23
There are two equations of motion to write (see the hint):
At Mass 1 (the 5 kg mass), the forces acting are $f(t)$
The spring
The mass itself

We can write:
$\mathrm{X} 1(\mathrm{~s}) *\left[5 \mathrm{~s}^{\wedge} 2+10\right]-\mathrm{X} 2(\mathrm{~s}) *[10]=\mathrm{F}(\mathrm{s})$
At Mass 2 (the added mass), the forces acting are The spring
The viscous damper
The mass itself (but the mass is 0 kg , so ignore it)
We can write:
X2 (s) * [.2s + 10] - X1 (s) * [10] = 0
Simplifying, we find that
X2 (s)
10
$-----\quad=-----------------1$
$F(s) \quad s^{\wedge} 3+50 s^{\wedge} 2+2 s$

25
There are three equations of motion to write. Call the masses 1, 2 , and 3 from left to right.

Mass 1
$\mathrm{X} 1(\mathrm{~s}) *\left[\mathrm{~s}^{\wedge} 2+\mathrm{s}+1\right]-\mathrm{X} 2(\mathrm{~s})=0$

Mass 2
$\mathrm{X} 2(\mathrm{~s}) *\left[\mathrm{~s}^{\wedge} 2+\mathrm{s}+2\right]-\mathrm{X} 1(\mathrm{~s})-\mathrm{X} 3(\mathrm{~s}) * \mathrm{~s}=0$
Mass 3
X3 (s)*[s^2+s+1] - X2(s)*s=0
Simplifying, we find that
$\mathrm{X} 3(\mathrm{~s}) \quad \mathrm{s}\left(\mathrm{s}^{\wedge} 2+\mathrm{s}+1\right)$


```
I am mostly interested in your ability to write the equations of
motion. You will not be expected to solve for X3(s)/F(s) in a
problem as algebraically difficult as this on an exam or quiz.
```



```
28
There are two equations of motion to write. Call the inertias 1
and 2 from left to right. Also let O denote Theta:
Inertia 1
O1(s)*[s^2+5s+6]-02(s)*[3s+4]=0
Inertia 2
O2(s)*[s^2+5s+5]-01(s)*[3s+4]=T(s)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
29
In this case, there are 4 inertias. We must add a 'zero' inertia
in between K2 and D2 for the usual reasons.
Draw O1 at J1, O2 at J2, O3 at J3, and O4 in between K2 and D2.
Inertia 1
O1(s)*[J1 s^2 + D1 s + K1]-O2(s)*[D1 s + K1] = T(s)
Inertia 2
O2(s)*[J2 s^2 + D1 s + K1+K2] - O1(s)*[D1 s + K1] - O4(s)[K2] =
0
Inertia 3
O3(s)*[J3 s^2 + D2 s + K3] - O4(s)*[D2 s] = 0
Inertia 4 (The 'added' inertia)
O4(s)*[D2 s + K2] - O2(s)*K2 - O3(s)*[D2 s] = 0
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
```

