-no?8,/(X —p1)'C(X — p1) + {[~no?B,/ (X — p1)'C(X - p1)]2 +42}/2 (3.1)

Consequently, the spatial autocorrelation parameter becomes an explicit function of the size
of the geographic data series, as well as the configuration of the underlying areal unit surface
partitioning. One should expect this definition of p always to be real, and always to fall
within the feasible parameter space region. This finding is particularly useful for remotely
sensed data analysis, for once the parameters 3, and vy, are established, then all one needs
to know is the size of the regular square lattice partitioning in order to estimate p: numerical
computation of eigenvalues no longer will be necessary.

In the second case one can assume that both u and p are unknown, and only &2 is known.
Now optimizing expression (2.4) with respect to p and p yields the standard maximum
likelihood estimation (MLE) result of

i =1YI - pC)X /141 - pC)1, (3.2)

and hence the differential equation

8ln(L)
dp

= ~(n/2)[~Ba/ (v + p) +Bn/ (10— p)] + [(X ~ A1) C(X — 1)]/(20?) = 0,

which when solved produces a quartic equation in p of the form
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—[(1*C1X*® - 1*CX1t)CX1tC1)p?

+2[-nBre?(1*C1)% + nX!CX1!C1 - n(1:CX)2)p3

+{(1*C1X! — 1!*CX1*)CX1!C142

+[4n?Bpo? — (1'X)?1%C1 - n2X!CX + 2n1CX 11X }p2

~2{n3Bro? + n[X'CX1'C1 - (1!CX)2y2)p

+n?X'CX + (1°'C11*X — 2n1!CX)1! X2 = 0.

The solution to a biquadratic equation of this kind is presented in theory of equation
texts, such as the classic by Uspensky (1948, pp. 94-97). An algorithmic solution to solving

the underlying pair of simultaneous differential equations also can be pursued, if one wishes

to avoid extracting roots of a fourth-order equation. The iterative algorithm would be of
the form

Step 1: let p = 0= i = 1*X/n (for iteration T = 0);
Step 2: solve p for equation (3.1), in Case I;
Step 3: compute jir, 1 = 1%I — 5,C)X/1*(I - 5,C)1; and,

Step 4: iterate through Steps 2 and 3 until the parameter estimates converge (this and
subsequent algorithms are believed to converge, although no proof of convergence 1s offered
here; at worst they should be good heuristics).

For the third case consider both o2 and p to be unknown, with only g being known (for
example, the case of regression residuals). Now optimizing expression (2.4) with respect to
o? and p yields the standard MLE result of

6% = (X - p1)'(I - pC)(X - p1)/m, (3.3)
and hence the differential equation

Bln(L)
dp

= =(n/2)[=Bn/(vn + p) + Ba/ (vn = p)] + [(X ~ u1)FC(X - p1))/(26%) =0,
which when solved produces a quadratic equation in p having roots

p=—[Bn/(1 - 28n)][(X —p1)'(X - p1)/(X — p1)'C(X — p1)]
+ {[B2/(1 = 282) (X — p1)H(X — p1)/(X - p1)!C(X - 1))?
+72/(1 - 28,)}2 (3.4)

An algorithmic solution to solving the underlying pair of simultaneous differential equations
can be pursued in this case, too, although it is doubtful if one ever would seriously wish to

avold calculating the pair of roots. The iterative algorithm would be of the form listed in
the following steps:

1: let p=0=6%=(X - p1)}(X —pl1)/n (for iteration T = 0);
2: solve p for equation (3.1), in Case I;
3: compute 62, = (X — p1)Y(I - p,C)(X — p1)/n; and,
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4: 1terate through Steps 2 and 3 until the parameter estimates converge.

The fourth, and final, case to be treated here is the more likely situation that none of
the parameters are kncrwn or , o2 and p are unknown. Here ﬂptll]]lﬂﬂg expression (2.4)

with respect to g, ¢ and p yields the standard MLE results appearing in equations (3.2)
and (3.3), as well as the differential equation

al;ff] = —(n/2)[—Bn/ (Y0 +p) + Bn/(1n — p)] + [(X - 41)*C(X - 41)}/(2¢%) = 0,

which when solved produces a quartic equation in p of the form

(28, — 1)[(1*C1X? - 1*CX1Y)CcX1tC)p?
+2{(28, - 1)m[(1!CX)? - XtCX1tC1]
— Bn[(1'C1)2X*X - 21'C11!X1'CX + n(11CX)?}p8
+ {48:1'C1[nX'X - (1*X)?] + y21tC1[X!CX1tC1 — (1'CX)?]
+ (28n — 1)[n?X!CX - 201'CX1!X + 1'C1(11X)2]}p2
+ 20 {B,[(1'X)? — nX*X] + 42[(1}CX)? — 1*C1X'CX]}p
+ [p2X'CX + (1}C11*X - 221'CX)1tX]y2 = 0. (3.5)
Two possible algorithmic solutions to solving the underlying triplet of simultaneous differ-

ential equations can be pursued in this case, if one wishes to avoid calculating the roots

of a fourth-degree polynomial. One iterative algorithm could be of the form listed in the
following steps:

A-1: let p=0=ji =1'X/n and &% = (X — 41)(X — i1)/n (for iteration T = 0);
A-2: solve p for equation (3.1), in Case I;
A-3: first compute

fir+1 =151 - p-C)X /11 - 5,C)1,

and then compute

6241 = (I = fir411)"(I = prC)(X — i1 11)/n;

" and,
A-4: iterate through Steps A-2 and A-3 until the parameter estimates converge.
An alternative algorithm would be of the form listed in the following steps:

B-1: let p = 0= i = 1'X/n (for iteration r = 0);

B-2: solve p for equation (3.4), in Case III;

B-3: compute .1 =14I - p,C)X/1YI - p,C)1;

B-4: iterate through Steps B-2 and B-3 until the parameter estimates converge; and,
B-5: 6% = (I - a1)Y(I-pC)X —jl)/n.

Intuitively speaking, for both Cases II and IV, at least two of the roots of their fourth-
degree equations [such as (3.5)] must be real; accordingly, at most two roots can be complex.
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An interesting mathematical exercise would be to prove this conjecture, perhaps using Fer-
ran’s solution technique for biquadratic equations. At most, one of the roots should fall into
the feasible parameter space; conditions governing the existence of this category of solution
need to be established. The remaining four combinatorial possibilities for known and un-
known parameters are of no interest here, since they do not involve the estimation of the
spatial autoregressive parameter p. Finally, if the expression (I — 31)'C(X — 1) = 0, then
p=0.

4. Examples

A contrived example will be described in this section in order to illustrate the four estimation
cases outlined in the preceding section. For this example imagine that p =0, 2 =1, n =4
(so B = 0.25 and 93 = 0.5; see Table 2), and the geographic distribution in question is

for which 1'X = 0, X!X = 2, 1'CX = 0, and X!CX = —2. The four eigenvalues of matrix
C for this geographic configuration are —2, 0, 0, and 2; hence, the spatial autoregressive
parameter estimate has the restriction —1/2 < p < 1/2.

Case I:
p=28n (482 +42)12 = (1 £ v2)/2,

which means that p = (1 — v/2)/2 satisfies the accompanying constraint;
Case II:

4p* — 4(48n +1)p + (168 — 492 +1)p2 —4(Bn —12)p -2 =0
(P> = 4Bnp —72)(4p" —4p +1) = 0
{PE — 48np "TE} =0

1s the equation for Case I, which is what would be expected since the sample mean, the MLE
of the mean, and the population mean are identical;

Case III:

P = Bn/(1 - 282) £ [B2/(1 — 26)* + 72/ (1 — 28n)] '/
= (1£v3)/2,

which means that p = (1 — 4/3)/2 satisfies the accompanying constraint; and,
Case TV:
8(28n — 1)p* + 8% + 2(472 —68n — 1)p? + 4(Bn —292)p + 292 =0
(280 — 1)p® + 28np + 77)(8p% — 8p +2) = 0
(28n — 1)p? + 2Bpp + 72 = 0
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1s the equation for Case III, which again is what would be expected since the sample mean,
the MLE of the mean, and the population mean are identical.

Two interesting observations can be made about these findings. First, Case II will reduce to
Case I, and Case IV will reduce to Case I, in selected situations. Second, different estimates
of p are obtained for different levels of ignorance (just like with the classical sample variance).

5. Simulation experiment results

As the reported error (MSE) in Table 2 indicates, while equation (2.1) furnishes an exact
Jacobian term for the regular square lattice situation of \/n = 2, all other square lattice
sizes have some very small (and seemingly negligible) amount of error present. Since the
preceding example is based upon this exact situation, a simple simulation experiment has
been conducted for \/n = 4 to explore whether or not the Jacobian approximation approach
promoted in this paper accurately generalizes to larger square lattice cases.

The initial conditions of this simulation experiment are (1) 16 values were randomly
generated with the MINITAB normal pseudo-random number generator, having z = 0 and
o? =1, and (2) 1'C1 = 48, and 8, = 0.185791 and Yn = 0.354859 (see Table 2). The
resulting geographic distribution of generated sample values is

-0.92327 1.31724 -0.99017 1.07651

-0.50171 1.82117 -0.29935 -1.13190 |
0.28974 -0.98088 -0.52315 -1.10900
1.70435 0.81587 0.28311 -1.47315
The sample statistic terms for this spatial arrangement are 1'X = —0.62449, 1!CX =

—2.24012, X'X = 18.03662, and X*CX = —0.18677. The sixteen eigenvalues for this ge-
ographic configuration are 3.23607, 2.23607, 2.23607, 1.23607, 1.00000, 1.00000, 0.00000,
0.00000, 0.00000, 0.00000, —1.00000, —1.00000, —1.23607, —2.23607, —2.23607, and
—3.23607. In addition, the classical statistics for this sample surface are & = —0.03903,
s = 1.09582, and the modified Wilk-Shapiro = 0.96217. The traditional estimation proce-
dure for obtaining p, when all three of the parameters are unknown (Case IV above), solves
the following optimization problem (see Upton and Fingleton, 1985):

16
MIN : [[T(1 = p2:)) 7Y/ 18(X — p1)H(T - pC)(X - 1)
1=1
st : —1/3.23607 < p < 1/3.23607, (5.1)
where A; (i = 1,2,...,16) are the sixteen aforementioned eigenvalues of the binary config-

uration matrix C. The solution to this particular problem, using the IMSL10 subroutines
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E2LSF (to extract eigenvalues) and UVMID (to achieve univariate nonlinear optimization)
lin single precision on a VAX mainframe], yielded p = —0.00541, and i = —0.03915.

Appropriate substitutions into equation (3.5) produce the quartic equation

421.7902p — 15702.7248p° + 10242.38402 — 1657.0680p — 9.3008 = 0. (5.2)

The roots of equation (5.2) have been extracted using the IMSL10 subroutine ZPORC (in
single precision on a VAX mainframe), and are —0.00543, 0.33189, 0.33467, and 36.56763.
Of these four roots, the only one that falls within the feasible parameter space interval
(—0.30930, 0.30930) is —0.00543, which is equivalent to that obtained with the nonlinear
optimization of expression (5.1), except for rounding error. This illustration demonstrates
that, indeed, the set of equations (3.2), (3.4), and (3.5), involving Jacobian term approxima-
tions, do render very accurate estimates, and dramatically reduce the numerical intensity of
spatial autoregression analysis.

6. Concluding comments and implications

The Jacobian term appears in likelihood functions to ensure that principal components types
of transformations still lead to probability density functions whose complete integration
yields unity. This term is particularly troublesome when dealing with spatial autoregressive
models, since it is a function of the prevailing nature and degree of spatial dependence,
becomes complex because of the multi-directional and two-dimensional interdependence
involved, and thus does not disappear in the optimization process. Historically this term has
required numerically intensive, and perhaps often computationally inaccurate, solutions to
the parameter estimation problem. Findings reported in this paper suggest that at least a
closed form approximation to this Jacobian may exist. The form of this approximation for
rectangular regular lattices, and irregular lattices, still needs to be identified. The accuracy
of this approximation remains to be comprehensively studied.

Having an approximation that is relatively simple in form, like equations (3.1) and (3.4),
should allow a more careful and clearer investigation of the statistical properties of bias,
sufficiency, consistency, and efficiency, for the parameter estimate 5. Ord (1975) already
has reported some findings pertaining to these characteristics. The formulation presented
here also will facilitate a better comparison between ordinary and generalized least squares
parameter estimates for spatial regression models. Hopefully the formulations uncovered
here will afford deeper insights into these statistical properties. In addition, equations need
to be established depicting the convergence, as n increases, of the Jacobian term parameters.
Attempts thus far to achieve this goal have failed, but were for the Jacobian terms themselves.
Finally, direct extensions to the moving average and simultaneous autoregressive model,
as well as to stochastic versions of the geographic configuration matrix C, merit careful
attention.

Meanwhile, interfacing these findings with previous projects has some interesting impli-
cations. Griffith (1988b, 1989) has made a concerted effort to translate spatial regression
techniques into algebraic language that is compatible with commercial statistical software
packages. The general approach employed is to attach weights when writing regression equa-
tions, in much the same way that weighted least squares regression does. The weight that
i1s attached is a function of the Jacobian term studied in this paper. By being able to write
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this term in a simplified and consolidated form, rather than as a sum of eigenvalue expres-
sions, these sorts of efforts with commercial packages will be further enhanced. The principal
drawback here, though, is that the theory upon which optimization is based in these refor-
mulated situations may be inapplicable; Warnes and Ripley (1987) have cast some doubt on
the soundness of this approach, although they comment primarily on the parametric covari-
ance function rather than an autoregressive formulation. Nevertheless, at least a good and
useful first-approximation may be obtainable from these techniques.

7. References

Gnffith, D. (1988a) Jacobian term specification and parameter estimation for spatial au-
toregressive models. Paper presented to the Association of American Geographers, 84th
Annual Meeting, Phoenix.

Griffith, D. (1988b) Estimating spatial autoregressive model parameters with commercial
statistical packages. Geographical Analysis. 20, 176-186.

Griffith, D. (1989) Spatial regression analysis on the PC: spatial statistics using MINITAB.
Discussion Paper #1. Ann Arbor: Institute of Mathematical Geography.

Gnffith, D. (1990) Supercomputing and spatial statistics: a reconnaissance. The Professional
Geographer. 42, forthcoming.

Ord, J. (1975) Estimation methods for models of spatial interaction. Journal of the American
Statistical Association. T0, 120-126.

Upton, G., and B. Fingleton (1985) Spatial Data Analysis by Example. Vol. 1. New York:
Wiley.

Uspensky, J. (1948) Theory of Equations. New York: McGraw—Hill.

Warnes, J. and B. Ripley (1987) Problems with likelihood estimation of covariance functions
of spatial Gaussian processes. Biometrika. 74, 640-642.

195



196



Discussion

DISCUSSION

“A numerical simplification for estimating parameters
of spatial autoregressive models”

by Daniel A. Griffith

Estimation of spatial autoregressive (AR) processes has proved to be a very awkward statis-
tical problem. For small or moderate numbers of areal units, the computational aspects are
manageable, although the performance of the maximum likelihood procedure may be disap-
pointing, manifested in a wide confidence band or a very flat likelihood function (LF). Worse
vet, when a parametric covariance function is used, Warnes and Ripley (1987) show that the
LF may have multiple maxima and that these need not relate well to the true parameter
values, as is illustrated by simulation results in Ripley (1988, pp. 15-19). The reasons for this
are not fully understood, but seem to be bound up with the scale of the process. That is,
the AR structure is modeled primarily as a local phenomenon, yet longer range effects may
have a major impact on the estimation process.

A second aspect of this is the pattern of sample covariances, first noted in the time series
context by Anderson (1981), but likely to apply a fortior: in the spatial case. Suppose that
there are n observations, yielding N = [g) pairings classified into K groups. For example, we
may group by distances; if d(i,j) represents the distance between the pair of locations (i, ]),
the kth group may be defined as dy_; < d(i,j) <dg, k=1,...,K. Typically, dg =0
and dg is the maximum distance between locations in the study area. Define

ck =Y (x—X)(x;—%)/Np, k=1,... K, (1)

where the sum is taken over pairs (i,j) in class k, and N denotes the number of such pairs.
Then it 1s easily shown that

neg+2 ) Nyex = Y Y (x5 — X)(x; — X), (2)
J

where ncg = ¥_(x; — %)2. But the right hand side of equation (2) is identically zero so that
the autocorrelations, rp = cj/cp satisfy

S myry = -1/2, (3)

where my = Ny /n. Thus, even when the theoretical ACF is nonnegative, as is often as-
sumed, equation (3) requires that some of the sample values are negative. Since K is of the
order of n1/2 for two—dimensional processes (against K = n — 1 for time series), this poses
real problems. Combined with the knowledge that p rapidly approaches its upper bound as
the autocorrelation increases (cf. Bartlett, 1975, pp. 82-83), the conclusions must be that
the sample ACF is rather uninformative and the ML estimators may not be reliable either.

For the very large samples often encountered in image processing, the dominant problem
1s computational, although one must still worry whether the global assumptions of station-

anty 1s justified; weaker assumptions such as the existence of the variogram seem easier to
sustain,
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Where then do these comments lead us? In many cases, p will be close to its upper
bound and so an approximation to the Jacobian element of the likelihood that identifies the
bound will often lead to an estimate close to the actual MLE. The approximate large sample
variance may be inaccurate, but this could be improved by examining approximations to
the second derivative of expression (1.2) in Griffith’s paper. Thus, for larger samples, the
computational burden is greatly eased; for smaller samples, I suspect that when we are close
to the boundary of the parameter space, nothing will be of much help.

If nonstationarity is suspected for large samples, the study area may be partitioned and
the estimates obtained for each subarea. Griffith’s proposals make such exploratory analyses
much more accessible. Overall, past results lead us to be cautious in introducing approximate
methods, but such an approach may lead to better data analysis.

We now turn to the particular approximations suggested by Griffith. Rather than the
computer intensive search process suggested above his equation (2.1) we may use the in-
equality

largest eigenvalue = Ay >uf Cu, (4)

where u is any vector such that uTu = 1. The equality holds if and only if u is the
eigenvector corresponding to A1. Therefore, any choice of u will give a lower bound for A1
and thus a lower bound for p~!. For regular lattices u = n=1/21 will typically be a good
choice. For the square lattice:

A;1 <0500 when =2
A;1 <0259 when +/m =30

suggesting a rather faster rate of convergence to 0.25 than Griffith’s results. For smaller
lattices, the exact value of Ay is readily computed; one should note that the smallest eigven-
value, A, satisfies

T

Ap < uTCu, for any choice of u with u” u =1.
A

However, an effective intuitive choice for u is more difficult here. For regular lattices,
An = —A1 works well, as can be seen from equation (1.1); this choice is also made by Gnffith.
Fortunately whenever p > 0, as is usually the case, the exact choice for Ay has little impact
on the estimation process.

Approximations to the rest of the Jacobian function are still required, particularly to
ensure the accurate assessment of the large sample variance.

Finally, it should be noted that the single parameter case is tractable because of the
eigenvalue approach, but that this approach fails for two or more parameters (unless the
weighting matrices are orthogonal). However, some progress may be possible using (4). Let
the inverse of the covariance matrix be

B=I-p1C;-p2Cs

We know that uTBu > 0 so that approximations to the determinant might be feasible by
selecting suitable u to generate factors like

(1 —p1cy —pacy).
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We know that the determinant is the product of n such factors. For example, using
u=m-11

on a regular square lattice with n = m?2, where C; denotes East—West links and C9 denotes
North-South lLinks, produces the factor

1-[2(m -1)/mp; — [2(m — 1)/m]p,,
implying, for large m,
p1+p2 <1/2.

Whether such an approach produces sensible answers remains to be seen, but Griffith’s paper
has opened the door to new lines of attack.
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