INTRODUCTION

Selective passage of solute molecules into and out of the cell is accomplished by several classes of pore-forming proteins that are integral to the cell membrane. An important subset of these channel-forming proteins are the porins (1), proteins that adopt a characteristic barrel-shaped configuration and form channels spanning the extracellular and intracellular environments (2,3) as shown in Figure 1. Porins are found in the outer membranes of Gram-negative bacteria and in the membranes of mitochondria and chloroplast organisms in eukaryotic cells (1); typical interior diameters at the constriction regions within porin channels are about 2 nm, which are sufficiently large to allow the passage of a number of low molecular weight solutes via diffusive transport (4). Nonetheless, a large number of membrane porins are required to accomplish significant transport. A typical bacterium, for example, is estimated to have 10^5 porins in its outer membrane (5).

Porins play a critical role in cellular and organelle transport processes. For example, in mitochondria, the formation of a large, multiprotein porin complex mediates either energy production capability (closed probability state) or cell death (open probability state) by preventing or permitting the exchange of matrix components with matrix and/or intermembrane components. Such exchange is critical to secondary cellular processes (6–8) and thus largely determines cell fate (9–13). Dozens of membrane channels have been identified to date, as summarized in Table 1 (Reference 1; a database of these channel-forming proteins may be found at http://saier-144-164.ucsd.edu/tcdb/). Selected α-helix and β-barrel pore-forming proteins, with occurrence, channel size, and permeable substrates for each membrane protein are shown in Table 2 (14–22). It should be noted that while certain transport proteins such as gramicidin form cylindrical channels that are well described by a single measure of internal pore width, many channel-forming proteins have internal pore cross sections that vary along the channel axis, with one or more internal cavities separated from extracellular and intracellular vestibules by pore constrictions or gating regions. In such instances, effective pore radii for the “cavity” and “gate” regions have been reported (Table 2) as obtained via crystallography (20) or from estimates obtained from permeation measurements (21) or homology studies (22).

One much studied porin is the voltage-dependent, anion-selective channel porin (VDAC). This porin is found in the mitochondrial outer membranes of animal cells (23,24). It is selectively permeable to anions and can also undergo a transition to be selective to cation transport (9). The VDAC is also thought to play a key role in the regulation of mitochondrial-

Here we describe a technique for imaging of the outer contours of the mitochondrial membrane using atomic force microscopy, subsequent to or during a toxic or metabolic challenge. Pore formation in both glucose-challenged and 1,3-dinitrobenzene (DNB)-challenged mitochondria was observed using this technique. Our approach enables quantification of individual mitochondrial membrane pore formations. With this work, we have produced some of the highest resolution images of the outer contours of the in situ mitochondrial membrane published to date. These are potentially the first images of the component protein clusters at the time of formation of the mitochondrial membrane transition pore in situ. With the current work, we have extended the application of atomic force microscopy of mitochondrial membranes to fluid imaging. We have also begun to correlate 3-D surface features of mitochondria dotted with open membrane pores with features previously viewed with electron microscopy (EM) of fixed sections.
mediated apoptosis. Specifically, it has been hypothesized to either coalesce into a megapore, the permeability transition pore (PTP), or alternatively, to close entirely, presumably resulting in heightened internal mitochondrial pressure. Either hypothesis would be consistent with mitochondrial rupture preceding the known release of cytochrome c and the resulting activation of irreversible cascades of apoptotic, intracellular “killer proteases” (e.g., Reference 25). Thus, both the opening and closure of the pore and the dimensions associated with each have been the subject of intense study.

The three-dimensional (3-D) shape of the VDAC pore has been determined to approximately 0.1 nm resolution (26), using sequence analysis and circular dichroism to find that the protein forms a structure similar to a bacterial porin-like β-barrel. Measured conductance of a membrane consisting of VDAC pores in a bilayer in the presence of molecules with diameters on the order of the pore inner diameter (27) was used to determine an inner diameter of 1.2–1.5 nm for the Neurospora crassa mitochondrial VDAC pore. An overall molecular weight of 34 kDa has also been obtained via Western blot analysis (28,29). The membrane has an approximate density of several thousand pores per square micrometer, as measured in bovine heart with enzyme-linked immunosorbent assay (ELISA) (30), and in the neurospora fungus using conductance measurements across membranes and using single-channel recordings (31). One of the

<table>
<thead>
<tr>
<th>Channel Type</th>
<th>Cell/Organelle Type</th>
<th>Function</th>
<th>Example Protein</th>
</tr>
</thead>
<tbody>
<tr>
<td>α-helix bundle</td>
<td>bacteria, animal, and plant tissue,</td>
<td>communication, homeostasis</td>
<td>K+ channel</td>
</tr>
<tr>
<td>β-barrel porin</td>
<td>gram-negative bacteria, mitochondria, chloroplasts</td>
<td>general or specific transport across membrane</td>
<td>OmpF porin</td>
</tr>
<tr>
<td>holin</td>
<td>bacteria, viral pathogens</td>
<td>induce apoptosis</td>
<td>autolysin</td>
</tr>
<tr>
<td>protein toxin</td>
<td>bacteria, yeast, protozoa</td>
<td>nutrient leakage</td>
<td>colicin</td>
</tr>
<tr>
<td>peptide toxin</td>
<td>bacteria, animal cells</td>
<td>disrupt membrane</td>
<td>bee venom</td>
</tr>
</tbody>
</table>
functional implications of its inherent pore geometry is that VDAC is readily permeable to glucose, the latter of which has a diameter of <1 nm (32).

Atomic force microscopy (AFM) has been successfully applied to the imaging of biological surfaces, as demonstrated in the characterization of the general surface morphology of mitochondria (33–35), spermatozoa (36), and neurons (37). With its sub-nanometer resolution and its capability to image features in aqueous environments, AFM is also well suited to imaging organelle membrane proteins in situ (38) or in monolayers (39,40). Examples of previous imaging experiments on the mitochondrial outer-membrane structure with AFM include the use of immunologically labeled 8 nm gold particles conjugated to anti-rabbit immunoglobulin G (IgG) anti-PBR (peripheral-type benzodiazepine receptor) (29,38) and direct verification of the presence of mitochondria through the cell membrane of rat mammary carcinoma cells (34). Two other groups (41,42) have imaged mitochondrial-associated proteins directly, but did so in reconstituted lipid films, rather than in situ. The inner mitochondrial structure has been viewed via electron microscopy (EM) tomography (43–45). One group (29) found that the hCG hormone caused rapid reorganization of the peripheral-type benzodiazepine receptor of unfixed mitochondria of Leydig tumor cells with AFM in air-contact mode using gold particles as labels. Another group (34) imaged fixed mitochondria in air-contact mode in partially fractured rat mammary carcinoma cells. Several reports (43–45) have described 5 nm resolution images, obtained by imaging a relatively thick (approximately 1 μm) section with a transmission electron microscope (TEM) at a series of angles and reconstructing the 3-D shape from the 2-D projections.

In the present study, we use a refined AFM approach to investigate mitochondrial pore formation subsequent to two specific types of challenge: excess glucose and 1,3-dinitrobenzene (DNB) exposure. Under both conditions, mitochondria swell as a result of water flux into the hypertonic matrix. Specific rationales follow for each case. This work combines a refined mitochondrial isolation protocol, followed immediately by either a metabolic or toxic challenge, while being tracked by AFM to determine structural changes in mitochondrial outer-membrane topology as evidenced by porin proliferation or reorganization. Two protocols are described: one in which mitochondria were isolated from embryonic rat primary dorsal root ganglion cells and subjected to a glucose challenge, and one in which adult rat liver mitochondria were isolated and subjected to a DNB challenge. These two preparations were imaged directly with AFM to a resolution sufficient to image mitochondrial membrane proteins in situ. To our knowledge, ours is the first work to image unlabeled mitochondrial membrane pores in situ with AFM subsequent to isolation from the cell and in conjunction with a toxic or metabolic challenge.

Glucose Challenge

Russell et al. (8) found that mitochondria from rat primary dorsal root ganglia (DRG) neurons challenged with 45 mM glucose for 6 h showed an increase in cross-sectional area of approximately 50% (0.43 ± 0.03 μm² vs. 0.66 ± 0.08 μm²) by measuring maximal cross-sectional area through a z-series of a fluorescent signals under confocal microscopy. We can estimate that this comprises an 80% increase in volume, assuming an ellipsoidal shape for mitochondria (V = A/3). Mitochondrial swelling was found to be dose- and time-dependent, with increased glucose molarities resulting in greater swelling rates, and longer exposure resulting in greater volumetric increases (at 150 mM, 130% ΔA → 350% ΔV; at 300 mM, 166% ΔA → 440% ΔV) after 6 h. A plateau in cross-sectional area (ΔA ~ 120%) ΔV ~ 225%) as measured by confocal microscopy was apparently reached after 24 and 48 h of excessive (45 mM) glucose exposure. Swelling appeared to be coupled with the complete membrane depolarization (loss of ΔΨ_m) at 24 h, as measured by a change in wavelength of a voltage-dependent fluorophore (8).

The precise mechanism for the disruption of excess glucose on the viability of mitochondria is not yet known, but likely involves disruption of the normal cycle of several proton-pumping inner-membrane proteins responsible for maintaining a negative voltage gradient between the intermembrane space and the matrix (46). Thus, it is likely that a change in the metabolic cycle results in a change in the electronegativity of the matrix, thus causing a change in osmotic pressure and producing swelling (47).

1,3-Dinitrobenzene/Cyclosporin-A

It has been observed by several separate groups that toxic challenge to mitochondria (e.g., exposure to DNB) triggers mitochondrial permeability transition (MPT), as marked by formation of a megapore, the mitochondrial permeability transition pore (mPTP) at the inner membrane (48–50). This pore has not been directly imaged, although its presence has been verified using spatial distribution of fluorescent dyes, calcine and tetramethylrhodamine methyl-

Table 2. Selected α-Helix and β-Barrel Pore-Forming Proteins, with Occurrence, Channel Size, and Permeable Substrates for Each Membrane Protein

<table>
<thead>
<tr>
<th>Channel</th>
<th>Organism</th>
<th>Permeates</th>
<th>Radius (nm)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>gramicidin</td>
<td>bacteria</td>
<td>H⁺, Li⁺, Na⁺, K⁺</td>
<td>0.2</td>
<td>Smart et al. (14)</td>
</tr>
<tr>
<td>KcsA</td>
<td>bacteria</td>
<td>K⁺, Rb⁺, Cs⁺</td>
<td>0.1 (gate)</td>
<td>Doyle et al. (15)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.6 (cavity)</td>
<td></td>
<td>Allen et al. (16)</td>
</tr>
<tr>
<td>acetylcholine receptor</td>
<td>eukaryotes</td>
<td>glycine, serotonin</td>
<td>0.3 (gate)</td>
<td>Stein (17)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.0 (cavity)</td>
<td></td>
<td>Miyazawa et al. (18)</td>
</tr>
<tr>
<td>OmpF</td>
<td>bacterial outer membrane</td>
<td>nonselective for cations, anions, sugars, others</td>
<td>0.5 (gate)</td>
<td>Jap et al. (19)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.8 (cavity)</td>
<td></td>
<td>Schirmer (20)</td>
</tr>
<tr>
<td>VDAC</td>
<td>eukaryotic mitochondrial</td>
<td>similar to OmpF, but voltage-dependent anion selectivity</td>
<td>0.8 (gate)</td>
<td>Benz (21)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.3 (cavity)</td>
<td></td>
<td>Casadio et al. (22)</td>
</tr>
</tbody>
</table>

VDAC, voltage-dependent, anion-selective channel outer membrane porin.
lester (TMRM) (51). Inner-membrane proteins such as adenine nucleotide translocase (ANT) and outer-membrane proteins such as VDAC are putative core components. Cyclosporin-A (CsA) is a well-known inhibitor of MPT pore formation (52). The mtPTP has been partially reconstituted in solution to test the hypothesis that the permeability transition pore may be formed from hexokinase, the enzyme responsible for catalyzing the transfer of phosphate to glucose, an outer-membrane porin, and the adenylate nucleotide translocator, an inner-membrane integral protein (53).

Novelty of Technique

Previously published AFM images of mitochondria used indirect methods (29,34,38), such as artificial membranes (41,42) or proteins outside of a membrane (33,37,54). Furthermore, the specific combination of our refinement of (55) technique for two separate tissue types combined with AFM is the first such application to the knowledge of the investigators.

MATERIALS AND METHODS

In both studies, mitochondria were isolated based on the mitochondrial isolation protocol of Verweij et al. (55). All procedures were executed in accordance with university, state, and federal standards in accord with the National Research Council’s “Guide for the Care and Use of Laboratory Animals.” These two isolation procedures are tissue-specific due to the relatively mitochondria high density and volume of tissue available in liver used in the DNB study compared to that of embryonic DRG cells used in the glucose challenge study.

All imaging of preparations of mitochondria was performed using a NanoScope® III Dimension 3000 series BioScope® (Veeco Instruments, Woodbury, NY, USA) in air-contact, air-tapping, or fluid-tapping modes. For air-contact mode, Nanoprobe™ DNPS tips were used (Veeco Instruments). For air tapping mode, Metrology Probes™ (NanoDevices, Santa Barbara, CA, USA) were used at a frequency of approximately 290 kHz. For fluid-tapping mode, we used DNPS tips, employing the shortest cantilever of the four on the chip (approximately 100 μm) with the narrowest legs (approximately 10 μm) of spring constant 0.32 N/m. This allowed for an imaging frequency of approximately 10 kHz. Scan rates of 1 Hz were typically used. Initially, proportional gain was set to 0.6 and the integral gain to 0.8. In tapping mode, to minimize contact forces once engagement occurred, set point amplitude was increased toward drive amplitude until disengagement occurred, and then decreased until the tip just regained contact. Typical error signals were on the order of 1 nm, once the tip force had been minimized. With this refinement of previous AFM imaging work (e.g., Reference 33), individual membrane features were resolvable.

Glucose Challenge

A timed pregnant Sprague-Dawley rat (E15) was euthanized via sodium pentobarbital (100 mg/kg) overdose. Approximately 30 DRG were harvested per embryo, yielding approximately 500 DRG. Mitochondria were isolated using a protocol based on Verweij et al. (55) and modified as described. DRG were placed for 10 min in 0.25 M trypsin and centrifuged for 5 min at 2200× g. The pellet was resuspended in a 1 mL ice-cold isotonic buffer (250 mM sucrose, 0.5 M EDTA, 20 mM HEPES, 500 μM Na3VO4, pH 7.4) with protease inhibitors (aprotinin and leupeptin and phenylmethanesulfonyl fluoride). The solution was homogenized with a glass Dounce homogenizer (Fisher Scientific, Pittsburgh, PA, USA) on ice for 20 strokes. One mL ice-cold isotonic buffer and protease inhibitor were added, and the resulting solution was centrifuged at 900× g for 5 min at -4°C. Supernatant containing mitochondria was carefully transferred into an ultracentrifuge tube. Care was taken to avoid any nonmitochondrial contaminants from the pellet to be pipetted. The supernatant containing mitochondria was then centrifuged at 12,000× g for 8 min. A small visible pellet was resolvable at this point. The supernatant was poured off and the pellet resuspended in 1 mL of ice-cold isotonic buffer (0.1 M sodium cacodylate in distilled water, of pH...
7.4) without protease inhibitors. The solution was recentrifuged at 12,000×g for 8 min. A pellet was again visible. This final pellet was resuspended in 150 μL of ice-cold isotonic buffer (250 mM sucrose, 0.5 M EDTA, 20 mM HEPES, pH 7.4, 500 μM Na₂VO₄). Four 5 μL samples were pipetted into 1 mL tubes. The final yield was on the order of approximately 100 mitochondria per microliter. Two of these were glucose-challenged with 40 mM glucose for 6 h. At the end of 6 h, one of the glucose-challenged and one of the nonchallenged preparations were each fixed with 4% paraformaldehyde in preparation for AFM.

1,3-Dinitrobenzine/Cyclosporin-A

Mitochondria from the liver of a male Fisher rat were prepared in a manner similar to that of Verweij et al. (55); the resulting mitochondrial pellet was resuspended in 1 mL of 250 mM sucrose solution. From this, 100 μL of mitochondria were withdrawn and distributed into several treatment tubes (DNB alone, DMSO (dimethyl sulfoxide; vehicle), and CsA pretreated/DNB). The final concentration of DNB used was 100 μM (60 min treatment), and final concentration of CsA was 1 μM (30 min pretreatment). Mitochondria were resuspended in the high sucrose solution to ensure retention of viability. A portion was re-deposited into 15 mL tubes. The final yield was on the order of approximately 100 mitochondria per microliter. Two of these were glucose-challenged with 40 mM glucose for 6 h. At the end of 6 h, one of the glucose-challenged and one of the nonchallenged preparations were each fixed with 4% paraformaldehyde in preparation for AFM.

RESULTS

The DNB/CsA liver preparation produced a greater number and more densely clustered mitochondria than that of the DRG preparation on both mica and poly-L-lysine surfaces (Figure 2).

Glucose-Challenged

Approximately 20 mitochondria were imaged from a total of 4 samples. In fluid-tapping mode, 10 mitochondria were imaged. Those which revealed the best-preserved overall morphology were the fixed; the unfixed, glucose-challenged mitochondria lost their morphology over the course of imaging.

At the whole-mitochondria scale, surface topology was visible (Figure 3A). The image shown is representative of those obtained; artificial lighting and coloring were used to enhance topological features. The exact shape of the interface between the mitochondria and the substrate is not known, so a deconvolution is not reliable in this case, but approximate mitochondria volume has been estimated to be on the order of 100 aL (1 aL = 100 nm³).

On mitochondrial surfaces in control preparations, no finely structured features were evident (Figure 4A). Features of the same scale of VDAC were apparent, however, in the glucose-chal-
lenged mitochondria. Some imaging artifacts arose (e.g., horizontal streaking within scan lines), but the organization of membrane proteins appeared visible. Periodic invaginations of approximately 5 nm were present (typical image shown in Figure 4B). To the authors’ knowledge, this is the first such imaging of a possible VDAC on a mitochondrial surface. Due to our limited sample sizes, however, full quantification of pore-like features has not yet been made.

Figure 3. Air atomic force microscopy (AFM) images of fixed, glucose-, and 1,3-dinitrobenzene (DNB)-challenged mitochondrial surfaces. (A) Air-contact AFM image of glucose-challenged, Sprague-Dawley rat embryonic dorsal root ganglion neuronal mitochondrion. (B) Air-tapping AFM image of three adjacent, fixed, DNB-challenged, Fisher rat liver mitochondria. Surface features of approximately 10 nm are evident. The invaginations in the outer membrane may reveal the topography of the inner membrane.

Figure 4. Fluid-tapping atomic force microscopy (AFM) images of fixed, control, and glucose-challenged Sprague-Dawley embryonic DRG mitochondria. (A) The 256 × 256 pixel (approximately 4 nm per pixel) image of an unchallenged outer membrane, revealing features of 10–100 nm. The indentation in the middle of the upper image may reveal topography of the inner membrane; a cropped portion of the upper image is shown in the lower image. (B) The 512 × 512 (approximately 2 nm per pixel) image of a glucose-challenged outer membrane, revealing invaginated features that may be VDAC pores; a cropped portion of the upper image is shown in the lower image. DNB, 1,3-dinitrobenzene; VDAC, voltage-dependent, anion-selective channel porin.
1,3-Dinitrobenzene-Challenged

In general, the surface roughness of DNB-challenged mitochondria was greater than that of either control or DNB-CsA treated mitochondria. The single DNB-challenged mitochondrion surface shown in Figure 3B represents a typical image. Clustering in the rat liver preparation was common, perhaps due to the higher yield relative to the DRG preparation.

In the unchallenged preparations, few features were resolvable on the mitochondrial surface; Figure 5A represents a typical image. The single bulge evident in this image was typical and may have resulted from the protrusion of the inner membrane through the outer membrane. It seems likely that if the tip had traversed a pore during imaging, that a 2–3 nm inner pore diameter would be evident due to the interaction. Challenged preparations revealed altered mitochondrial surfaces; a typical image is shown as Figure 5B. This surface appears to contain a pore-like structure of dimensions consistent with a mitochondrial permeability transition pore. When contrasted to the control image (Figure 5A), similar features are found but are not as pronounced. A complete statistical analysis of data was not performed due to small sample sizes, but typical images are shown.

DISCUSSION

With this work, we have presented some of the highest resolution images of the outer contours of the mitochondrial membrane published to date. These are potentially the first images of the component protein clusters at the time of formation of the mitochondrial membrane transition pore (Figure 5B). This structure could form via radial expansion, wherein concentric rings form and successively collapse, until a “megapore” of approximately 30 nm results. This may involve N terminus to C terminus bindings between adjacent porins, as illustrated in Figure 1. An alternative hypothesis is that the structures seen in Figure 5B are those similar to those seen by Kiselyova et al. (56).

One particular challenge for obtaining optimally resolved AFM images is to balance the competing effects of the amount of time spent collecting data from a given location (slow scanning) and the amount of thermal drift that can occur over the course of a single scan or even between sequential fast-raster movements. The challenge becomes greater when imaging on the top of deformable adsorbed organelles. The challenge may be likened to trying to resolve the individual nubs on a partially flattened basketball without moving the ball itself. Though individual biomolecules have been successfully imaged in membranes or other substrates (57–59), imaging of membrane proteins directly on cells presents an additional challenge.

Convolution artifact plays a role in AFM by distorting the image of the structures one views. In the present study, this effect can be seen in the large scan as evidenced by the pyramidal appearance of the mitochondria. There is also some artifact due to the finite radius of the tip; however, accurate horizontal information is obtainable if one is measuring the distance between two peaks because the lowest point of the tip must touch the highest point(s) of the sample.

From this work, we may begin to approximate transport rates that must be present during a pore opening, given variables such as pore diameter and molecular species of transport. Potentially, the rate at which mitochondrial swelling occurs as a precursor to apoptosis and correlates with loss of outer-membrane potential can be measured with this method. While this method is somewhat artificial in that it does not allow observation of mitochondrial behavior as it might occur within a living cell (60), it has the advantage of viewing the membrane directly during a toxic challenge and the potential for the identification of specific proteins involved in the stabilization/destabilization of the pore complex.

Figure 5. Fluid-tapping atomic force microscopy (AFM) images of fixed, control, and DNB-challenged Fisher rat liver mitochondria. (A) The 512 × 512 pixel (approximately 2 nm per pixel) image of a control Fisher rat liver mitochondrial outer membrane, revealing surface features 10–20 nm. (B) The 512 × 512 pixel (approximately 2 nm per pixel) image of a DNB-challenged mitochondrial outer membrane, showing large openings with diameters of approximately 10–20 nm, suggesting presence of permeability transition pores; an enlargement is shown in the lower image. These larger features are absent in panel A. DNB, 1,3-dinitrobenzene.

Clustering on Preparations

This clustering behavior could be related to that seen by Yaffe (61), whose work describes the many specialized and reticulated shapes that mitochondria or groups of mitochondria may
form in various cells, such as sperm cells and muscle cells, as apparently dictated by the dynamin protein Dm1 and the fuzzy onion protein Fzo1, both outer-membrane associated proteins with still unknown control mechanisms. At this large scale, taken at a resolution of 512 × 512 nm, no surface features can be seen, and tip artifact consisting of a pyramidal appearance is present.

With the current work, we have extended the work of atomic force microscopists by imaging in fluid as well as in air and have begun to interpret the physical landscape of mitochondria dotted with open membrane pores, in relation to those imaged using EM tomography of fixed sections.

FUTURE WORK

The qualification of the pore type will hopefully give a snapshot of the condition of the pore upon fixation and support one of three different possible pore-formation mechanisms. These include: first, a more or less random “pore flicker” event during which the inner and outer pore components are briefly aligned, implying a completely entropy-driven process; second, a semi-random, or partially controlled formation, implying transitory conforma-
tional changes driven by either abrupt changes in electrochemical gradients or changes in mechanical states such as intermembrane pressure or relative strains between membranes; or third, a more permanent pore with perhaps a spoke-and-hook structure.

In general, membrane pore geometry is critical to understanding both the types of molecules that may pass through the outer membrane as well as the evolutionary origins of porins (1). The putative symbiotic evolution of bacterial cells as mitochondrial organelles within eukaryotic cells provides an explanation for the structural homology between bacterial and mitochondrial porin channels (21). This similarity can be exploited to infer mitochondrial membrane transport characteristics from computational and experimental investigations of diffusive transport in bacterial outer-membrane porins, which will also be part of future work.

ACKNOWLEDGMENTS

We are grateful for the assistance in mitochondrial preparations performed by Hui Wang, Carey Backus, and John Hayes. Major funding for this work was provided by the W.M. Keck Foundation. Additional funding from NSF PECASE (A.M.S.) and NSF CAREER (C.M.L.) grants, along with the National Institutes of Health grant no. NIH-R01 ES08846 (M.A.P.) and the Juvenile Diabetes Research Foundation Center for the Study of Complications in Diabetes (E.F. and K.A.S.) also supported this work.

COMPETING INTERESTS STATEMENT

The authors declare no competing interests.

REFERENCES

57. Moller, C., M. Allen, V. Elings, A. Engel, and D.J. Muller. 1999. Tapping-mode atomic force microscopy produces faithful high-resolu-