```
5.1
            G6G4+G6G3+G6G5G3+G6G5G2
TF= -----------------------------------------------------------------------
```

5.3

Proceed by
i) Combine the cascade s's $\mathrm{s}^{\wedge} 2$
ii) simplify parallel branch $\left(s^{\wedge} 3+1\right) / s$
iii) rewrite the summation junction as two summation junctions (just like we did in class)
iv) simplify the unity feedback
$\left(s^{\wedge} 3+1\right) /\left(s^{\wedge} 3+s+1\right)$
v) combine the cascade blocks
($s^{\wedge} 3+1$) / ($\left.s^{\wedge} 4+s^{\wedge} 2+s\right)$
vi) simplfy the feedback with $H(s)=s$ $\left(s^{\wedge} 3+1\right) /\left(2 s^{\wedge} 4+s^{\wedge} 2+2 s\right) \quad<--$ Answer
5.4

Proceed by
i) Simplify the unity feedback 50s/(s^2+s+100)
ii) Simplify the parallel branch (s-2)
iii) Combine the 3 cascade blocks $50 s(s-2) /\left(s^{\wedge} 2\right)\left(s^{\wedge} 2+s+100\right)$
iv) Simplify the unity feedback $50(s-2) /\left(s^{\wedge} 3+s^{\wedge} 2+150 s-100\right)<--$ Answer

5-13
$G(s)=s /(2 s+2)$,
found via
(a) Change the '2' block to '2/s', by moving the pickoff point from before the 's' to after the 's'.
(b) combine the parallel '1/s' and '1' to (s+1)/s
(c) simplify the feedback 's' and '1' to s/(s+1)
(d) realize that the (2/s) in feedback and the 1 in feedback are in parallel and combine to a simple (s+2)/s in feedback

The poles are clearly at $s=-1$
5-15
Find that
$G(s)=k /\left(s^{\wedge} 2+a l p h a s+k\right)$
We know that 40% OS means zeta=0.28. Given Ts=. 5 s, we find that wn=28.57.

This allows us to solve for k and alpha and find k=816.24, alpha=16.

5-52
a) This is straightforward. We find that $O S=73 \%, T s=8 \mathrm{~s}$.
b) First, simplify the this to a single block TF. We find that $G(s)=25 \mathrm{K1} /\left(s^{\wedge} 2+(1+25 K 2) s+25 K 1\right)$.

We would like 25% OS (zeta=.404) and . 2 s Ts (wn=49.5). We can find K1 and K2 easily. K1=98.01, K2=39/25.

