Unlikely Intersections and Multi-Function Portraits
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Introduction to Dynamics: Portraits Portraits Comprised of “Two-Image” Maps
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Realizable Portraits with Many Points
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Given a multi-function portrait, can we find points {xg,z1,....,x;} C C and polynomials JE—

{f1, fa, ..., fn} C Clx] of specified degrees that realize the portrait? @ » e -7
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Realization Spaces and Dimension ) \ ) How the top-right point is added determines the dimension of the resulting portrait.
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Quadratic two-image single-map portraits Cubic two-image single-map portraits

A multi-function portrait and its system of equations, whose solution set is the portrait’s

An arbitrarily large 1-dimensional portrait.
realization space.

Theorem: Classifying Unlikely Intersections

- - e - - S Theorem: Constructing Large Portraits of Positive Dimension
Dimension-Counting Heuristic Given a port.ra|t of degree d on.2d points, if each polynomial has two images, then the realization
space has dimension d — 1 or is empty.

| | Let f € C(z), and let S be a set such that f(S) Cc S and fory € f(S), f~*(y) C S. If there
For a portrait's system of equations: exists a degree 1 rational function ¢(z) such that fo ¢ = f, then (¢ o f)(S) C S.

#(variables) — #(equations) — 2 symmetries of C = expected dimension of realization space

dimension 2 dimension -1

J— _—, N XQ X3
@L _..? - 4.\ fé > 6)‘( :}tz /-,XLI " e’——‘\)ib

Realizable Portraits with Many Maps
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Two quadratics acting on four points: 0 1 0
zero-dimensional realization space expected. /I\ /I\ /I \_ /I \
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Two quadratics acting on four points , , —
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Dimension #(Portraits) K 59 938 Maximal-dimension cubic portrait (top left) and an un-realizable cubic portrait (top right).
-1 206 0 1 25’1 5ac Respective partitions of the point sets based off of preimages below.
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1 14 1 1,007 ] ] _ ] ] ] A realizable portrait with 28 quadratics acting on 4 points.
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A future goal is to sharpen this bound.



