Solution to Quiz \#11

You were given $\mathrm{G}(\mathrm{s})=\frac{1}{s(s+10)(s+100)}=\frac{(1 / 1000)}{s\left(\frac{s}{10}+1\right)\left(\frac{s}{100}+1\right)}$
The magnitude plot starts at wmin $=0.1$. The magnitude value there is $20 \log 10\left(\frac{1 / 1000}{.1}\right)=-40 d B$ Since there is 1 pole at the origin.

It has an initial slope of $-20 \mathrm{~dB} /$ decade.
When the graph reaches the first breakpoint (10), the slope becomes $-40 \mathrm{db} / \mathrm{decade}$
When the graph reaches the $2^{\text {nd }}$ breakpoint (100), the slope becomes $-60 \mathrm{db} /$ decade
The phase plot starts at -90 and ends at -270 . A reasonable sketch is shown below. You can easily show that the analytical magnitude response is $-90-\operatorname{atan}(\mathrm{w} / 10)-\operatorname{atan}(\mathrm{w} / 100)$.

