We will reflect all impedances to the middle (Theta 2), since we wish to find the transfer funtion O2(s)/T(s).

The following reflections are made:
$\mathrm{T}(\mathrm{s})$ reflects to $\mathrm{T}(\mathrm{s}) *(12 / 4)=3 \mathrm{~T}(\mathrm{~s})$
J1 reflects to J1* $(12 / 4)^{\wedge} 2=9$ J1
D1 reflects to D1* (12/4) ^2 = 9 D1
D3 reflects to $D 3 *(4 / 16)^{\wedge} 2=\mathrm{D} 3 / 16$
J3 reflects to J3* (4/16)^2 = J3/16
K reflects to $K^{*}(4 / 16)^{\wedge} 2=K / 16$

We then have a total J of
Jtotal $=9 \mathrm{~J} 1+\mathrm{J} 2+\mathrm{J} 3 / 16=20$
And analogously,
Dtotal $=9 \mathrm{D} 1+\mathrm{D} 2+\mathrm{D} 3 / 16=13$
Ktotal $=\mathrm{K} / 16=4$

We can then write the equation of motion as

O2(s) * [Jtotal $\mathrm{s}^{\wedge} 2+$ Dtotal $\mathrm{s}+$ Ktotal] $=3 \mathrm{~T}(\mathrm{~s})$, or
$\begin{array}{cc}\mathrm{O} 2(\mathrm{~s}) & 3 \\ ----- & --------------- \\ \mathrm{T}(\mathrm{s}) & 20 s^{\wedge} 2+13 \mathrm{~s}+4\end{array}$
$\% \%$ 32
We will once again reflect the imedances to $O 2(s)$, since it is the output in question.

We then find that

```
O2(s)[200+ 3*(50/5)^2]s^2 + 1000s +
```

$\left.250(50 / 5 * 5 / 25)^{\wedge} 2\right]=T(s) *(50 / 5)$

Note that the spring, k, was reflected through two sets of gears, the $(5 / 25)^{\wedge} 2$ term and the $(50 / 5)^{\wedge} 2$.

It is clear now that

$\mathrm{O} 2(\mathrm{~s})$	
-----	$(1 / 50)$
$\mathrm{T}(\mathrm{s})$	$=---------------2$

A second order system!
33. One can show that the transfer function is
.8/(s+1)

