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Abstract

This paper considers the problem of sensor scheduling for the purposes of detection and tracking
of “smart” targets. Smart targets are targets that can detect when they are under surveillance and
react in a manner that makes future surveillance more difficult. We take a reinforcement learning
approach to adaptively schedule a multi-modality sensor so as to most quickly and effectively detect
the presence of smart targets and track them as they travel through a surveillance region. An optimal
scheduling strategy, which would simultaneously address the issue of target detection and tracking,
is very challenging computationally. To avoid this difficulty, we use a two stage approach where
targets are first detected and then handed off to a tracking algorithm. We investigate algorithms
capable of choosing whether to use the active or passive mode of an agile sensor. The active mode
is easily detected by the target, which makes the target prefer to move into hide mode. The passive
mode is nearly undetectable to the target. However, the active mode has substantially better detection
and tracking capabilities then the passive mode. Using this setup, we characterize the advantage
of a non-myopic policy with respect to myopic and random polices for multitarget detection and
tracking.
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1. Introduction

The problem of sensor scheduling is to determine the best way to task a sensor or group
of sensors when each sensor may have many modes and search patterns. Tasking a sensor
may include such choices as where to point, what mode to use, and what signal to trans-
mit. In general, sensors must balance complex tradeoffs between competing mission goals,
e.g., detection of new targets, tracking of existing targets, and identification of existing
targets.

An optimal sensor scheduling algorithm will depend on the posterior distribution of
the system state conditioned on sensor measurements. In our application, the system state
describes probabilistically both the uncertainty in number of targets and locations of the
individual targets. In principle, one could derive an optimal scheduling algorithm that si-
multaneously treats detection of new targets and tracking of existing targets by defining
an appropriate global reward. However, in practice, this is very difficult due to computa-
tional considerations. To combat this challenge, in this paper we take a modular approach
and treat the problem in two stages—target detection followed by target tracking. This
suboptimal algorithm can be viewed as an approximation to an optimal algorithm which
simultaneously considers detection and tracking.

Sensor scheduling is complicated substantially when targets under surveillance are able
to detect and respond to sensing activities (so called “smart” targets). In this paper, we con-
sider such a scenario. Specifically, we investigate the situation where a sensor is charged
with detecting and tracking a group of moving ground targets and the targets have the
ability to detect some of the surveillance actions and respond by concealing their where-
abouts.

Operationally, we envision an adversarial target proceeding along some terrain amenable
to traveling. Upon detecting surveillance activity, the target will tend to move off the good
terrain to less hospitable areas (e.g., among the trees so as to be under foliage). This area
is less desirable to the target than the good terrain as it may be more difficult to traverse
or be more dangerous (e.g., due to the fact that the area is unsurveyed, it may contain
mud, ditches or other obstacles that immobilize the target). However, this less hospitable
area is beneficial as it obscures the target, combating future surveillance attempts. The
target tends to stay in the less hospitable area until it has high confidence that the region
is no longer under surveillance and then moves back to the hospitable area to continue its
journey.

The sensor must trade among several modalities to most quickly and effectively detect
and track the targets. We consider the case where the sensor has an active mode and a
passive mode. The active mode has good performance characteristics in terms of detection
rate and false alarm probability, while the passive mode has reduced performance charac-
teristics. The active mode, however, suffers from the fact that it is easily detectable by the
target (causing the target to go into hide mode) whereas the passive mode is nearly un-
detectable. Therefore, the sensor scheduling algorithm is faced with the tradeoff between
using a high quality sensor, which may damage future sensing ability, versus using a poorer
quality sensor which leaves future sensing ability intact.

Sensor scheduling strategies may be myopic or non-myopic. In the myopic case, sens-
ing actions are taken so as to maximize the immediate reward. Myopic methods have
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the advantage that they are more computationally tractable than non-myopic methods.
Many researchers have investigated myopic methods of sensor management, including
Refs. [8,13,17,21].

On the other hand, a full non-myopic solution takes into account the future benefit (or
cost) of current actions to maximize long term payoff. Non-myopic methods are often
formulated with a Markov decision process (MDP) strategy. However, the long-term (non-
myopic) scheduling solution suffers from combinatorial explosion when solving practical
problems of even moderate size. Researchers have worked at approximate solution tech-
niques. For example, Krishnamurthy [11,12] uses a multi-arm bandit formulation involving
hidden Markov models. In Ref. [12], an optimal algorithm is formulated to track multiple
targets with an electronically scanned array that has a single steerable beam. Since the
optimal approach has prohibitive computational complexity, several suboptimal approxi-
mate methods are given. Bertsekas and Castanon [5] formulate heuristics for the solution
of a stochastic scheduling problem corresponding to sensor scheduling. They implement a
rollout algorithm based on their heuristics to approximate the stochastic dynamic program-
ming algorithm.

Another approach to long term decision making is reinforcement learning (RL) [18]. In
this approach, training examples of sensing actions, responses, and the observed system
states are used to learn an optimal sensor scheduling policy.

Sensor scheduling to detect and track smart targets is an application that strongly ben-
efits from non-myopic decision making. In the target tracking setting, a myopic strategy
would choose to always use the active mode. A non-myopic strategy might choose to use
the passive mode for some time and then switch to the active mode after establishing a
certain level of confidence about the target. In this paper, we investigate a RL approach
to the sensor scheduling problem. Although at first it may seem that a RL approach will
be difficult to implement in practice, as training examples are not usually available, there
are good reasons for its investigation. First, if models and simulations of the battlefield
environment exist, the RL algorithm can be trained to provide a good policy in the labora-
tory. When deployed it may be possible to continually update policies based on real data,
thereby continually improving on the policy. Also, the RL strategy is a useful way to es-
tablish a bound on the best possible performance in complicated situations such as the one
we investigate here. This bound can be used to judge the quality of approximate strategies
in terms of their closeness to optimal.

We use RL to detect and track targets in a two step approach. First, we use a detec-
tion algorithm trained to most quickly decide on the presence or absence of smart targets
in a portion of the surveillance region. During training, the correct-decision reward is de-
creased over time to encourage quickest detection. Once a target is detected, the tracking
algorithm is initiated and tipped off to the presence of targets. The tracking algorithm has
the responsibility to finely geolocate and track the targets as they move through the region.
The tracking algorithm is based on a combination of RL techniques with an information
theoretic reward function. We show in the smart target problem this two stage approach
provides an effective method of deciding what sequence of sensor modes to deploy.

The paper proceeds as follows. Section 2 outlines our two stage detection and track-
ing algorithm. Second, Section 3 gives an overview of RL methods and specifically
Q-learning. Third, in Section 4, we describe the application of RL to the two stage de-
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tection and tracking algorithm. Fourth, in Section 5, we provide simulation results of the
algorithm for two smart targets. The method is compared to random and myopic strate-
gies and shown to provide good performance. Finally, in Section 6 we conclude with some
summarizing remarks.

2. Overview of the approach

We decouple the scheduling problem into two disjoint optimization problems, as illus-
trated by Fig. 1. This factorization approach is suboptimal, but allows for development of a
more computationally tractable algorithm than solving the detection and tracking problem
jointly.

The first stage of the algorithm is a quickest detection problem, which attempts to de-
termine the presence or absence of targets in the surveillance region. The detection stage
proceeds by dividing the surveillance region into a set of coarse detection regions. For each

Fig. 1. An illustration of the two stage approach to smart target detection and tracking. The detection stage
performs sensor scheduling to most quickly decide upon the presence or absence of targets in a detection region.
Upon determining that a target is present, the tracking algorithm is responsible for scheduling sensors to finely
locate and track the moving targets. Both stages of the algorithm rely on reinforcement learning (RL) where the
best sensor scheduling strategy is learned. Here the information space pt is the posterior distribution of target
states at time t and Π∗ denotes the optimal policy (mapping from pt to sensing actions at+1).
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of these detection regions, sensing actions are performed so as to most quickly decide on
the state of the region.

When a target (or targets) are detected, the tracking algorithm is initiated. The tracking
algorithm uses the coarse prior information provided by the detection stage to initialize the
tracker. Sensing actions are then performed to finely geolocate and track the targets.

3. Reinforcement learning for optimal solution of a MDP

In this section, we give an overview of the mathematics used to address the problem of
smart target detection and tracking. We use an infinite horizon Markov decision process
(MDP) [15] to mathematically characterize the problem. The main challenge one faces
in finding MDP solutions is that the complexity of finding optimal policies grows ex-
ponentially with the state and action spaces [4]. Since the sensor scheduling problem is
characterized by extremely large state and action spaces, it is necessary to develop ap-
proximate solutions using dimension reduction. We advocate methods from reinforcement
learning (RL) coupled with function approximation to find approximately optimal policies
for the two stages.

3.1. Infinite-horizon MDP

A discounted-reward infinite-horizon MDP is defined by a sequence of states {St }t�0
taking values in a state space S , a sequence of actions {At }t�0 taking values in an action
space A, and a (possibly random) reward function r(St ,At ) that assigns the cost incurred
(when negative) or the reward gained (when positive) to the event of being at state St and
taking action At . In our context, the state space characterizes the battlefield. It contains rich
information such as the number of targets present, their location, their type, and whether
they are stationary or moving. The action space contains all the possible actions. Each
action specifies which sensor to use, the mode of operation, and where to point the sensor.
The reward system reflects the tradeoffs between costs of deploying a certain sensor mode
and the gain earned from the measurement it collects.

The MDP is initiated with state S0 followed by action A0 chosen by the controller and
continues with the state-action sequence S1,A1, S2,A2, . . . . Under the Markovian model,
given St and At , St+1 is independent of all past states and actions. The state transitions
are governed by a stationary probabilistic law, denoted by p(St+1|St ,At ), that specifies
the distribution of St+1 over S , given St and At . p(St+1|St ,At ) is either a probability
density function when the state space is continuous or a probability mass function when it
is discrete.

A stationary policy Π is a map from S to A that specifies the action taken at each state.
Denote the class of all policies by P . The value function associated with policy Π , denoted
by V Π(s) is the expected total discounted reward when in state St = s and following policy
Π , that is

V Π(s) = E

{ ∞∑
βτ−t r

(
Sτ ,Π(Sτ )

)∣∣St = s

}
, ∀s ∈ S, (1)
τ=t
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where β ∈ (0,1) is a discount factor, which is included to reduce the value of future rewards
as compared with immediate rewards. The conditional expectation is taken with respect to
the joint distribution of all the targets, which, in the context of smart targets, is highly
dependent on the action sequence. Therefore, a direct calculation of this expression is
computationally intractable. An optimal policy is a policy that satisfies

Π∗(s) = arg max
Π∈P

V Π(S), ∀s ∈ S. (2)

It is well known that the optimal policy is the unique solution to Bellman’s equation

V (s) = max
a

E
{
r(St , a) + βV (St+1)|St = s, At = a

}
, (3)

and can be found using Bellman’s iterations [15]: given an arbitrary value function V1(s),
the sequence generated by

Vk+1(s) = max
a

E
{
r(St , a) + βVk(St+1)|St = s, At = a

}
(4)

converges to V ∗(s), that is, limk→∞ Vk(s) = V ∗(s). Given V ∗(s), the optimal actions in
Π∗ are computed by

arg max
a

E
{
r(St , a) + βV ∗(St+1)|St = s, At = a

}
. (5)

Unfortunately, when the state and action spaces are large and the state transition density
is either computationally complicated or not explicitly available, this method is intractable
and one must use approximate methods such as Q-learning [4].

3.2. Q-Learning

The optimal scheduling policy for the two stages is found using Q-learning coupled
with function approximation [18–20]. The learning part relaxes the requirement for explicit
knowledge of the transition density, and function approximation is used to further reduce
the dimensionality of the state and action spaces.

Given the value function V ∗, the Q-function is defined by

Q(s, a) = E
{
r(s, a) + βV ∗(St+1)|St = s, At = a

}
, (6)

i.e., the expected reward when taking action a at state s and then acting optimally for all
future actions. The Q-function satisfies the equation

Q(s, a) = E
{
r(s, a) + β max

α∈A
Q(St+1, α)|St = s, At = a

}
. (7)

Given the Q-function, actions are computed as

arg max
a∈A

Q(St , a). (8)

In Q-learning, the Q-function is estimated from multiple realizations of the state-action
sequence. Specifically, the training process involves generation of {state, action, next state,
immediate reward} 4-tuples over a large number of training episodes. In our approach, this
set of training episodes is used in batch to determine the Q-function for a particular state-
action pair. Specifically, assume that both S and A are finite. Then, there exists a lookup
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table representation of Q(s, a). In this case, given an arbitrary initial value of Q(s, a),
the one-step Q-learning algorithm [18] is given by the repeated application of the update
equation

Qk(s, a) = (1 − γ )Qk−1(s, a) + γ
(
r + β max

α∈A
Qk−1(s

′, α)
)
, (9)

where each of the 4-tuples {St = s,At = a,St+1 = s′,Rt = r} are incurred during the
progress of the MDP, and γ ∈ (0,1) decreases with t . This algorithm can be seen as the
Robbins–Monro stochastic approximation method for solving (Eq. (7)). Therefore, when γ

decreases to zero as a/(b+ t) for some positive constants a and b, this algorithm converges
to the true Q-function with probability 1 regardless of the actual policy used in generating
the trajectories as long as the state action pairs are visited infinitely often [4,18].

Unfortunately, in most realistic problems (the problems discussed herein included) it
is infeasible to represent the Q-function in a lookup table, either because the number of
states is too large or simply because the state space is continuous. Therefore, we require
a function approximation technique to represent the Q-function. Less is known about
the convergence properties of Q-learning with function approximation, and in practice
its properties depend on the policy used to generate the trajectories and the function ap-
proximation class (see the discussion in Ref. [4]). The standard and simplest class of
Q-function approximators are linear combinations of basis functions (also called features),
i.e.,

Q(s, a) = θT φ(s, a), (10)

where φ(s, a): S × A → R
L is a feature vector associated with state s and action

a and the coefficients of θ ∈ R
L are to be estimated by θ̂ , i.e., the training data

is used to learn the best approximation to Q(s, a) among all linear combinations of
the features. Choosing a feature vector φ(s, a) to represent the state is a challeng-
ing problem that will be addressed separately for each of the two stages of the algo-
rithm.

We use a gradient descent method [18] for updating the Q-function with new data. Un-
der the function approximation (Eq. (10)) for Q, this amounts to estimating the parameter
vector θ using the received training data which consists of an observed state, a chosen
action, an observed reward and an observed next state, {s, a, r, s′}:

θ̂ ← θ̂ + γ
(
r + β max

a′ Q(s′, a′) − Q(s, a)
)∇θQ(s, a)

= θ̂ + γ
(
r + β max

a′ θ̂ T φ(s′, a′) − θ̂ T φ(s, a)
)
φ(s, a),

where γ ∈ (0,1) decreases with t . Hence, at every iteration, θ̂ is updated in the direction
that minimizes the empirical error in Eq. (7). When a lookup table is used in Eq. (10), this
algorithm reduces to Eq. (9). Once the learning of the vector θ is completed, actions are
computed according to

arg max
a∈A

θ̂ T φ(St , a). (11)
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3.3. Partially observable Markov decision processes

In some situations the true state of the system is unknown to the controller. Instead,
only noisy measurements of the system’s state are available. In this case, even if the state
transition probability law is Markovian, the noisy measurements are no longer Markovian.
To overcome is difficulty, the process is reformulated in terms of the information state [3].
This formalization leads to a partially observable Markov decision process (POMDP) that
can be handled using the framework described above, because with the concept of an in-
formation state all POMDP’s can be recast into the MDP framework.

The information state is defined as the posterior distribution of states given all past mea-
surements, p(s|Zt ), where Zt denotes all past measurements up to and including time t ,
i.e., Zt = {z1, z2, . . . , zt }, where zt is the measurement collected at time t . Note that the
term information state is unrelated to the information theoretic measures used in the reward
described later. The information state is a sufficient statistic for the problem in the sense
that the expected reward depends on the data only through the information state. Denote
by p0(s) the prior distribution of the states which constitutes the initial information state.
In our setting, this information corresponds to prior intelligence on the surveillance region.
In the absence of such information, a uniform distribution or other non-informative distri-
bution over the state space can be used. At every stage of the process, given the current
information state pt (s) and a new measurement zt+1 the next information state pt+1(s) is
computed by Bayes rule

pt+1(s)

= p(s|Zt+1) = p(s|Zt , zt+1) = pt (s)f (zt+1|s)∑

S pt(s)f (zt+1|s) , ∀s ∈ S, (12)

where f (zt+1|s) denotes the conditional density of the measurement zt given the true state
of the system is s, and we assume that given the true system state the measurements are in-
dependent. Hence, a new information state depends on the past measurements only though
the previous information state. This formalization leads to a POMDP with a continuous
state space, which is the space of all probability vectors over the unknown system states.

The methods available in the literature for finding optimal policies in the POMDP set-
ting focus on the case of finite observation and action spaces and finite horizon problems
[1,14]. The quickest detection problem with continuous observation space discussed be-
low does not fall into this class of problems. Therefore, Q-learning coupled with function
approximation can be used to approximate the optimal policy.

4. Application of RL to detection and tracking of smart targets

In this section we present the details of the application of Q-learning to the two stages
of the multitarget detection and tracking algorithm.

4.1. Detecting smart targets

The target detection stage is formulated as a Bayesian hypothesis testing problem in
which one is trying to decide between M � 2 hypotheses: H1, . . . ,HM . The observed sys-
tem is modelled as a MDP with a finite state space S with cardinality N . Each hypothesis
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corresponds to a different subset of the states and it is assumed there are no transitions be-
tween states that are associated with different hypotheses. For example, H1 can correspond
to the hypothesis that a target is not present and H2 to the hypothesis that a target is present.
Under H1 the system has only one state, and under H2 the target can be at one of several
states that determine if the target is hidden or exposed. The target can have state transitions
under H2 but cannot switch between H1 and H2.

At each time instant t , one of K sensor modes denoted by 	1, . . . ,	K is used to collect
a measurement zt , or alternatively a final decision is made. Therefore, the possible actions
available at each time epoch are A = {	1, . . . ,	K,D}, where D stands for the action of
making the final decision. After action D the detection process ends and a reward is granted
for a correct decision.

Denote by fk(z|s) the conditional density of a measurement collected by sensor mode
k given the system is at state s. The state transition probabilities of the Markov process
p(St+1|St ,At ) depend on the deployed sensor mode. The possible states in S are enu-
merated from 1 to N and the transition probabilities are summarized in the matrices Ak ,
k = 1, . . . ,K , where

[Ak]nl = p(St+1 = n|St = l,	k), n, l = 1, . . . ,N (13)

is the probability that the system moves from state l to state n when sensor mode k is used.
The dependency on the deployed sensor mode is applicable when a target can sense

it is being observed and may react accordingly, e.g., hide. If mode k is deployed, cost
ck is incurred, i.e., r(s,	k) = −ck for all s. If a correct decision is made, reward R

is received. If an erroneous final decision is made, no reward is received, i.e., for all s,
r(s,D) = R when the decision is correct and r(s,D) = 0 otherwise. As described in Sec-
tion 3.3, Zt denotes the information available to the system at time t , which includes
measurements collected up to time t . Since the number of states is finite and known,
we use the vector notation pt to denote the posterior probability vector of target states
given Zt . Using this notation, if sensor k is deployed and zt+1 is collected, Eq. (12) takes
the form

pt+1 = Ak diag([fk(zt+1|1), . . . , fk(zt+1|N)])pt

sum(Ak diag([fk(zt+1|1), . . . , fk(zt+1|N)])pt )
, (14)

where fk(zt+1|n) denotes the conditional density of a measurement that was collected by
sensor k given that the system is in state n, and for any vector v, diag(v) is a diagonal matrix
with the elements of v on its diagonal, and sum(v) is the sum of its elements. Therefore, a
policy Π ∈ P can be defined as a map from SN , the simplex of N -dimensional probability
vectors, to A. The expected total reward at information state pt associated with a policy
becomes

V Π(pt ) = E

{ ∞∑
τ=t

βτ−t r
(
pτ ,Π(pτ )

)}
, (15)

and the optimal policy is

Π∗ = arg max V Π(p), ∀p ∈ SN. (16)

Π∈P
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The Q-function is defined over the N -dimensional simplex SN and for any action a ∈ A
by

Q(pt , a) = E
{
r(pt , a) + βV ∗(pt+1)

}
, (17)

which is the expected reward when taking action a at information state pt and then acting
optimally thereafter. The dimensionality of the information state space is reduced by a
linear parametrization (Eq. (10)), and Q-learning is used to approximate the Q-function.
Given Q, one finds the optimal policy by taking the action that maximizes it at any given
information state.

4.2. Tracking smart targets

Tip-offs from the detection algorithm are used to initialize a tracking algorithm which
finely geolocates and tracks moving targets. Targets are tracked by recursively estimating a
conditional probability density known as the joint multitarget probability density (JMPD)
[9,10].

4.2.1. The JMPD and particle filter approximation
In the tracking stage, the state s of the system (see Section 4) is given by the joint

multitarget probability density. In this subsection, we show how the state is derived and
how states are combined with measurements to determine the next state.

We define the joint multitarget conditional probability density p(x1
t ,x2

t , . . . ,xT −1
t ,

xT
t |Zt , Tt ) as the probability for T targets with states x1,x2, . . . ,xT −1,xT at time t based

on observations Zt . Each of the state vectors xi in the JMPD is a vector quantity and may
(for example) be of the form [x, ẋ, y, ẏ]′. For convenience, the density will be written
compactly as

p(Xt , Tt |Zt ) = p
(
x1
t ,x2

t , . . . ,xT −1
t ,xT

t |Zt

)
, (18)

where Xt = [x1
t ,x2

t , . . . ,xT −1
t ,xT

t ].
The temporal update of the posterior likelihood on this density proceeds according to

the usual rules of Bayesian filtering. Given a kinematic model of how the JMPD evolves
over time, p(Xt+1, Tt+1|Xt , Tt ), we compute the time-updated prediction density via mar-
ginalization of a conditional density:

p(Xt+1, Tt+1|Zt ) =
∞∑

Tt=0

∫
dXtp(Xt+1, Tt+1|Xt , Tt )p(Xt , Tt |Zt ). (19)

p(Xt+1, Tt+1|Zt ) is referred to as the prior or prediction density at time t + 1, as it is the
density at time t + 1 conditioned on measurements up to and including time t .

Given a sensor model, p(z|Xt ), Bayes’ rule is used to update the posterior density as a
new measurement vector z arrives at time t + 1 via

p(Xt+1, Tt+1|Zt+1) = p(z|Xt+1)p(Xt+1, Tt+1|Zt )

p(z|Zt )
. (20)

p(Xt+1, Tt+1|Zt+1) is referred to as the posterior or the updated density at time t + 1
as it is the density at time t + 1 conditioned on all measurements up to and including
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time t + 1. Note that, in contrast to the detection framework, here we must estimate a high-
dimensional joint probability density. This density allows us to describe the uncertainty
about the precise location of the target (rather than simply a region) and to represent the
correlations that occur due to measurement ambiguity for multiple targets.

The sample space of X is very large. It contains all possible configurations of state
vectors xi . We find that a particle filter based representation of the JMPD allows tractable
implementation [9]. The particle filter approximation represents the JMPD by a collection
of weighted Dirac samples, i.e.,

p(X, T |Z) ≈
Npart∑
p=1

wpδ(X − Xp). (21)

Particle filtering is a method of approximately solving the prediction and update equa-
tions (19) and (20) by simulation [6]. Samples are used to represent the density and to
propagate it through time. The prediction equation (19) is implemented by proposing new
particles from the existing particles using a model of state dynamics and the measurements.
The update equation (20) is implemented by assigning a weight to each of the particles that
have been proposed using the measurements and the model of state dynamics.

We use an adaptive method of particle proposal [9] that automatically factorizes the
JMPD when permissible. This adaptive sampling method automatically determines the
most efficient particle proposal method allowing tractable implementation for tens of tar-
gets.

4.2.2. Information based myopic sensor management
We use the JMPD to make sensor tasking decisions. As others have realized [8,13,21], a

good measure of the quality of a sensing action is the reduction in entropy of the posterior
distribution induced by the measurement. Therefore, the reward of an action (Section 4)
will be given by the information gained by taking that action. To schedule a sensor, we
enumerate all possible sensing actions (e.g., sensor modes and sensor pointing directions)
and calculate the expected gain in information associated with each possible action.

The calculation of information gain between two densities f1 and f0 is done using the
Rényi information divergence [7,16], also known as the α-divergence:

Dα(f1||f0) = 1

α − 1
ln

∫
f α

1 (x)f 1−α
0 (x) dx. (22)

The α-divergence includes the Kullback–Leibler divergence (as α → 1) and is related
to the Hellinger distance at α = 0.5 [7]. There is both theoretical and empirical evidence
suggesting that α = 0.5 is appropriate for the tracking problem [7,10], and it is used in all
simulations reported in this paper.

In our application, we are interested in computing the divergence between the predicted
density p(Xt+1|Zt ) and the updated density, p(Xt+1|Zt+1). Particle filter approximation
of the density simplifies Eq. (22) to

Dα

(
p(·|Zt+1)||p(·|Zt )

) = 1

α − 1
ln

1

p(z)α

Npart∑
wpp(z|Xp)α, (23)
p=1
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where

p(z) =
Npart∑
p=1

wpp(z|Xp). (24)

We wish to choose the sensing action that maximizes the divergence between the current
density and the density after a new measurement is acquired. Since we do not know the
outcome of a sensing action until after the action is taken, we cannot determine the diver-
gence until after the measurement is made. Therefore, we instead calculate the conditional
mean estimate of divergence and use this to schedule the sensors.

Specifically, we calculate the conditional expectation of Eq. (23) given Zt for each of
the N possible sensing actions and choose the action that maximizes this expected value.
Let m refer to the possible sensing action under consideration, including, but not limited
to, sensor mode selection and sensor beam positioning.

The expected value of Eq. (23) may be written formally as an integral over all possible
outcomes z when performing sensing action m, i.e.,

〈Dα〉m =
∫

dzp(z|Zt ,m)Dα

(
p(·|Zt , z)||p(·|Zt )

)
. (25)

4.2.3. Information based non-myopic sensor management
As discussed earlier, in many situations a non-myopic sensor management strategy pro-

vides sensor tasking decisions having better performance than the myopic strategy. In
particular, in the setting considered here where targets are “smart” and react to sensing
actions, the regret of choosing a poor action persists over time. Therefore, a non-myopic
strategy will be far superior to a myopic strategy.

We use batch Q-learning with linear function approximation (see Eq. (10)) to learn
a policy which behaves non-myopically and is capable of dynamically adjusting to the
environment. In the training process, the immediate reward of an action is computed using
the actual gain in information as measured by the Rényi divergence (see Eq. (23)).

5. Simulation results

We consider in this section a model problem in which an airborne platform is to detect
and track a set of moving ground targets. The platform has available a multimode sensor
able to use an active mode (e.g., radar) or a passive mode (e.g., EO/IR). The sensor is able
to quickly steer an antenna so as to focus attention on specific regions of the surveillance
area. This is a simple model of a real platform like the USAF JSTARS, which has a 24 ft
antenna installed on the underside, is able to scan electronically in azimuth and is able to
choose between several modes of operation including moving target indicator and synthetic
aperture radar.

In this simulation, targets are characterized by their position in one dimension. Targets
are “smart” as they sense when they are under surveillance by an active sensor and react to
make future surveillance more difficult. The number and location of the targets is unknown
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Fig. 2. An illustration of the model problem. The surveillance region is broken into several coarse detection
regions, shown as detection regions 1, 2, and 3 above. The detection algorithm schedules the sensor to most
quickly determine the presence or absence of targets in each detection region. Upon detecting targets, the tracking
algorithm is tipped-off with the regions in which targets exist. The tracking algorithm then determines sensor
resource allocations that allows refinement of the initial location and tracking as the targets move through the
surveillance area.

initially and our task is to detect and track the targets by selecting the best sensor scheduling
policy.

We address the problem following the two step strategy outlined in Section 2. Specif-
ically, we first segment the surveillance area into a set of detection regions where the
sensor scheduling strategy of Section 4.1 is used to most quickly determine the presence
or absence of a target in each region. Upon determining targets are present, the detection
algorithm gives a tip-off to the tracking algorithm of Section 4.2 by providing the infor-
mation that a target exists and the region in which it exists. The tracking algorithm is then
responsible for scheduling the sensor to refine the estimate of target location and track the
targets as they move through the surveillance area. The model problem considered here is
summarized in Fig. 2.

We proceed in this section to illustrate the two-step detection and tracking algorithm
developed using the reinforcement learning (RL) approach. We contrast the performance
of this non-myopic strategy to random and myopic strategies.

5.1. Target detection

Each detection region is modelled as taking one of three states: s1 no target present, s2 an
exposed target is present, and s3 a camouflaged target is present. There are two hypotheses:
H1 (no target present) and H2 (a target is present, either exposed or camouflaged). The
target can move from state 2 to state 3 if it senses it is being observed. However, it tends to
return from state 3 to state 2 if it no longer senses it is being observed, e.g., it may be less
effective in state 3.

Intelligence sources provide a prior on the initial state of the target, which constitutes
the initial information state of the process p0. The platform has one of three sensor modes
to deploy. Sensor mode i, deployed at time t provides an independent measurement zi(t).
For the simulation considered here, measurements are assumed conditionally Gaussian
with the following conditional distributions (N(μ,σ 2) denotes the Gaussian density with
mean μ and variance σ 2):
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z1(t)|s1 ∼ N(0,0.45), z1(t)|s2 ∼ N(1,0.45), z1(t)|s3 ∼ N(0.4,0.45),

z2(t)|s1 ∼ N(0,1), z2(t)|s2 ∼ N(1,1), z2(t)|s3 ∼ N(0.4,1),

z3(t)|s1 ∼ N(0,0.7), z3(t)|s2 ∼ N(1,0.7), z3(t)|s3 ∼ N(0.4,0.7).

Sensor modes 1 and 3 represent active modes, which can be sensed by the target,
and sensor mode 2 represents a lower SNR passive mode which cannot be detected by
the target. When the target is in hide mode, it has an incentive to return to the exposed
state. To reflect these characteristics the following transition probability matrices were
chosen:

A1 =
[1 0 0

0 0.2 0.1
0 0.8 0.9

]
, A2 =

[1 0 0
0 1 0.3
0 0 0.7

]
, A3 =

[1 0 0
0 0.1 0.05
0 0.9 0.95

]
.

Note that mode 3 is less favorable then sensor mode 1 regardless of system state. It
provides less information (lower SNR) on the target, and when it is used there is a higher
probability that the target will detect it. It was included in this study to show that the
optimal learned policy will indeed never use it.

We assume zero cost for the sensor deployment and a unit reward for a correct decision.
Hence, the expected reward (15) becomes E{βT max{pT (1),pT (2) + pT (3)}}, where T is
the (random) final decision time. The discount factor β was chosen to be 0.99 to reflect
large emphasis on future actions.

Q-learning (Section 3.2) was used to approximate the optimal policy. There is an in-
herent bias-variance tradeoff (also known as estimation/approximation error tradeoff) in
Q-learning. With a fixed training set size, as the number of parameters used to approxi-
mate the Q-function decrease, two phenomena occur simultaneously: (1) estimation errors
of the parameters decrease, i.e., the variance decreases, and (2) the approximation class
becomes smaller and the distance between the true Q-function and its best approxima-
tion in the class increases, introducing larger bias. Finding a good approximation class is
a problem dependent task which requires experimentation and expert knowledge [19]. We
chose the basis functions to be indicator functions of disjoint regions of S3 ×A that corre-
spond to quantization of the simplex S3 into 55 disjoint regions for each action in A. This
was found experimentally to give a reasonable tradeoff between the size of the approxima-
tion class and the number of training trajectories needed to achieve good estimation of the
parameter θ defined in Eq. (7).

The Q-functions were approximated using 20,000 state-action trajectories in which the
initial information state was generated uniformly randomly over S3. Choosing the size of
the training set is one of the important open questions in RL. In practice, one increases
the number of samples in the training set until one no longer sees an improvement in the
resulting algorithm performance. This procedure was adopted and takes about half an hour
using a Pentium M processor running MatLab 6.

The Q-functions associated with each sensor mode are depicted in Fig. 3. The Q-
function associated with taking the final decision at state pt is known to be max{pt (1),

pt (2) + pt (3)} and hence does not need not be estimated. Since S3 is two-dimensional, all
functions are presented over the region {[p(1),p(2)]: p(1) � 0,p(2) � 0,p(1)+ p(2) � 1}
and set to zero outside of this region. The x and y axes correspond to p(1) and p(2), re-
spectively. Once the Q-functions were estimated the mapping from S3 to A was found
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Fig. 3. Q-functions of the three sensor modes over the information space.

according to (11) and is presented in Fig. 4. As expected, sensor 3 is never deployed when
using this policy. Furthermore, the policy dictates that the passive sensor is to be used
whenever there is a high degree of uncertainty, to make the final decision when either
pt (1) (decide no target is present) or pt (2) + pt (3) (decide target present) are close to one,
and to use the active sensor only when the final decision is imminent.

As the reward is only collected at the final decision, a myopic strategy is to make an
immediate decision based on the prior without taking any measurements. Therefore, the
estimated optimal policy is compared to a randomized policy in which actions are chosen
uniformly. The improvement in terms of the difference in averaged value, estimated from
2000 Monte Carlo simulations at each information state, is presented in Fig. 5. It is seen
that the major difference in value is obtained in the center of the information state space,
i.e., when the uncertainty about the system state is maximal.

5.2. Target tracking

We assume for purposes of illustration that the target detection algorithm has correctly
detected targets in Regions 1 and 3 (Fig. 2) and passed this information to the target track-
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Fig. 4. Sensor allocation map: the dark gray area corresponds to passive mode, the light to active mode and the
third area to making the final decision. The points A, B, and C are marked for reference to Fig. 5, as the axis
orientation in the two figures is different.

ing algorithm. At each time step, the sensor is able to measure a single cell to determine the
presence or absence of targets. Targets can move along a line in a strictly diffusive man-
ner. The sensor can use the active (mode 1) or passive (mode 2) modes described above.
Sensor modes are characterized by a detection probability Pd and a false alarm probabil-
ity Pf. These probabilities are linked together via SNR by Pd = P

1/(1+SNR)

f . This model
of sensor returns corresponds to thresholding of target return signal in Rayleigh distrib-
uted noise as is seen on GMTI radar systems [2]. Note that the sensor characteristics are
defined differently than in the detection portion of the algorithm. Unlike the detection re-
gions considered earlier, a sensor cell is now a small area and targets can easily move
between cells.

When the target is in visible mode, the active mode works with high detection prob-
ability and low false alarm probability, Pd = 0.9 and Pf = 1e − 4 (corresponding to
SNR = 20 dB). The passive sensor mode works with detection probability Pd = 0.5 and
false alarm probability Pf = 1e − 4 (SNR = 10 dB). When in hide mode, both modes are
severely degraded and correspond to a target with SNR = 0 dB.
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Fig. 5. Improvement over the random allocation policy. Note the relative orientations of the state domain com-
parison to Fig. 4—the points A, B, and C are marked for reference.

Targets can sense when the active mode is used and move into hide mode to prevent fur-
ther interrogation. Additionally, targets that have moved into hide mode tend to move back
into visible mode when the passive sensor mode is used. The parameters of interest can
be summarized by the following transition probabilities when for each of the two sensor
modes:[

Pr (visible to visible) Pr (visible to hide)
Pr (hide to visible) Pr (hide to hide)

]
.

A myopic strategy of sensor management makes tasking decisions based only on the
expected immediate reward. Here the myopic strategy will advocate using the active mode
at all times as it has the largest expected gain in single step information gain. Depending on
the transition probabilities, this may immediately force the targets into hide mode, making
them difficult to observe in future time steps. A non-myopic strategy, on the other hand,
will take into account the effect of current actions on future information gain and be more
prudent in using the active mode.

We illustrate the technique using two simulations with different transition probabilities.
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Simulation 1.

Transition matrix active sensor mode =
[

0 1
0 1

]
,

Transition matrix passive sensor mode =
[

1 0
0.2 0.8

]
.

Simulation 2.

Transition matrix active sensor mode =
[

0.1 0.9
0 1

]
,

Transition matrix passive sensor mode =
[

1 0
0.33 0.67

]
.

In simulation 1, the target always moves into hide when the active mode is used and
moves from hide to visible with probability 0.2 when the active mode is used. In sim-
ulation 2, the target has a 10% chance of remaining in visible mode even if the active
mode is used, and is more likely to move back into visible mode when the passive mode is
used.

We trained a Q-function as discussed in Section 2. Episodes were generated with ran-
dom sensor allocations using the models of target behavior. The initial position of the
targets and realization of the diffusive motion were chosen randomly for each training
episode. The Q-function was trained using a linear function approximation on 100,000
training episodes in batch fashion. Table 1 gives empirical results for how performance of
the algorithm improves as the number of training episodes is increased, showing 100,000
is a good stopping point. The algorithm was tested on 1000 example episodes where the
initial position and realization of the diffusive motion of the targets was chosen randomly
for each testing episode. The Q-function learned during the training episode was used to
schedule the sensor by selecting mode and pointing direction.

In Figs. 6–8, we present results of Q-learning performance on the tracking stage. We
compare performance to (a) a random strategy, (b) a myopic strategy, (c) a random strategy
that only uses the passive mode, and (d) a myopic strategy that only uses the passive mode.
The Q-learning strategy performs as well or better than the best of the four competing
strategies in both cases.

Table 1
Performance versus training examples

Training episodes Tracking error (m)

200 1.6975
1000 1.5996
5000 1.5603

10,000 1.5126
50,000 1.4758

100,000 1.4071
200,000 1.4103
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Fig. 6. Target tracking performance, in terms of average tracking error for simulation 1. Included are a random
strategy, a myopic strategy, a random strategy that uses only the passive mode, a myopic strategy that uses only
the passive mode, and the Q-learning strategy.

Fig. 7. Target tracking performance, in terms of average tracking error for simulation 2. Included are a random
strategy, a myopic strategy, a random strategy that uses only the passive sensor, a myopic strategy that uses only
the passive mode, and the Q-learning strategy.
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Fig. 8. Histograms showing relative frequency of magnitude tracking errors at time 5 for simulation 1 when
testing the five polices considered here. The mean performance of each policy is given by the dashed line. Note
that the performance of the tracker is bimodal—either the tracker finds the target (error ∼ 1 m or less) or it does
not (error > 1 m).

6. Conclusion

In this paper, we have investigated the problem of sensor scheduling for detection and
tracking of smart moving ground targets from an airborne sensor. Since the targets of in-
terest are able to detect and respond to certain sensing actions, it is mandatory that the
long term ramifications be taken into account when choosing current sensing actions. This
necessity for non-myopic sensor scheduling leads to a very computationally challenging
problem.

We have addressed this numerical challenge with a two stage approach. The surveillance
area is first partitioned into a set of detection regions and a detection algorithm determines
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the presence or absence of a target in each region. Upon detection, a tracking algorithm is
used to finely geolocate and track targets as they move through the region.

The sensor scheduling algorithm for both of the stages stages was developed with a rein-
forcement learning (RL) approach. Out method relies on a set of training data used in batch
to learn a good sensor management policy. We showed through a series of experiments that
the RL approach allows accommodation of the desire to perform quick detection and per-
forms as well or better than other simple strategies in the tracking problem. An alternative
approach for future research is to learn a good policy on-line while another policy is being
executed.
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