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DGM - Motivation

e Advantage:

* Inherently conservative (Monotonic option)
* High-order accuracy & High parallel efficiency
* “Local” method & AMR capable




DGM In Cartesian Geometry

e 2D scalar conservation law:

oU

5 +V-FU)=0, in Qx(0,7T);V(z,y)eN

where U = U(z,y,t), V = (9/0x,0/dy), and F = (F,G) is the
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DGM - Weak Galerkin Formulation

e Consider an element (2;; and an approximate solution Uy, in
the finite dimensional vector space  V,(Q).

e Multiplication of the basic equation by a test function oy €
V;, and mtegratlon over the element  Q;; by parts, results in a




DGM - Flux Term

e Along the boundaries of an element  0€;;, the function Uy is
discontinuous.

e Therefore, the analytic flux  F(U,) - i must be replaced by a
numerical flux F (U, ,U;)




DGM - Discretization

e Orthogonal basis: A modal basis set B
0,1,...,k} consists of Legendre polynomials.

e Reference element: Map (z,y) = (§,n) € [-1,1] ® [-1,1]

e Expand approximate solution  U;; interms of P;(&) P,(n):




Cubed-Sphere Geometry

e The sphere is decomposed into  six identical regions , using
the central (gnomonic) projection (  Sadourny, 1972 ):

xr=atan )\, y = atanf sec \, | 2a IS the side of the cube.

* Local coordinate systems are  free of singularties
* have identical metric terms




Cubed-Sphere Geometry

e Equidistant Projection: Use (x,y) € |[—a,a] as independent
variables. The metric tensor of the transformation is

R[a®+y* —wy
r4 —zy a’+zx?

Gij =




Shallow Water Equations on the
Cubed-Sphere

e In curvilinear coordinates, the continuity and momentum
equations for the flux form shallow water system can be
written as follows (Sadourny 1972; Rancic et al. 1996)




DGM for SW model

e Domain: Each face of the cubed-sphere is partitioned into
N, x N, rectangular non-overlapping elements  2;;.

e Each elementis mapped onto [—1,1] ® [—1, 1]

(=1, 1) 1,1
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DG-SW : Numerical Experiment

e Time Integration: A third-order total variation diminishing
(TVD) Runge-Kutta scheme without a filter or limiter.

e Numerical Flux:  Lax-Friedrichs; eigenvalues of  F'(U)

o' = max (|u1| + \/W> , o =max (|u2| i W)




DG-SW: Test Case-1 (a = w/4)

Equidistant (DG4, 2400x4x4) DGM (NE-Flow: 96x16x16)

Normalized Error
Normalized Error
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DG-SW: Test Case-2
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DGM: SW Test—2, Convergence
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DG-SW: Test Case-5

DG B864x4x4: Isolated Mountain (Day—0) Normalized Mass (DG4: 864x4x4)

12
Days

Normalized Energy (DG4: 864x4x4)
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(DG 864x4x4): Rossby—Haurwitz Wave (Day—7)
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Summary

Discontinuous Galerkin Method (DGM) based flux form
shallow water model has been developed on the cubed-
sphere ( Nair, Thomas & Loft 2004 MWR, submitted ).

The standard relative error metrics are significantly smaller
for the equiangular as opposed to the equidistant projection.




e For high-order spatial discretization, the solution do not
exhibit spurious oscillation for the flow over a mountain test

case.

e DG model conserves mass to machine precision. Conservation
of total energy and enstrophy iIs better preserved than the
finite-volume models ( Lin & Rood 1997; Thuburn 1996 ).

e Ulure work  Time integration scheme, limiters. Parallel
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