Quiz \#2:
Solve for $x(t)$ assuming all IC's are zero.
2

```
\(\frac{d x(t)}{d t}+30 \frac{d x(t)}{d t}+200 x(t)=10 u(t)\)
```

Solution:
Take the Laplace Tranform, setting $x(0)=0, d x(0) / d t=0$ as specified in the instructions.

2
$[s \mathrm{X}(\mathrm{s})-\mathrm{s} \mathrm{x}(0)-\mathrm{d}(0) / \mathrm{dt}]+30[\mathrm{~s} \mathrm{X}(\mathrm{s})-\mathrm{x}(0)]+200 \mathrm{X}(\mathrm{s})=10 / \mathrm{s}$
Since the IC's are zero, we rewrite
$x(s) \quad\left[s^{2}+30 s+200\right]=10 / s$
or $X(s)=\frac{10}{s(s+10)(s+20)}=\frac{(1 / 20)}{s}+\frac{-(1 / 10)}{s+10}+\frac{(1 / 20)}{s+20}$
and therefore
$x(t)=\left[(1 / 20)+(-1 / 10) e^{\wedge}-10 t+(1 / 20) e^{\wedge}-20 t\right] u(t)$

Newnb-1

