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DGM - Motivation

• Advantage:

? Inherently conservative (Monotonic option)
? High-order accuracy & High parallel efficiency
? “Local” method & AMR capable

• Potential: Application in climate and atmospheric chemistry
modeling.

• DGM may be considered as a hybrid approach combining the
finite-volume and finite-element methods.

• Popular in CFD and other engineering applications (Cockburn
and Shu 1989-98, Bassi & Rebay 1997) . Global SW model
(Giraldo et al. 2002) .
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DGM in Cartesian Geometry

• 2D scalar conservation law:

∂U

∂t
+∇ · ~F(U) = 0, in Ω× (0, T ); ∀ (x, y) ∈ Ω

where U = U(x, y, t), ∇ ≡ (∂/∂x, ∂/∂y), and ~F = (F,G) is the
flux function.

• Domain: The domain Ω is partitioned into Nx×Ny rectangular
non-overlapping elements Ωij such that

Ωij = {(x, y) |x ∈ [xi−1/2, xi+1/2], y ∈ [yj−1/2, yj+1/2]},
for i = 1, 2, . . . , Nx; j = 1, 2, . . . , Ny.



4

DGM - Weak Galerkin Formulation

• Consider an element Ωij and an approximate solution Uh in
the finite dimensional vector space Vh(Ω).

• Multiplication of the basic equation by a test function ϕh ∈
Vh and integration over the element Ωij by parts, results in a
weak Galerkin formulation of the problem:

∂

∂t

∫
Ωij

Uhϕh dΩ −
∫

Ωij

~F(Uh) · ∇ϕh) dΩ

+
∫

∂Ωij

~F(Uh) · ~nϕh ds = 0,

where ~F(Uh) · ~n is analytic flux and ~n is the outward-facing
unit normal vector on the element boundary ∂Ωij.
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DGM - Flux Term

• Along the boundaries of an element ∂Ωij, the function Uh is
discontinuous.

• Therefore, the analytic flux F(Uh) · ~n must be replaced by a
numerical flux F̂ (U−h , U

+
h )

• For simplicity, the Lax-Friedrichs numerical flux is used:

F̂(U−h , U
+
h ) =

1
2

[
(F(U−h ) + F(U+

h )) · ~n− α(U+
h − U−h )

]
,

? where U−h and U+
h are the left and right limits of the

discontinuous function Uh

? α is the upper bound for the absolute value of eigenvalues
of the flux Jacobian F ′(U) in the direction ~n.
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DGM - Discretization
• Orthogonal basis: A modal basis set B = {P`(ξ), ` =

0, 1, . . . , k} consists of Legendre polynomials.

• Reference element: Map (x, y) ⇒ (ξ, η) ∈ [−1, 1]⊗ [−1, 1]

• Expand approximate solution Uij in terms of P`(ξ)Pm(η):

Uij(ξ, η, t) =
k∑

`=0

k∑
m=0

Ûij`m(t)P`(ξ)Pm(η) for − 1 ≤ ξ, η ≤ 1

• Evaluate the integrals using GLL quadrature rule.

• Solve the resulting ODE d
dt U = L(U) in (0, T )
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Cubed-Sphere Geometry

• The sphere is decomposed into six identical regions , using
the central (gnomonic) projection ( Sadourny, 1972 ):

x = a tanλ, y = a tan θ secλ, 2a is the side of the cube.

? Local coordinate systems are free of singularities
? have identical metric terms
? creates a non-orthogonal curvilinear coordinate system

• Metric tensor of the transformation is defined as Gij ≡ ai · aj,
i, j ∈ {1, 2}.

• The components of the covariant vectors (ui) and the
contravariant vectors (ui) are related through:

ui = Giju
j, ui = Gijuj, Gij = (Gij)−1
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Cubed-Sphere Geometry

• Equidistant Projection: Use (x, y) ∈ [−a, a] as independent
variables. The metric tensor of the transformation is

Gij =
R2

r4

[
a2 + y2 −x y
−x y a2 + x2

]
where R is the radius of the sphere, r2 = a2 + x2 + y2.

• Equiangular Projection: Central angles (α, β) ∈ [−π/4, π/4]
are the independent variables. The metric is

Gij =
R2

ρ4 cos2α cos2 β

[
1 + tan2α − tanα tanβ

− tanα tanβ 1 + tan2 β

]
where ρ2 = 1 + tan2α+ tan2 β
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Shallow Water Equations on the
Cubed-Sphere

• In curvilinear coordinates, the continuity and momentum
equations for the flux form shallow water system can be
written as follows (Sadourny 1972; Rancic et al. 1996)

∂

∂t
(
√
Gh) +

∂

∂x1
(
√
Gu1h) +

∂

∂x2
(
√
Gu2h) = 0,

∂u1

∂t
+

∂

∂x1
E = −

√
Gu2(f + ζ),

∂u2

∂t
+

∂

∂x2
E =

√
Gu1(f + ζ),

where

G = det(Gij), E = Φ +
1
2

(u1 u
1 + u2 u

2), ζ =
1√
G

[
∂u2

∂x1
− ∂u1

∂x2

]
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DGM for SW model

• Domain: Each face of the cubed-sphere is partitioned into
Ne ×Ne rectangular non-overlapping elements Ωij.

• Each element is mapped onto [−1, 1]⊗ [−1, 1]

ξ

(−1, 1)

ξ
(−1, −1) (1, −1)

(1, 1)

1

2

Cubed-Sphere ( Ne = 5) with 8× 8 Gauss-Lobatto-Legendre points
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DG-SW : Numerical Experiment

• Time Integration: A third-order total variation diminishing
(TVD) Runge-Kutta scheme without a filter or limiter.

• Numerical Flux: Lax-Friedrichs; eigenvalues of F ′(U)
α1 = max

(
|u1|+

√
ΦG11

)
, α2 = max

(
|u2|+

√
ΦG22

)

SW Test case-1: Solid-body rotation of a cosine-bell (α = π/4)



12

DG-SW: Test Case-1 ( α = π/4)

Equidistant vs Equiangular DGM vs SEM
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DG-SW Deformational Flow:

Deforming vortex field ψ(λ′, θ′, t) = 1− tanh
[

ρ′(θ′)
γ sin(λ′ − ω′t)

]

Idealized Cyclogenisis (Doswell 1985; Nair, C ôt é & Satniforth, 1999). Max error is O(10−6).
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DG-SW: Test Case-2

Steady state geostrophic flow (α = π/4). Max height error is O(10−6) m.
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DG-SW: Test Case-5

Zonal flow over a mountain: (864× 4× 4) grid, after 5 and 15 days of integration
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DG-SW Test: Rossby-Haurwitz Wave

(864× 4× 4) Grid.
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Summary

• Discontinuous Galerkin Method (DGM) based flux form
shallow water model has been developed on the cubed-
sphere ( Nair, Thomas & Loft 2004 MWR, submitted ).

• The standard relative error metrics are significantly smaller
for the equiangular as opposed to the equidistant projection.

• Numerical results either comparable or better than a standard
spectral element method.

• DG scheme exhibits exponential convergence for SW test
case-2

• DG solutions of the SW test cases are much better than those
of a spectral model (Jacob-Chien et al. 1995) for a given
spatial resolution.
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• For high-order spatial discretization, the solution do not
exhibit spurious oscillation for the flow over a mountain test
case.

• DG model conserves mass to machine precision. Conservation
of total energy and enstrophy is better preserved than the
finite-volume models ( Lin & Rood 1997; Thuburn 1996 ).

• Future work: Time integration scheme, limiters. Parallel
implementaion of the DG model in the NCAR SE modeling
framework.


