Chapter 4, Problem 23
The poles of the system are located at -5, -. 6 +/- j 1.57
Clearly, the added pole is more than 5 times farther from the Imaginary axis than the dominant second order poles.

We can approximate this as purely second order.
The dominant poles are at -. 6 +/- j 1.57, which makes
Therefore,
wn=1. 6820 and zeta=. 3567
The relevant quantities are then easily found:
OS=30\%
$T \mathrm{~s}=6.64 \mathrm{~s}$
$T p=2 \mathrm{~s}$

Chapter 4, Problem 24
a) From the graph, it is clear that the response reaches 63\% of it's peak value at tau=. 025 seconds (approx), which makes $a=1 /$ tau $=40$.

The graph settles at 2 instead of 1 , so the transfer function is 2 * $a /(s+a)$, or

2 * $40 /(s+40)$
You can check this is correct by using the Laplace transform properties:
$\lim _{s \rightarrow>0} s$ Output(s) $=\lim _{t \rightarrow \text { inf }}$ Output(t)
or

b) From the graph, it is easy to measure that the maximum value is ~ 13.75. The final value is ~ 11. Therefore, the
overshoot is $(13.75-11) / 11=25 \%$.

Also, the peak time is at ~ 1 second.
Using these values, we can calculate zeta=. 4 by eq (4.39) and wn=3.43.

Therefore the denominator of the transfer function is $\left(s^{\wedge} 2+2 * z e t a * w n s+w n^{\wedge} 2\right)=\left(s^{\wedge} 2+2.744 s+11.76\right)$ 。

Since the curve settles at 11 , we can write the transfer function as

```
    11*(11.76) 129.36
```


