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Why localized refinement?
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Motivation

e Local mesh refinement ( h-p) restricts time step

e Primitive equations are ill-posed with boundary conditions

e New alternative to semi-Lagrangian advection



Spectral Element Method

e Cubed Sphere (Sadourny 1972)

e High-order method combines

* Finite Element Method
* Pseudo Spectral Method




Global degrees of freedom




Local degrees of freedom




Interpolation based non-conforming
elements
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Trace interpolation

Boolean matrix (@ is redefined as




Validation: test description

e Standard test suite of Williamson et al. 1992: test case 1.

e The initial condition isonly .

e Error estimator based on true solution.



Time discretization

Semi-Lagrangian advection

e Departure point: trajectory integration

e Fixed point iterations



SL backtracking
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Time discretization

Operator Integration Factor Splitting

e Maday, Patera, Ronquist 1990

e K elements of order N, K N9 grid points




OIFS Sub-cycling
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Operator Integrating Factor Splitting

o S(u(t)) + F(u(t)), te]0,T]

with initial condition  u(0) = wy.

Find integrating factor Q% (), such that Q% (t*) =1,



SL = OIFS / splitting error

OIFS equivalent to semi-Lagrangian

u(X(:c, tn—q), tn—q) — v(t",tn—Q) (tn _ tn—q).

OIFS splitting erroris  O(At?).


http://www.math.ntnu.no/conservation/2004/

Nonlinear OIFS

Shallow water and primitive equations are divergent flows.
St-Cyr and Thomas (2004) instead propose sub-stepping
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Time Discretization

Integration factor applied to the SWE's
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Numerical results

Williamson et al. (1992)
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h-p refinement

e Fully developed flow => d at least one element at max ref.
level

e Keep time-step fixed => no interpolation in time necessary




h-p for dt = 1200s
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Conclusions

e Semi-Lagrangian advection expensive for high-order methods

e Nonlinear OIFS for hyperbolic systems with stiff source term

e Longer time steps than extrapolated OIFS



Future research

e Optimized Non-Overlapping Schwarz (with Prof. M.J. Gander
(Universit € de Genéve))

e Dynamic adaptation for the primitive equations
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