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FREAMBLE
Imagination is more important than knowledge.

A. Einstein, On Seience

There 15 a particular fascination with scholarly ezpositions of members of the van-
guard, who wander through worlds of the unknoun exploring new ideas. Little is
known about the intellectual realms into which they journey, their imaginations sero-
ing as guiding lights, with their wrilings sometimes appearing to more conservative
members of their disciplines as near faniasy or science fiction. Doreian’s iranslation
of spatial autocorrelation concepts and findings into sociological conterts ezemplifies
this category of pioneering work. His paper derives network autocorrelation models
Jrom spatial aulocorrelation models. The purpose of this paper is to apply spatial
autocorrelation models to the analysis of social phenomena distributed across spatial
as well as aspatial social networks. In doing so, Doreian transcribes prominent lim-
iations of spatial autocorrelation models for network autocorrelation models. These
same sentiments are ezpressed in Wartenberg’s commentary, in which additional
applications of network autocorrelation models are gleaned from evolutionary biol
ogy, ecology, and environmenial epidemiology. Warienberg's supplemental examples
should help dispell the speculative nature some scholars might associate with Dor
ewan’s work.

The Editor
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Network Autocorrelation Models:
Problems and Prospects
Patnck Dorelan™

Department of Sociology, Forbes (Quad 2126, University of Pittsburgh, 4200 Fifth Avenue,
Pittsburgh, PA 15260, U.S.A.

Overview: Network autocorrelation models draw their inspiration from, and
share a common representation with, spatial autocorrelation models. The use of a
weight matrix, W, to capture network interdependencies and the statement of linear
equations provide the communality. Network autocorrelation models can be used to
analyze social phenomena distributed across social structures that need not be rooted
in geographical space. These include the diffusion of ideas through the networks
linking scientists in an invisible college, analyses of economic development for nation-
states, and analyses of inter-organizational networks. Many of the problems (and
responses to them) encountered in the spatial auiocorrelation model literature are
apphcable directly to network autocorrelation models. These include discussions
of boundary effects, issues of aggregation, and dynamic modeling. The problems
assoclated with the specification and estimation of network autocorrelation models
are likely to be more difficult than for the spatial case. The additional complexities
stem from having to specify and model a time-dependent weight matrix W(t) rather
than simply use W, the necessity to model coupled processes, and the need to use
qualitatively different actors linked by multiple processes.

Social scientists in general, and sociologists in particular, lay claim to the study of social
phenomena. In large part, this includes analyses of social structures and social processes:
social structure 1z generated by, and in turn constrains, the operation of social processes. If
correct, it is trivial to claim that structure and the interdependence of social actors must
be included in the analysis of social action. Trivial, but for the fact that it is ignored in
much of contemporary social science—especially when the analysis of empirical information
1s included. Although this data analytic practice appears to fly in the face of empirical reality,
it is straightforward to understand the reasons for it. The invention of the social survey,
together with the early use of computers, permitted the creation and analysis of large data
sets comprised of individual—such as people, groups or organizations—cases. Although
early methods of correlations and cross tabulations have largely (but not completely) been
superceded by regression, structural equation models, and log-linear models, the underlying
presumption of independent data points remains the majority choice. Alas, in many empirical
contexts, it does not survive close scrutiny.

-

Prepared for the 1989 Symposium “Spatial Statistics: Past, Present and Future," Department of Geography, Syracuse
University. The author acknowledges beneficial interaction with Daniel Griffith, including exposure to the manuscripts of those
symposium lecturers preceding him, during his visit to Syracuse University; however, Griffith should not be incriminated by
any errors that remain.
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1. Spatial autocorrelation models

Social phenomena distributed across geographic space provide one arena for challenging the
value and utility of models premised on the assumption of independent data points. Behavior
at one geographic location need not be independent of behavior at another. Loftin and Ward
(1983) provide an example using sociological data.

Their linear model was the conventional population regression function:

y=XB +e (1.1)

where a vector, y, is predicted from a set of regressors, X, using a vector of parameters, 5.

The disturbance term, €, was treated in two ways. First, it was specified as indepen-
dently normally distributed (as for ordinary least squares, OLS) and second, as:

e=pWe+v (1.2)

where » ~ N(D, crEI} with € spatially autocorrelated via W, which captured the interde-
pendence of contiguous areal units. The conjunction of equations (1.1) and (1.2) has been
called the spatial disturbances model (Doreian, 1980) as the interdependencies are consid-
ered operative on the disturbances alone. Obviously, if the parameter p is zero or if W is
uniformly zero, the disturbances model reduces to the OLS model. The predicted variable
for Loftin and Ward was a measure of fertility. The regressors, X, contain a set of popu-
lation density measures (logarithm transforms of persons per room, rooms per unit, units
per structure, and siructures per acre) together with a class index and an ethnicity index.
The units of analysis were 75 community areas making up Chicago. Using OLS, three of
the density variables and the class index were found to be significant predictors of fertility.
If the specification of (1.2) is correct, and if p is known, equation (1.1) can be rewritten as
Y*"=X"8 +v where Y* = (I-pW)™'Y and X* = (I - pW)~1X. Use of OLS, where
Y™ is regressed on X*, provide estimates of 8 and ¢2 . In general, p is unknown. However,
OLS for (1.1) will generate a spatially correlated residual, €, from which a crude estimate,
p, s obtained from regressing € on Wé. This process is iterated until p converges. Using a
procedure such as this, Loftin and Ward (1983) fitted the disturbances model, and found that
both the class and ethnicity indexes were significant predictors of fertility together with, at
most, a single density variable (depending on how the matrix W was operationalized). With
an identical data set and a common model, the empirical evidence supports quite different
substantive accounts depending on whether spatial autocorrelation is considered or not.

The discussion thus far treats spatial autocorrelation as a technical problem incorporated
into the specification of the disturbance term. White, Burton and Dow (1981) constructed
a model of the sexual division of labor in African agriculture. The core variables were
female participation in agriculture, patrilocal residence, and degree of polygamy. Following
the estimation of their model via OLS, it was clear that the residuals from their analysis
clustered spatially. Rather than leave the analysis with an implicit unestimated W, the
authors were able to specify it from a linguistic tree constructed for versions of the Bantu
language. The underlying idea was that there had been an expansion of Bantu tribes across
geographic space and that the data points were not independent but were linked through
similarity with regard to language. More broadly, spatial autocorrelation models have been
used to deal with what has been known as Galton’s Problem.
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Maximum likelihood can be used to estimate the disturbances model. Using the notation
A =1-pW, the log-likelihood function can be written as:

1
In(L) = constant — (N/2)In(c?) - E—E[y'.amy—z,e’x’a’axy +B'X'A'XB]+In|A| (1.3)
a

From this it is straightforward to establish the following estimation equations:

B=(X'A'AX)IX'A'Ay (1.4)
and

= [y'A'Ay —28'X'A'Ay + B'X'A'AXB|/N (1.5)

Substitution of (1.4) and (1.5) into (1.3) yields the concentrated log-likelihood function from
which a value of p is obtained: p minimizes

In(y'A'PAy) - (2/N)In|A|

where P =1 - {A}[}{{A}{} (AX)}1(AX) and InJA| = Zln(1 - pA;) with {A;} being the
eigenvalues of W. With p as the estimate of p, its value can be substituted into {1 4)
to get B, and into (1.5) to get 2. Approximate standard errors for p, B, and &2 are
obtained from the variance-covariance matrix obtained from the second partial derivatives
of the log-likelihood function. Details of the procedure can be found in Ord (1975), Doreian
(1980), or Upton and Fingleton (1985). An alternative to the spatial disturbances model is
the spatial effects model where the spatial interdependence is incorporated directly into the
statement of the model. A motivating example is found in Mitchell (1969) in a study of the
spatial distribution of rebel control—or government control—for the HUK rebellion in the
Philippines. It is clear that control of one area has immediate consequence for those areas
contiguous with it or easily reached from it. Equation (1.1) is replaced by:

y=pWy+X8 +¢€ (1.6)
where € ~ N/(0,7%I) and the log-likelihood function is

| 1
In(y) = constant — (N/2)lne? — E[y’ya}r -28'X'A'y + B'X'XB)+In|A| (17)

It 1s straightforward to establish

B =(X'X)"1X'z (1.8)

and

&% = (1/N)z'Mz (1.9)

where z = Ay = (I — pW)y and M = I — X(X'X)"1X'. The spatial effects parameter, p,

Minimizes

In(y'My — 20y'MWy + p%y'W'Wy) — (2/N)Eln(1 — p);)

An approximate variance-covariance matrix, as before, is obtained by use of the second

partial derivatives of the log-likelihood function. Details are found in Ord (1975) and Doreian
(1981).
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2. Network autocorrelation models

Network autocorrelation models are, in essence, an extension of spatial autocorrelation mod-
els to phenomena where the interdependence among the structural units is generated directly
through the operation of some social process (instead of some geographically distributed pro-
cess). This definition is not intended as a slight upon spatial autocorrelation models. Indeed,
the spatially distributed examples of Loftin and Ward, White, et al., and Mitchell all provide
a powerful motivation for considering and incorporating more general interdependencies be-
tween social actors. The connecting link between network and spatial autocorrelation models
1s found in the representation of the matrix W. The ways in which W is constructed in
terms of contiguity, accessibility, or common boundaries can be seen as variations of a so-
ciometric scheme where interdependence need not rest directly on geographical, or even
physical, characteristics.

2.1. Example 1: scientific values

Science produces empirically validated knowledge. This knowledge, together with guesses,
conjectures, and other ideas is distributed across disciplines and specialties. While scientists
are, in the main, geographically dispersed they do work within “invisible colleges” which
have an internal and stratified structure. The stratification is determined in large part by
the publication of scientists in reputable journals. Although journals are among the central
institutions of science, there is nothing that guarantees a journal’s reputation. Minimally,
it depends on the level of interest maintained in it within a scientific community. Further,
interest in a journal rests on the extent to which it is seen as publishing significant work.
Such a chain of reasoning verges on the circular as concepts like ‘reputable,’ ‘interest’ and
‘significant’ rest on communal standards within a scientific community. Burt and Doreian
(1982} argue that these characteristics are maintained by one or more social psychological
processes whereby scientists socialize each other. Moreover, these two researchers show
that these processes are mediated by the internal structure of a scientific community. If this
argument 1s correct, then a research strategy whereby scientists are sampled from an invisible
college and solicited for their views concerning the important journals of their field without
taking into account the social relations among those scientists is problematic. Values, in
addition to knowledge, are transmitted over a social structure.

2.2. Example 2: dependency theory

Following World War II there was considerable interest in patterns of economic development
among Third World countries. Within the sociological literature, economic development
models have been seen as inadequate because they “are based on the implicit assumption that
countries represent separate systems of economic production” (Rubinson, 1976). Dependency
theory models have been constructed as a way of overcoming this limitation, and most
variants of this approach assume further that all countries are part of a single system of
production that contains multiple political units within it. Dependent variables such as
rate of economic growth, level of economic development, and societal inequality have been
linked to variables measuring First World penetration of Third and Fourth World countries.
Various mechanisms and models have been specified and, when estimated, appear to support
arguments that the receipt of developmental aid and the receipt of foreign capital are inimical
to the interests of most Third and Fourth World nations in the world system of nations. Of

372



Network autocorrelation models

course, this claim has been challenged. It is rather odd that the proponents of these theories,
at least in the version of American quantitative sociology, fall back on regression models to
sift the empirical information. By all of the arguments of the dependency theorists, the
world 1s an interdependent system and, one would presume, ought to be modeled as such.

As examples accumulate whereby linear models can lead to mistaken inference if spatial
autocorrelation 1s omitted, then in a more general network context there is the serious risk
that classical regression models estimated with data depicting nation states (in an interde-
pendent system) are vulnerable to the same kinds of mistaken inference. While the theory
1s inherently structural, the procedures for estimating model parameters are not. As most
soclal phenomena occur in structural contexts, the problem may be more general. The re-
ceived wisdom among social network analysts is that social structure makes a difference and
must be mcluded in the analysis of most social phenomena. But this claim may be little
more than received dogma and it behooves network analysts to spell out the way in which
network autocorrelation models could be constructed and estimated.

2.3. Defining W for network autocorrelation models

In the context of spatial autocorrelation, Upton and Fingleton (1985) remark “As ever, the
choice of W is essentially arbitrary ...” The remark is as daunting as it is frank. One
of the more common forms of defining the weight matrix, W, for spatial autocorrelation
models is to start with a matrix, C, that represents whether or not areas are contiguous.
This binary C is often made row stochastic to form the matrix W (which then has 1 as
the largest eigenvalue). Formally, this is no different to using the conventional sociometric
representation of the structure of a group and turning it into a row stochastic matrix. Initial
explorations of network autocorrelation models have tended to do this.

In the spatial autocorrelation literature, distances between the centroids of the areal
umts, together with the specification of a distance-decay model have been used. Similarly,
for strongly connected graphs, it would be possible to use graph theoretic distances (of
geodesics) in the specification of network autocorrelation models.

These suggested examples, motivated by successes found in spatial autocorrelation mod-
els, are imitations that stay very close to the spatial case. While network autocorrelation
models imitating spatial models have had some success, it is clear that they need to draw
their inspiration from social network ideas.

In geographical examples, contiguity and accessibility are frequently mutually redundant
and change slowly. This is not true for most social networks. In social networks, reachability
within a graph may provide a genuinely new basis for measuring interdependence. This
may be especially true for valued graphs where the matrix elements represent the strength
of a link between two actors. Reachability at level n (Doreian, 1974) considers all paths
between pairs of actors with a view to finding the path with the largest minimal element n
in the path. In essence, a threshold filter is put over the sociomatrix to restrict attention to
only those links above a certain level. Actors reachable at one level are not be reachable at
another higher level unless there is a path between them whose links are above the threshold
value. However, this is only a tiny step from the spatial foundations.
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2.4. Equivalence

Of the many ideas that emerged within network analysis during the 1970s and 1980s, the
notion of equivalence has captured most of the attention. The sociometric origins of network
analysis are seen in the study of small groups. As the computing technology available to
social analysts enabled the study of larger systems, it became clear that very large networks
verge on the incomprehensible.

This fueled the desire for simpler representations. Of more interest was the idea that
networks among individuals (be they people, groups, organizations, or states) could be seen
as empirical instantiations of simpler and more fundamental structures. Thus, if it were
possible to lay out stringent criteria, large networks could be distilled for their structural
essence. The first concept of equivalence, in intuitive terms, was one were two actors are
equivalent if they are connected in exactly the same fashion to the rest of the network.
Structurally, two such actors are indistinguishable and can be merged to a common position.
Formally, the specification of structural equivalence is:

In a graph < P,R > made up of a set of actors, P, and a social relation, R, an
equivalence, E, is a structural equivalence if and only if for all distinct actors a, b, c P, aEb
mmplies

(1} aRb if and only if bRa;

(1) aRec if and only if bRe;

(ii1) cRa if and only if cRb; and,
(iv) aRa implies aRb (White and Reitz, 1983).

In principle, any social network can be reduced to a set of structurally non-equivalent
positions that are each occupied by structurally equivalent actors. However, this intuition
1s of little value in practice as there are very few exact structural equivalences in social net-
works. The pragmatic response to this dilemma has been to develop methods that measure
the extent to which each pair of nodes is equivalent, and then to mobilize some clustering
algorithm. Each structural position (location) is now occupied not by actors that are exactly
equivalent, but by actors that are sufficiently close to being equivalent. The use of a measure

of equivalence and a clustering algorithm permits an analyst to establish a partition of the
actors in a network.

For this idea to be mobilized in a network autocorrelation model, the underlying intuition
15 that equivalent actors are subject to equivalent processes that affect them by virtue of
their occupancy of the same position in the network. Consider Figure 1, where the two nodes
Py and P2 send ties to non-overlapping sets of other actors.

This generic picture can be illustrated by the following examples. First, P; and Ps
are distinct parents linked to their respective children. A second situation could see Py
and Py as former colonial powers linked to sets of their former colonies. For some variable
of interest, it could be that Py and Q are similar as a result of the dyadic link between
them. Both could believe in “the empire” where the elite of Q; have migrated from P;.
An alternative view of a structural process would be one where Q; through Qg4 are similar,
although there may be no direct link between them. Clearly, Q; through Q4 are structurally
equivalent and would be subject to the same process, for example, due to an unfavorable
trading relations with the colonial power. Under the first model, P; and Q through
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Q4, would all be similar, while under the second (structural equivalence) representation Qg
through Q4 would be similar by virtue of being structurally equivalent but, for some selected
variable of interest, could be quite distinct from P;. Empirically, if the varable of interest
was measured and all five actors were close, then there would be support for the cohesion
argument. Alternatively, if P; was quite different from Qq through Q4, which in turn are
similar to each other, then the suggestion would be that a structural equivalence mechanism
rather than a cohesion mechanism was at work.

Figure 1.

[ustration of structural and regular equivalences.

AN

Q

A generalization of structural equivalence is regular equivalence where objects are regu-
larly equivalent if they are equivalently conmnected to equivalent others. More formally, this
can be expressed as

In a graph < P, R > (defined above) an equivalence is a regular equivalence if and only
if for all actors a, b, c,d eP,aEb implies

(1) aRc implies there exists d e P such that bRd and dEc; and
(11) cRa implies there exist d ¢ P such that dRb and dEec (White and Reitz, 1983).

Using Figure 1, Q5 throvgh Q7 are structurally equivalent by virtue of being connected
to Py. However, Qg through Qg are not structurally equivalent to Q4 through Q4, since
P, is distinct from Py. But, it is clear that Q; through Q4 are connected to P1 in the
same way that Qg through Q7 are connected to Pa. Conversely, Py is connected to Q,
through Q4 in the same fashion that Py is connected to Qg through Q%. In short, Py
and Py are regularly equivalent while Q through Q7 are regularly equivalent. Although
Qs through Q7 are connectied to a different colonial power, it could be argued that they
are subject to the same process as it apples to all colonies regardless of the identity of,
colonial powers. Similarly, parents occupy a role while, in relation to them, children occupy
a complementary role. If a process is mediated by regular equivalence, then one would
expect that Qq through Q7 would be similar with regard to some variable while P, and
P2 would be similar to each other. It is worth noting that structural equivalence is a special
case of regular equivalence in the sense that structurally equivalent actors are also regularly
equivalent, but not vice versa.
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Thus far, this discussion has sketched out a cohesion mechanism, a structural equiva-
lence mechanism, and a regular equivalence mechanism. The implicit assumption is that if
we know which mechanism is at work, then we can construct an appropriate weight matrix
W that captures the interdependency among the actors. If g j denotes the extent of equiv-
alence of 1 and j in some social structure, this may suffice for the interdependence measure.
Alternatively, the set of {ej;} can be normalized in some fashion, for example:

_ max{e;;} —e;;
Tmax{e;;} —e;;]

wy _'J.

Of course, there may be other ways in which the weight matrix can be constructed.
At face value, the wry comment of Upton and Fingleton concerning the arbitrariness of
W is pertinent. However, if the cohesion, or structural equivalence, or regular equivalence
mechanisms can be specified in advance, it is possible to construct the appropriate W on
substantive grounds. In principle, the way is then clear to mobilize all of the statistical
machinery found within the rubric of spatial autocorrelation to formulate, estimate and test
network autocorrelation models. !

Following Anselin (1988, pp. 34-5), a family of network autocorrelation models can be
specified: 2

y=p1Wiy + X8 +e (2.1a)
€ =pyWae +p (2.1b)

where ¥ ~ N(0,02I). There are three special versions of the generic model specified in
(2.1). When py = pp = 0, equation (2.1a) reduces to the usual OLS population regression
function while (2.1b) becomes the conventional specification of a normally distributed error
term. For py =0 and pp # 0, equation (2.1) is the network disturbances model. Finally,
when py # 0 and pp = 0 we have the network effects model.

3. Issues stemming from network autocorrelation models

3.1. Multiple processes

If a cohesion model can be unequivocally specified it can be estimated and interpreted.
Similarly, if an equivalence model can be specified, then it too can be estimated and inter-
preted. However, some network analysts posit a sharp distinction between cohesion models
and equivalence models. If rendering a decision as to whether a cohesion process or an
equivalence process 1s at work is necessary, it 1s a major disadvantage to use a model with
a single regime of network effects. For example, Burt and Doreian (1982) estimated sepa-
rately a cohesion model and a structural equivalence model in a study of the distribution
of evaluations of major journals by scientists in a specific field. The relative performance
of the two models were considered through an analysis of the residuals remaining when the
separate analyses had been conducted. As the two mechanisms take the form of rival hy-
potheses it seems preferable to examine them competitively and directly. Rather than fit the
two models separately and examine their residuals, it is preferable to have a model where
both processes are explicitly included. Similarly, for a debate between structural equivalence
mechanisms and regular equivalence mechanism, it would be desirable to build a model with
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both present. Theoretically speaking, this task can be carried out in the following way (Dor-
eian, 1989a) depending upon the practical issues involved in estimating a model with two
regimes of network effects.

A model with two regimes of effects ? autocorrelation can be written as
Yy =p1 W1y +p2Way + X8 + ¢ (3.1)

with € ~ N(0,¢2I). With A =1 - p; W, - p2Wso and |A| as the Jacobian of the trans-
formation from € to y, the log-likelihood function can be written as

In(L) = constant — (N/2)lne? — ﬁ'{fz ~-28'X'z+B'X'XB]+InlA| (3.2)

Notationally, use of MLE leads to the same estimation equation for 8 as before |see equation
(1.8)]: X
B=(XX)X"z (3.3)

similarly for o2;

# = (z'z - 28'X'z + B'X'XB)/N (3.4)

with z = Ay. The iterative estimation for the p; is more complex, as is the asymptotic
variance-covariance matrix for obtaining approximate standard errors for the estimated pa-
rameters (with B; = WA for i = 1,2):

N/2 wir(B;)  wtr(Bs) 0 -
. _ 9| wtr(By) Byy B1s wX'B1XB
1 {'-f-’.- Pl: P2, ﬁ} — W mi’r{Bg} Bo; Bas , M}E’Bg}iﬁ {3-51
0’ wB'X'B1X wf'X'BoX wX'X
where :
Bij = «?ltr(B}B)) + t~(B1)?) + wf'X'B1B, X8
Bis = mz[tr[ 1B2) + tr(B1By)] +wﬂ'X’BEEl.Kﬁ
By) = w’[tr(B5B1) + tr(ByB))] + wB'X'B) By XS
Bay = w?itr(B4Bg) + tr(Bs)?] + wB'X'B5BoX4.

3.2, Distinct types of actors

The two regime model of network effects is plausible for a community of scientists in an
invisible college. Scientific leadership, and its corresponding material and psychic rewards,
accumulate and evolve over a scientific career. Even if a scientific elite can be distinguished
from the bulk of the members of an invisible college, the model retains plausibility. But for
the motivating example of nation states bound into a global system, plausibility is stretched
even for the two regime model. If colonies can be distingnished from colonial powers, or if
core states, semi-peripheral states, and peripheral states are subject to distinct (but coupled)
processes, the two regime model as stated loses its plausibility. The crux of the problem is
that the qualitative distinctions on the actors may need to be incorporated into the model.
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One rather simple, but effective, approach to this problem takes the form of incorporating
the distinctions into the matrix X. Snyder and Kick (1979) observe that world system theo-
rists and dependency theorists have proposed no adequate operational criteria for classifying
countries into the world system positions. Various ad hoc definitions have been proposed,
and it 1s not surprising that the empirical status of some nations, for example Spain, is
completely ambiguous as to which position contains them. Snyder and Kick’s solution to
this problem rests on the conceptualization of structural equivalence. The world system
conceptualization (Wallerstein, 1974) is fundamentally structural and it seems reasonable to
try and distill world system positions from structural data.

Snyder and Kick’s (1979) proposal is straight forward: use structural data to gener-
ate structural positions. They used four tie types—trade relations, treaties, exchange of
diplomats and military interventions—for the structural data. Each relation generates a
nation-by-nation matrix. These matrices were stacked and analyzed jointly to obtain a par-
tition in terms of structural equivalence by use of CONCOR (Breiger, Boorman, and Arabie,
1975). * The authors identified ten non—equivalent positions, across which 118 nations were
distributed. Using world system terms, one position was clearly the core, another three
positions can be viewed as belonging to the semi-periphery, with the remaining six blocks
as parts of the penphery.

In 1979, network autocorrelation models were not an option.® Working within a re-
gression framework, Snyder and Kick included the structural data by means of a set of
dummy variables (omitting one to avoid an exact linear dependence among the regressors).
Regression models, or rather, the parameter estimates and inferential decisions, are fre-
quently challenged. Snyder and Kick's work was no exception—but the basis for the critics’
objections did not include issues of network autocorrelation. Considerations of regression
diagnostics and curvilinear relations suggested that Snyder and Kick’s analysis (and theo-
retical arguments) were not supported. However, when Nolan (1983) reanalyzed the Snyder
and Kick data using only three positions—core, semi-periphery, periphery—the initial find-
ings were supported. Clearly, there are limitations to the number of dummy variables that
can be included in a regression to capture structural positions when the data points are
mterdependent.

While using dummy vanables to represent qualitative differences between nation states
1s direct and practical, it is not clear that the underlying mechanisms of the world system are
adequately modeled. For models of income inequality or economic growth of nation states the
incorporation of dummy variables amounts to little more than the fitting of mean values for
the nations of different sectors (together with slope shifts if necessary). The central idea of
the world system theorists is that nations of the various positions are locked into reciprocal
mechanisms advantageous to one group and disadvantageous for another. It seems more
appropriate to generate directly a model that focuses on the mechanisms themselves.

One simple way to incorporate two distinct types of actor is to partition y, X, W, and
€ so that an effects model is written as:

yiy _ (pili 0 /Wy 0y sy X108 €]

(r:) = ( 0 pglg)( 0 WE)('_',';_:-) ) 0 KE)(ﬁ2)+ (EE) (3:6)
mn obvious notation. Ignoring the network autocorrelation term, this is exactly the two
population model of Zellner’s (1962) seemingly unrelated regression model, treated at length
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in Theil (1871). The block diagonal form of W means that the eigenvalues of W; and Wo
can be determined separately and used to give the eigenvalues of W. Although, the two
types of actors have distinet equations:

y1=p1Wiy1 + X118, + €
y2 =paWaya + Xofs + €9 (3.7)

the maximum likelihood method can be used directly with the known eigenvalues of W.
In the interpretation of a partitioned W, the two types of actors are kept distinct. For
nations of Type i, only the values of y for other Type i nations are used in the prediction
equations. Using the nations example, with y a measure of economic growth, the core and
non-core nations can have distinct W; and p;. Within the two classes of actors the weights,
and, by implication, the underlying processes, can be quite different and can be differentially
important (depending upon the values of p;). At face value, a W constructed via regular
equivalence could take the partitioned form given the core nations would be maximally
like each other and maximally unlike non-core nations. Similarly non-core nations will be
maximally like each other and unlike core nations with regard to (regular) position in the
network.

However, dependency arguments go beyond saying that there are distinct processes for
core and non-core nations. The claim is that First World nations benefit at the expense
of Third and Fourth world nations. By repatriation of capital and extraction of profits,
First World corporations and nations benefit while Third and Fourth world nations lose
not only their resources, but also control over resources, and hence suffer from a distorted
development. If this argument is correct (or indeed if the counter argument that all nations
benefit is correct), then the model stated in equation (3.6) becomes inadequate. The weight
matrix still can be partitioned but it would take a more complicated form, i.e.,

W W
W - 11 12)
(WEI Wao

The role of Wq; 1s that of Wy while Was plays the same tole as Wo. However, the
matrices of greater interest will be W13 and Wa; as they represent the way in which the
classes of nations have an impact on each other. In tandem with the partitioned form of W,
these are four network effects parameters. The within position parameters are py; and pos,
while p19 and pg; are the between position parameters. Letting

R (Pl] Pm)
P21 P22
the model can be stated as:

Y1 Y1 X1 0y/8; €]
- W — .
where ® 1s the Kronecker product. If only First world nations benefit then pa; would be
positive and py2 would be zero or negative (or at least smaller than pgp;). If all nations

benefit, then both pyp and pg; would be positive. Patterns inside the W;i; also could be
of interest. The major problem with the model of (3.8) is that it may be mira.ctablf: The
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MLE methods thus far, rest on the simple representation of In|A| as (1 — pA;) where the
{A;} are the eigenvalues of W .

It would appear that this simple decomposition is prohibited by the partitioned form of
W and 4 network autocorrelation parameters unless either pay or pys is zero. If, from an
estimation view, this model is intractable, then the straightforward use of dummy variables,
obtained from the structure of the network, as proposed by Snyder and Kick (1979) has great
appeal.

3.3. Boundary effects

As defined earlier, a social network is a set of actors, P, over which one (or more) social
relation(s) are defined. Although the existence of P is taken as given, the empirical problem
of locating its boundaries remains a persistent and vexing problem. For virtually all P,
we know there are network ties that cross the boundary between P and all other actors.
Consider Figure 2 where the upper panel shows a network from which a sub-network (second
panel) has been extracted for a network analysis. If an influence process is at work, and if it
1s activated through the network ties, then actors g, h, i, j, and k are beyond the boundary
of P (made up of a, b, ¢, d, and €). The actors on the boundary of P are affected by
actors in the (selected) network as well as some actors outside P. As an exact analogue of
the spatial case, this network example confronts the same boundary problems as in spatial
systems. At face value, then, network autocorrelation models can benefit from the experience
generated through the use of spatial autocorrelation models. Unfortunately, this understates
the problems found in network autocorrelation models.

For a cohesion based model, {is affected little by the boundary location as its entire ego-
network 1s contained within the sampled network. Similarly for e. Of course, actors outside
P can have an impact on {, but only through actors in the studied network. However, for
positional models (for example, both structural and regular equivalence), mis-specification
of the boundary is extremely consequential as the position of an actor is made up of all ties
(present and absent) across the whole network. If the graph of Figure 2 (a) is accurate, then
the positions of all actors in panel (b) are changed by the omission of network members.
In particular, the construction of W will change dramatically and the estimated network
autocorrelation model 1s likely to be misleading.

A special case of the boundary problem is the omission of an actor from P. Taking
Figure 2(b) as the true group, it is possible that data are not collected from an actor known
to be in P—say, by oversight, respondent refusal, efc. Imagine that data are not present
for { in Figure 2(b). The structure that remains [Figure 2(c)] is radically changed. So
much so, that any network analysis of the data is pointless. In contrast, omitting e is far
less consequential for a subsequent network autocorrelation model. Anselin (1988) draws on
work of Griffith (1983, 1985) to point to a way in which the consequences of boundary effects
can be studied. ®

Consider a network made up of two parts, the nodes of a particular group, denoted G,
and nodes not in G, but in the wider network, denoted H. For a network autocorrelation
model, as specified in (1.6), recognition of included and excluded actors leads to

(%) =#(wee wem)(3e) + ()8 + (£°) @9
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Figure 2.
Examples of boundary problems in networks.
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with the obvious partitions of W and y. The actual model estimated, with no recognition
of H, would be

Yy =pWeeYe +XgB + €¢ (3.10)
while from (3.8) the corresponding equation is (Anselin, 1088, p. 175):

Yo =pWaeYo+pWanyn + XgB + € (3.11)

Re-wrnting, this becomes:

y=pWeeYe+XgB + (pPWeryn + €g) (3.12)

There 1s then an unknown network dependence term (¢pWegargY g + €g) with a distinct
network autocorrelation structure. This error term is unlikely to have zero mean, nor will
it be spherical (Anselin, 1988, p. 176). Further complicating matters is the fact that Y
and Y g are interdependent (equation 3.8) so that the error term in (3.11) is no longer
independent of Y.

Clearly, one line of attack 1s use (3.8)-(3.12) as the basis for simulation studies. Another
is substantive and empirical. Consider the example of a network of social service agencies
dealing with, in one way or another, the population of children and vouth. This network
15 distributed across many sectors including mental health, health, criminal justice, social
welfare, education, and employment sectors (Doreian, Woodard and Musa, 1989). Bound-
aries within and between these sectors are fuzzy, but cores and boundaries can be specified.
A k-core 15 a set of nodes in a connected graph, such that considering only the nodes in
the k—core, each node has in-degree and out-degree of at least k. As k defines a threshold,
boundaries can be established experimentally, within and between sectors, with a view to
examining the consequences of excluding sets of agencies.

This operationalization of boundaries rests on a particular data structure, obtained by
a snow-ball sampling scheme. Starting with the central set of agencies (acknowledged by all
as in the core), directors and staff are asked to list the other agencies they need to interact
with in order to service their clientele. When another organization is cited enough times,
it 1s added to the agency list, and data are obtained from it until no more organizations
are added. With a low threshold, the network is expanded well into the peripheral agencies
and beyond any reasonable boundary to the network. Data are then available on agencies
outside P, and boundary effects can be examined in the relevant context of the network.

3.4. Aggregation issues

Given a network, equivalence ideas are used to provide two complimentary reductions:

(1) to join nodes together in a single position, and generate a set of non-equivalent
positions (blocks); and,

(ii) simultaneously, collapse relations between nodes to define relations between the
constructed blocks.

The initial formulation of structural equivalence (Lorrain and White, 1971) was given
m terms of category theory where the product of morphisms was crucial. If one morphism
represents “mother of” and a second morphism represents “brother of,” then their compound
(product) will be a morphism (the product is closed) that ought to correspond exactly to
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“maternal uncle of.” In its initial formalization, the construction of positions via collapsing of
objects and morphisms jointly became impractical for all but small networks. The available
algorithms for getting a structural equivalence partition are all rather crude attempts to cre-
ate a practical partition which retain as much of the initial conception as possible. However,
the partitioning of nodes and links is done in sequence—a partition of the nodes then col-
lapsing ties. In fact, both the nodes and the ties are aggregated in terms of some equivalence
conception. Consider the example in Figure 3 in terms of regular equivalence. The graph
of 9 nodes can be reduced to 4 blocks and the ties between blocks are constructed from the
ties between nodes, in each block, to nodes in the other blocks. The rows and columns of
sociomatrix C, in Figure 3 have been permuted so that block members are together.

The 1mage matrix can be constructed in a variety of ways depending on the criteria
chosen. For example, one criterion could be that the presence of any link between blocks
suffices to define a tie between blocks, or that the density of ties between blocks exceeds
some threshold value (usually the overall density for the tie in the network). Under either
criterion, the image matrix is the 4-by—4 matrix in Figure 3. Apart from providing a simpler
and more easily understood network, the hope is that image matrices can form the building
blocks for a structural theory of relations.

In terms of network autocorrelation, each block is fundamental and the nodes in that
block provide indicators of it.” Rather than formulaie an autocorrelation model in terms of
ndividual nodes, such a model can be formulated in terms of blocks—if they are fundamen-
tal. This, however, leads directly to problems of aggregation as nodes are aggregated into
positions. If an actor is placed incorrectly in a block, then the aggregation will have the
same spill-over problem described by Anselin (1988, p. 12), generating network dependence.
Serious as this is, there is yet another aggregation problem stemming from the aggregation
of ties between blocks. The risk here is very serious as it leads to inaccurate ® construction

of W.

3.5. Mixtures of processes

The discussion of two regimes of network effects was couched in terms of rival structural
mechanisms—cohesion versus structure equivalence, or structural equivalence versus regular
equivalence-where the linear model provided an inferential framework. Two rival structural
accounts, were competitively examined. Of course, one outcome could well be that pq and p,
are both non-zero and that both mechanisms, via W, and W, are operative in generating
the y as it is distributed over the network. However, it may be necessary to go bevond this
formulation to one where the mechanisms are explicitly coupled.

Consider Figure 4, where the nodes represent political actors and the lines represent
sirong political ties in a hypothetical graph. It is a graph whose structure renders the
1ssue of deciding between structural versus regular equivalence fruitless (cf. Doreian, 1988).
When structural equivalence is considered, the partition yields two political alliances (Figure
4, upper panel). In addition, when regular equivalence is considered, the partition returned is
a complementary one and provides additional insight into the structure of the group. Actors
f and g have an integrative role between the alliances; actors a, c, d, k, and i all provide
further integration within these alliances; and actors b, e, h, j, and ] play no structural role
beyond being peripheral and buried in a larger grouping. Given the structural equivalence
partition, the regular partition also is coherent. The actors f and g are boundary spanners of
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Figure 3.
Homomorphic reduction of a network to an image.
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Figure 4.
Two complementary partitions of graph nodes.
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two systems. If the political dynamics involve taking a position with regard to some issue,
it is clear that an account based on the cleavage between coalitions is important. But to
mediate the conflict, the boundary spanners play a critical role and serve as conduits into
their own coalitions. One would expect that boundary spanners are more moderate in their
political views than those having no integrative role. There may be a cohesion mechanism
inside the allances and regular equivalence mechanism between them.

4. Dynamic models

Most analyses of networks are cross—sectional and avoid many issues raised by the inclusion
of time. As noted by Barnes and Harary (1983), this is a serious omission. An empirical
situation 1s likely to exhibit change in three possible ways:

(1) changes in the values of variables characterizing the nodes:
(ii) changes in the network ties; or,
(iii) changes in the nodal attributes together with changes in the network.

Only the first appears to be straightforward. Differential equations (or difference equa-
tions) can be used to model changes in the nodal attributes from within the perspective of
structural control (Doreian and Hummon, 1976). In essence, equation (4.1) is derived as a
model of an equilibriating mechanism:

dy(t) F

— =Y () -y (@) (4.1)
where 7 is sensitivity parameter. Equation (4.1) can be integrated and the solution system is
used as a set of estimation equations. The connection to network autocorrelation (Doreian,
1989a) comes from specifyving

Y (t) = pWy(t) + X(¢)B8 + e(t) (4.2)

the network effects model (with one or two regimes) is used to model the control values
and the integrated process equation gives the estimation equation. There is literature on
space-time models (see Upton and Fingleton, 1985; Anselin, 1988). Modeling the changes of
nodal properties 1s difficult, but the problems inherent in mﬂdehng the changes of W;; seem
much harder. The problem is one of modelling W(t) and i1s both technical and substamﬁe

To model change in the network ties it may be best to use specific structural theories as
a source. For example, structural balance (Cartwright and Harary, 1963) can be mobilized
to study change from the premise that social actors prefer balance to imbalance. A sketch
of doing this in a dynamics perspective is provided by Hunter (1979).

A second example can be taken from the literature on interorganizational networks where
there are hypotheses concerning the formulation (and continuance and dissolution) of inter-
organizational ties. Thus, occupational diversity, internal flexibility, professionalization, and
large budget size all are seen as conducive to the formation of inter-agency ties. Common
definitions of problem areas and agreement on issues of concern both lead to higher quality
ties between agencies. Also, the greater the level of turbulence in the environment, the fewer
the co—operative ties. Many hypotheses can be compiled to provide a theoretical basis for
studying change in the composition of networks.
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In terms of network autocorrelation models, network dynamics involve consideration of
y(t), X(t) and W(t). Relative to the spatial case, it may be that the volatility of social
networks and their inherently changing character will make it more difficult to build and
estimate network autocorrelation models.

5. Conclusion

Network autocorrelation models draw their inspiration from the success of spatial autocor-
relation modeling efforts as the connection between them is direct (via W). The common
focus for the two efforts is the recognition that data points are interdependent. The problem
of modeling interdependent systems in geographic space is isomorphic to the problem of us-
ing network tools in ‘social space’. It follows that each group can learn from the other. Thus
far, geography, in the vanguard of autocorrelation modeling efforts, has forged the founda-
tions for modeling interdependent systems. However, as more social scientists recognize the
need to incorporate social structure into regression and other analyses, more people will be
working on the common problem. In principle, when solutions are found outside geography
they would be helpful for geographers.

Some of the problems inherent in network autocorrelation models seem much more severe
than in the spatial case. Social networks change much more quickly than spatial configura-
tions. The really tough problem is the specification of the process by which W(t) changes.
If this problem is solved, it will benefit all social science—including geography. Perhaps, at
some stage, we can envision coupling the two concerns of interdependence modeling and deal
with the social processes in geographic space.
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NOTES

. More precisely, a specific model is treated in this fashion. Given autocorrelated data, it is

very difficult to distinguish an effects model from a disturbances model in the data. The
choice between the models should be made prior to the data analysis (Doreian, 1980).

Anselin’s specification is broader than (2.1) with » ~ N(0, ) where Q is diagonal and
heteroskedastic.

. Brandsma and Ketellapper (1979) contains the parallel treatment for two regimes of

disturbance autocorrelation.

. Attaining the goal of delineating world system positions on the sole basis of the ties

among nations, is a major methodological advance. However, 1t does not remove the in-
herent ambiguity of the “verbal” classifications: the boundaries between positions retain
fuzziness. CONCOR 1s a splitting clustering procedure where the analyst can stop split-
ting clusters at any point. The issue of fuzzy boundaries becomes more complicated when
other structural equivalence algorithms are used. Another popular algorithm is STRUC-
TURE (Burt, 1989) where the distance between positions is measured as the Euclidean
distance between vectors made up of a (sending) row and a (receiving) column. These
distances are clustered to delineate positions. The two methods can, and frequently do,
provide distinct partitions. It is an open problem as to what network properties either
algorithm is responsive (Doreian, 1988).

. Even now, a model with 4 regimes of network effects is very impractical, if not impossible.

Anselin (1988, pp. 174-5) shows that when spatial units are omitted from spatially au-
tocorrelated models, the impact of the excluded areas is not confined to the boundary
areas. For a cohesion model, however, this is less consequential.

. Burt (1976) takes this one step further by defining types of positions—primary, broken,

sycophant, efc.-and measuring the extent to which each node (not block) occupies a type
of position. These variables are used in LISREL to build models of network phenomena.
Forgotten in such analyses is the notion of network autocorrelation which may compro-
mise the whole use of LISREL. However, something very important in Burt’s approach
1s the use of confirmatory factor analysis to check that the nodes put into a common
block/position are indicators of that position.

This is not necessarily a mis-specification of W, as the analyst may correctly specify
W in terms of, say, structural equivalence. When W is constructed, however, the mis—
assignment of nodes corrupts it.
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DISCUSSION

“Network autocorrelation models:
problems and prospects”

by Patrick Doreian

Network autocorrelation models are a fusion of two methodologies from associated fields.
Network models are sociological tools designed to categorize social interaction along pre-
scribed pathways among social forces. As models of social process, they have given rise to
much insightful analysis and interpretation. Spatial autocorrelation models are constructs de-
signed to describe statistical interdependence among geographic neighbors. As geographical
constructs, they have been extremely useful in describing and explaining spatial structural
dependence (e. g., CLff and Ord, 1981). Patrick Doreian discusses the fusion of these two
concepts into network autocorrelation models, tools that can be used to study interactions
along social networks, accommodating the interdependence of network nodes. Modeling these
interdependencies, he argues, will improve the accuracy and reliability of analytic network
models. In essence, it will make the models more accurate and realistic.

Doreian’s approach is innovative in that it goes beyond a simple application of geographic
methodology to sociological problems. He adapts the method to the specifics of his problem,
using the construct of geographic structure (or nodal links) to constrain the sociological
models of interaction. This fusion should lead to models that are more representative of the
true processes under study. Rather than being constrained by the geographic model, Doreian
has modified the concept of network models to better fit current views of social interaction.

In biology and medicine, similar growth through cross—disciplinary fertilization with
quantitative geography is possible. Not only can the concept and models of nonindependence
be used, but the explicit use of geographic information adds new insight. I now will draw
examples from evolutionary theory, ecology and epidemiology to illustrate this point.

Much of the theory of evolutionary biology is based upon the assessment of the genetic
structure of populations. This structure is determined by the countervailing forces of natural
selection, reproductive recombination (genetic drift) and mutation that are mediated by
demographic and environmental influences. In essence, one looks to see which organisms are
most similar and which are not, and then one tries to explain these differences as OCCUTTIng
through chance variation (recombination and mutation) or some selective force. Chance
mutation does not lend itself well to geographic modeling (at the population scale) as it
1s thought to occur randomly through the genome (for a contrary view, one should see
recent work by Cairns, Overbaugh, and Miller, 1988). Both recombination and selection,
however, can have strong geographic components, and the study of the resulting geographic
patterns has led to much insightful evolutionary analysis (e. g., Endler, 1977). More recently,
evolutionary biologists have begun to model the spatial pattern of the environment, and it
15 in this realm that I anticipate the most important advances will be gained by using
geographic models in conjunction with evolutionary processes.

A second illustration stems from ecology, where succession is one of the principal para-
digms of ecological thought. Plant communities vary over space and time in response to
changing environmental conditions, and succession is the pathway over which these changes
occur. For a long time succession was thought to be a unidirectional, temporal progression
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from well dispersed, rapid growth, short lived, ephemeral species (e. g., weeds) to poorly
dispersed, slow growth, long lived species (e. g., oak, pine and redwood trees). Then ecologists
noticed that succession was not unidirectional, but rather, depending upon local conditions
and disturbance rates, could head in a variety of directions. More recently, ecologists have
hypothesized that succession can occur spatially as well, and that it is simply the response
of plants to a changing environment. And yet, few models have been built that adequately

capture plant succession. Those that do succeed incorporate some component of geographic
structure.

In trophic ecology, food webs have been used as schematic depictions for community
structure. Dating back to the early days of ecology (e. g., Lotka, 1925 Elton, 1927; Lin-
demann, 1942; Odum, 1969), food web diagrams have been used to show species—species
interactions, predator-prey relationships, energy flow along trophic pathways, and other
aspects of community structure and function. As qualitative tools, interactions or flows be-
tween nodes (e. g., species) are shown as connected lines, while lack of direct interaction or
flow 1s denoted by the absence of a path. Sometimes quantitative estimates of flows along
links are provided to show the strength of flow, where these estimates represent broad-scale
averages over time. Recently, quantitative interest in the size, structure and complexity of
food webs has arisen (e. g., Cohen, 1978; Cohen, Bariand and Newman, in press; DeAngelis,
Post and Sugihara, 1983; Pimm, 1982). By comparing length and size (number of nodes)
and structure of the foods across habitats, communities and biomes, researchers have drawn
inferences about theoretical ecology regarding species interactions within these groupings.

To date, most studies of food webs have concentrated on the binary connection matrices
describing species interactions that are similar to Doreian’s social networks. While field
research has documented the existence of these links, few quantitative evaluations have
been undertaken. One intriguing approach for investigating the functioning of food webs
would be to statistically model environmental and food web dynamics. For example, for a
terrestrial system, one could monitor population densities, and light, temperature, moisture
and nutrient levels over time. Using the food web model for this system (with 1s on the
diagonal), one could fit Doreian’s network autocorrelation model lhis equation (2.1)] to the
data. This would fit parameters to the food web links that would be useful for descriptive
purposes, as well as allowing for perturbation analyses to be undertaken. At the current
time only binary networks (i. e., qualitative models) and purely theoretical, guantitative
models have been explored. By adding nodal interdependence to derive quantitative, data-

based models, it is likely that ecologists can achieve a more fine-scaled resolution to species
relationships. :

The final example comes from environmental epidemiology, which is a rapidly growing
field of investigation. As the development of synthetic chemicals expanded after World War
I, and the public’s awareness of the ubiquity and potential hazard of these substances has
grown, health scientists are assuming an increasing role in their characterization and study.
Epidemiologists who study patierns of disease have been confronted with a new paradigm
of disease causation, and slowly are adapting their methodology to address these issues.

The standard model of infectious disease causation is that an infectious agent (or vector)
1s a source of exposure and risk. Once inside the host organism, the infection is a biological
entity that grows. The infectious agent (or vector) has a period and strength of infectivity
and those coming into contact with a carrier of the agent may develop the disease, Their
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probability of illness is mediated by the length of exposure, the route of exposure, the strength
of the infectious agent, the individual’s own susceptibility, and other unknown risk factors.
Generally, this model is simplified. The strength of the agent 1s a function of the disease
that is chosen for study, and hence held constant within a study. Each route of exposure is
considered 1mportant or not, and accordingly included or not included in the analysis. But,
its importance is not scaled. And the unknown risk factors are considered to be distmbuted
randomly through the population and of no predictive importance for the group under study.
Therefore, disease incidence and prevalence models only are based upon the probability of
contact via ‘risky pathways’ and the length of exposure. To make projections about disease
spread and the probability of an epidemic under these models, one must develop only a
history of contact among the individuals or population under consideration, and the agent.
However, the strength, distribution and magnitude of the agent may be affected by exogenous
factors, such as weather or food source. These factors often are omitted for infectious disease
models because they are unknown, or their range of variations is thought to be sufficiently
small as to not affect the model markedly. Further, the ability to characterize the variation
of these factors is limited. Additionally, infectious diseases tend to be acute and have short
latencies or induction periods (AIDS being a notable exception). This temporal compression
facilitates their study.

One observation is that the study of infectious diseases would benefit from models anal-
ogous to Dorelan’s network models. Contact models are binary connection matrices that fail
to accommodate other parameters of infectivity. By assessing infectivity, one could derive
estimates for many of these parameters that would increase our knowledge of the disease
process. While some such models exits, most ignore this approach (and few model the inter-
action).

In environmental epidemiology, the nature of exposure and disease is more complicated.
As with infectious disease, probability of incidence also is based upon length of exposure,
route of exposure, strength of agent, susceptibility, and other risk factors. However, in this
case the strength of the agent is not constant, but varies by the type of agent, its exposure
pathway and its concentration. Environmental epidemiologists often model exposure as a
function of proximity to a source of pollution and the frequency with which one encounters
the source, as well as the strength (or concentration) of the source. Most sources of expo-
sure are geographically coherent in space. For example, they may be plumes downwind or
downstream from a source, or parts of a community drawing water from the same source.
We can study the disease process by comparing spatial patterns of the exposure agent to
those of disease. Our recent work in disease cluster investigation has found that models con-
sistent with environmental exposures may give different results than models consistent with
infectious exposures (Wartenberg and Greenberg in press).

In summary, the utilization of geographic information in biology and medicine may lead
to enhanced analysis of problematic situations. Most models fail to accommodate spatial (or
dependency) structure, and thus obscure a certain level of resolution. By taking advantage of
this information and using models of the sort Doreian proposes. investigators in these fields
stand to gain substantially.
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