Unlikely Intersections and Multi-Function Portraits

Talia Blum ${ }^{1}$ Colby Kelln ${ }^{2}$ Henry Talbott ${ }^{3}$

${ }^{1}$ Massachusetts Institute of Technology ${ }^{2}$ University of Michigan ${ }^{3}$ Brown University

Introduction to Dynamics: Portraits
Portraits Comprised of "Two-Image" Maps
Realizable Portraits with Many Points

One-dimensional portraits for 2 quadratics acting on 5 points.

How the top-right point is added determines the dimension of the resulting portrait.

An arbitrarily large 1 -dimensional portrait.

Theorem: Constructing Large Portraits of Positive Dimension

Let $f \in \mathbb{C}(x)$ and let S be a set such that $f(S) \subset S$ and for $y \in f(S), f^{-1}(y) \subset S$. If there exists a degree 1 rational function $\ell(x)$ such that $f \circ \ell=f$, then $(\ell \circ f)(S) \subseteq S$.

Realizable Portraits with Many Maps

A realizable portrait with 28 quadratics acting on 4 points.
Bounding \#(Realizations) in Zero-dimensional Cases

Theorem: Bound on \#(realizations

Consider a portrait of two degree d polynomials on $2 d$ points. If the realization space is finite, then it contains at most $\left(\binom{d+1}{2}+1\right)^{2 d-2}$ points.

A future goal is to sharpen this bound.

