:

Closed -loop Transfer Function:
$$\frac{KG}{1+KGH} = \frac{\frac{KG_N}{G_D}}{1+\frac{KG_NH_N}{G_DH_D}} = \frac{KG_NH_D}{G_DH_D + KG_NH_N}$$

Characteristic Equation : 1 + KGH = 0 OR $G_DH_D + KG_NH_N = 0$

$$K = -\frac{1}{GH} = -\frac{G_D H_D}{G_N H_N} = -\frac{\sum_{i=1}^{n_{i=1}} (s - p_i)}{\sum_{i=1}^{n_{i=1}} (s - z_i)}$$

$$\prod_{i=1}^{n_p} \operatorname{angles}\{(s - p_i)\} - \prod_{i=1}^{n_z} \operatorname{angles}\{(s - z_i)\} = \pm k(180), \ k - 1,3,5,\dots \text{ Angle Criterion}$$
and
$$K = \frac{\prod_{i=1}^{n_p} |(s - p_i)|}{\sum_{i=1}^{n_z} |(s - z_i)|}$$
Magnitude Criterion

- *Rule 1.* The root locus has $n = \max(n_p, n_z)$ branches where n_p is the number of finite poles of the loop transfer function and n_z is the number of finite zeros of the loop transfer function.
- *Rule 2.* The root locus is symmetric about the real axis in the s-plane.
- *Rule 3.* The root locus branches begin (K = 0) at the loop transfer function poles and end (K = -) on the loop transfer function zeros.
- *Rule 4.* The root locus exists on the real axis if there is an odd number of poles and zeros (of the loop transfer function) to the right on the real axis.
- *Rule 5.* The branches of the root locus which go off to the loop transfer function zeros at infinity approach asymptotically the straight lines with angles

Angles of the asymptotes : $=\frac{\pm k(180)}{n_p - n_z}$, k = 1,3,5,...

These asymptotes intersect the real axis at

$$= \frac{p_{i} - n_{z}}{n_{p} - n_{z}}$$

where p_i and z_i are respectively the finite poles and zeros of the loop transfer function. The number of asymptotes is equal to $(n_p - n_z)$

Rule 6. The root locus branches intersect the real axis at points where $K = \frac{-1}{G(s)H(s)}$ is at an extremum for real values of *s*, i.e., for real values of s where $\frac{d}{ds} \frac{-1}{G(s)H(s)} = 0.$

- *Rule 7.* j axis crossings may be determined by solving the characteristic equation with s = j.
- *Rule* 8 (*a*) The root locus angle of departure from a complex pole p_c can be found by subtracting from 180° the angle contribution at this pole of all other finite poles and adding the angle contribution of all finite zeros of the loop transfer function.

$$_{d}|_{s=p_{c}} = 180^{\circ}$$
 - (Angles of all other finite poles to p_{c})
+ (Angles of all finite zeros to p_{c})

Rule 8 (*b*) The root locus angle of arrival at a complex zero z_c can be found by adding to (-180°) the angle contribution at this zero of all finite poles and subtracting the angle contribution of all other finite zeros of the loop transfer function.

$$_{a}|_{s=z_{c}} = -180^{\circ} + (\text{Angles of all finite poles to } z_{c})$$

- (Angles of all other finite zeros to z_c)

Rule 9. The value of K corresponding to a point $s = s_r$ on the root locus is determined

by using the magnitude criterion:
$$K = \frac{\sum_{i=1}^{n_p} |(s_r - p_i)|}{\sum_{i=1}^{n_z} |(s_r - z_i)|}$$

In case of systems with positive feedback instead of negative feedback:

Closed -loop Transfer Function:
$$\frac{KG}{1 - KGH} = \frac{\frac{KG_N}{G_D}}{1 - \frac{KG_NH_N}{G_DH_D}} = \frac{KG_NH_D}{G_DH_D - KG_NH_N}$$

In *Rule 4*, replace *odd* by *even*..

In *Rule 5*, change to: $=\frac{\pm k(360)}{n_p - n_z}$, k = 1, 2, 3, ...In *Rule 8*, change 180 to **360**°.