Abstract

1 Motivation:

A substantial amount of knowledge about biomolecular interactions resides in the biomedical literature and has been increasingly made available as structured, curated database entries. Although recent research in biological assertion extraction has mostly focused on automatically detecting interacting entities, automated generation of provenance for interacting pairs remains of equal importance. We show that a number of machine learning algorithms can be used to directly establish sentence-level support for given entity-entity interactions in biological databases. We specifically focus on finding support for specific interaction entries in database assertions about protein-protein interactions.

2 Results:

To find evidence backing up a biological interaction is to classify whether or not each sentence contains assertive support for the claimed interaction. We evaluated our method by comparing its classification against human judgement on a corpus of MEDLINE papers extracted from the BIND (Biomolecular Interaction Network Database). Each article in our experiment has at least one pair of biological entities known to interact with each other and whose interaction is supported by the article. The best two machine learning algorithms in our work achieve over 21% improvement on classification accuracy and over 6% improvement on F-measure, which is statistically significant.

3 Introduction

The sheer volume of biological literature and the complexity of information it contains far exceed the ability of single investigators to comprehensively study. The growing rate at which new articles are published has only aggravated the problem. Accordingly, accurately extracting, cataloging, and indexing this literature into structured databases is a critical requirement for investigators studying complex biological systems. For example, biological interaction extraction is extremely important for establishing the extent of signal pathway influence on target genes, or for understanding the behavior of cells under specific environmental conditions. Biological interaction information, however, is often a product of very specific experimental conditions and acquisition methods, ranging from high-throughput, proteome-scale interaction assays to detailed molecular biology experiments examining the interaction between individual biomolecules (e.g., protein-protein, protein-DNA, protein-small molecule, etc) in tightly constrained and well-understood experiments. The accurate cataloging and indexing of biological entity interaction data already reported from the biomedical literature has recently attracted a lot of attention in the research community (Shatkay and Feldman, 2003)). Cataloged and curated bases are not only essential in building models for com-
plex networks like major cellular pathways or cell-wide simulations for systems biology; they also often serve as the main authoritative resource for experimenters wishing to gain in-depth knowledge about a cellular system that would otherwise remain deep in individual papers.

As an example of one of these curated pathways, Figure 1 (Nusse, 2004) shows a model of a well-known signaling pathway, the Wnt Signaling Pathway. This pathway is only one of hundreds, and as currently understood, consists of over 50 interacting proteins. Maintaining this pathway current requires considerable human curation in order to remain accurate and current to the experimental literature. In the pathway, each interaction in turn is supported by a one to possibly hundreds of published experiments relating to the interaction, and each potentially having key information about that interaction that could be relevant to a researcher studying the behavior of this pathway. Only compounding the complexity of the problem are the even greater number of possible relations among them. At least two tasks need therefore be automated: 1) identifying interacting partners; and 2) verifying claimed interactions. We focus on the second problem in the current paper.

In recent years, there has been increasing availability of a variety of NLP (natural language processing) techniques, ranging from syntactic tools (such as shallow/full parsers and grammar matching); to lexical analyses (for example keywords search and morphological analysis); and to statistical approaches (Bayesian classification, word statistics, and etc.). For an extensive review, readers should refer to (Shatkay and Feldman, 2003). We try to accomplish a task of classifying if a sentence is an affirmative assertion of specified interactions between biological entities. The primary aim of this project is to map existing database entries as accurately as possible to their source data, in order to establish a strong provenance link from each reported protein interaction to the exact sentences in the paper which is claimed to contain the interaction cited.

As a simplifying initial pre-processing step, sentences which do not mention the both interacting entity names are excluded from further processing. To classify the remaining sentences, we propose to use four machine learning algorithms – Naive Bayes, Support Vector Machine, Decision Tree, and TUMBL (Tripartite Update Method for Biased Learning). We adopt the implementation of the first three classifiers provided by WEKA (Waikato Environment for Knowledge Analysis), an open source package of machine learning algorithms written in Java (Witten and Frank, 2000). The last algorithm has been recently developed by our research group as a general machine learning classification method. All algorithms use sentential features that encode properties of the individual sentence. We employ only lexical features that capture words of certain types, distance between indicative words, and many others surface-level characteristics.

Data in the current work consist of sentences extracted from a set of MEDLINE articles annotated as containing interacting partners by the BIND database as of September of 2003. Each paper corresponds to one or more pairs of entities whose interaction is manually reviewed by human curators for the BIND project and each interaction has been annotated as supported by the associated article.

We consider the base criteria for sentence inclusion to be the co-appearance of interacting entities in the paper and for sentences to be part of the abstract and body text of the paper (hence excluding references and titles, etc). We recruit human annotators to classify the 3216 sentences thus extracted from the articles, and used their manual labeling as our gold standard. Classification accuracy and F-score are the performance metrics used. The latter is introduced by Keith van Rijsbergen in (van Rijsbergen, 1978) as the harmonic mean (or conservative average) of precision and recall.

4 Related Work

There are two tasks closely tied with each other in the knowledge acquisition of biological entity relations. In one approach, researchers try to automatically detect interacting pairs from scientific text. Conversely, however, people are interested in extracting supportive evidence of known interactions from relevant data sets. The current work falls into the second category.

There are extensive examples of named entity and relationship interaction reported in the literature, including automated annotation algorithms ((Andrade
Figure 1: Model of An Example Pathway – Wnt Signaling (picture by R. Nusse, October 2003, reproduced by permission of the author).

and Valencia, 1997; Blaschke et al., 1999; Daraselia et al., 2004; Iliopoulos et al., 2001; Koike et al., 2003; Raychaudhuri et al., 2002; Stephens et al., 2001; Wilbur and Yang, 1996)) as well as methods to detect protein-protein interaction information ((Bader and Hogue, ; Blaschke et al., 1999; Marcotte et al., 2001)). The methods employed share a mixture of text mining and indexing for terms which can be classified by Bayesian statistics ((Wilbur and Yang, 1996)), grammar matches ((Temkin and Gilder, 2003)), or string matches to known entities, as well as the use of partial and full parsers ((Santos et al., 2004)).

The inverse problem of extracting entities, however, is that of validating and resolving database interaction entries against their reported sources from the literature. These reverse links can serve both as validation and error-correction links, but most importantly, methods which can resolve them can give an automatic and extremely fine-grained provenance trail to human researchers interested in validating pathways or investigating them in depth. Similar in spirit (very different in goals), (Light et al., 2004) studies the application of speculative sentences in bioscience literature and discusses the use of automated systems to identify them. (Light et al., 2004) limits their scope to the MEDLINE abstracts only.

Establishing accurate provenance is essential in biology – the databases are only as valid as the direct assertions underlying each entry, and especially critical if such databases are to be used for derivative or cross-reference purposes. Interactions extracted from automated sources can be a powerful utility for researchers, but in the end they are only as reliable as the underlying data. Spurious hits in result sets of thousands of automated interactions can substantially degrade the utility the entire dataset if the researcher must still validate each hit individually for accuracy. In particular, an automated system to validate independently these assertions would be just as essential for an accurate final database as the assertion generator in the first step.

Validation systems like ours can also assist in automatically establishing provenance information that can later serve as source material for further automated annotation. For instance, a validated provenance chain for a protein interaction could be resolved to the specific experimental section of the paper discussed, and the section then scanned for experimental details exactly describing how the interaction was originally established.

(Blaschke et al., 1999) extracts interaction information from the abstracts of scientific publications. Instead of syntactic analysis, it relies on lexical properties of the abstract sentences. One commonality between their work and ours is the use of “action verbs” indicative of object relations. While they use such verbs together with predetermined entity names to construct rules for recognizing interaction in text segments, we incorporate the verbs into many more features for our classifiers. (Blaschke et al., 1999) takes into account relative position of an action verb to its neighboring entities, but is limited to fairly simple pattern with the verb appearing between the entity names. As a consequence, their system is not capable of sifting out negative assertions, and nor is it able to identify interactions stated in other sentential forms (e.g. the verb preceding both entities), all of which are ubiquitous in bioscientific writings. Sentence 2 and 3 in Table 1 are two examples in which both entity names occur before the verb.

In terms of the classifier algorithms, we use several standard methods in the machine learning lit-
erature as well as a newly developed graph-based learning algorithm named TUMBL. The version of TUMBL we use in this work is improved from its initial introduction in (Radev, 2004), and will be further extended along directions of (Wu and Huberman,) and (Doyle and Snell, 1984) that establish linkage between random walk and electric circuits.

5 Problem Definition

We first formalize the problem as follows:

Given an input instance (S, P), where S is a sentence from the molecular biology literature and $P = (A, B)$ a pair of entities, we are to determine if S contains assertive evidence that backs up the alleged interaction between A and B. This is hence a binary classification problem. Here “interaction” represents a wide concept, including more fine-grained biological relations of the interacting partners, such as regulation, repression, translocation, direct binding, enzymatic interaction (phosphorylation), and etc.

As an example, Table 1 shows a sample MEDLINE article and a pair of biological entities known to have an interaction that is supported by this article. The top part of the table lists a number of sentences in this paper that provides evidence of the interaction between Cet1 and Ceg1 whereas those in the bottom part do not. It is obvious that the presence of the entity names do not necessarily imply a sentence being an assertion. Sentence 4 in the non-assertion set does not mention relations between the two entities whereas Sentence 5 phrases it as a hypothesis without asserting its existence. Besides the two negative examples shown here, negation has been known to affect classification accuracy (Blaschke et al., 1999). Most of the time, negative assertions are signaled by certain negation-words such as “no”, “not”, “nor”, and etc. The simplest (though idealized) example would be “Protein A has been shown to not bind with B.” From Table 1, it is interesting to observe that the appearance of negation-words is also neither sufficient nor necessary condition of a sentence not being an assertion. For instance, Sentence 2 in the graph clearly affirms an interaction between Cet1 and Ceg1 even though it also contains a negating phrase “do not”. Therefore, the classification task we tackle is not a trivial matter of name entity searching, nor can it be accomplished by just matching indicative words.

6 Approach

This section includes description of our classification methods. In particular, we explain how they make use of the features designed specifically for this task.

6.1 Features

Features express properties of the sentences. Useful features would naturally encode sentential characteristics that correlate well with the class of the sentences. In the current work, we resort to only lexical features which have turned out to be both simple and efficient. Given that we are to determine if a sentence contains evidence of some known biological interaction, a wonderful resource for features is the entity pair associated with each sentence. Second, we have complied a list of verbs that are often indicative of interactions in the biology domain. These words are what (Blaschke et al., 1999) refers to as “action-verbs”. As is reported by (Blaschke et al., 1999) and others, recognizing and hereafter excluding negative sentences remains a hard problem. Distinguishing between negative and affirmative assertions affects classification, information extraction, and natural language understanding in general, if not done appropriately. To address this challenge, we also collect a set of words often signaling negation or uncertainty. Table 2 displays the indicative verbs and the negation/uncertainty words used in our study. The inclusion of words like “if”, “test”, and “whether” might seem questionable given their high word frequency, yet experiments show that our methods achieve better performance with these words included on the devtest data. The majority of the features are built upon these special typed words (with stemming). All features are binary.

A subset of the features aim specifically at identifying negative assertions and/or uncertainties (like Sentence 5 in Table 1). Below is a list of several major categories of negative instances – sentences that contain interacting pairs but fail to assert a relation – prepared by human annotators participating in our study.

1. Figures and methods – e.g. “The figure shows
Table 1: Sample MEDLINE article and the entity pairs of interest. The upper portion shows a number of assertive sentences supporting the relation of Cet1 and Ceg1. The lower portion includes negative examples in which sentences contain the interacting entities but fail to provide provenance of the interaction.

Table 2: List of action indicative verbs and negation words.

Table 3 lists all features used in the classification task. The particular order shown here is alphabetical with respect to feature name (these are not shown explicitly as they are not directly relevant to the outcome). The second column of the table has brief description of what each feature does.
implemented as described by (Witten and Frank, 2000).

TUMBL (Tripartite Update Method for Biased Learning) is a graph learning algorithm recently developed at University of Michigan CLAIR (Computational Linguistics and Information Retrieval) research group.

TUMBL uses a graph model to represent data in the classification problems, and bases its learning process on Markov random walk over the graph. The graph representation consists of all labeled training data, unlabeled test data, and nodes corresponding to binary feature objects. Edges exist only from some feature node to some data node. An edge exists if the feature on one end of it holds for the data instance on the other end. Edge weights reflect the importance of the incident feature. The graph can be considered tripartite because the component on the right hand side of the edges is split into two groups: labeled and unlabeled vertices. It is however a special case of a tripartite graph in that no links cross the two subcomponents.

Each node in TUMBL is associated with a class distribution, i.e. the probability of the node being assigned to each class. In binary classification problems like ours, the class distribution is hence a pair. The class distribution of feature nodes reflects a feature’s polarity, or how positive or negative prone the feature is. Class distributions of labeled data are definitive and stay constant over time. Those of feature and unlabeled nodes are initialized to neutral, (0.5, 0.5), and are updated subsequently. We assign equal weights to all binary features in our classification task, i.e. all edge weights are set to 1.

To update the class distribution of feature and unlabeled objects, TUMBL performs a sequence of 3 random walk steps: 1) from the labeled data to the feature nodes; 2) from the feature nodes to the unlabeled ones; and 3) from the unlabeled nodes back to the feature objects. The transition matrix of each random walk is defined by the weights of the edges connecting the two vertex sets involved in that step. The random walk steps propagate class distributions (multiplying the class distribution matrix to the transition matrix) from the labeled to the unlabeled through features. Once very 3 steps, TUMBL restarts from the labeled instances, and none of the random walk steps goes to the labeled objects. This way, labeled data serve solely as information source in TUMBL algorithm. Because the transitions follow links that connect a data point and a binary feature, labeled instances would effectively “push out” their class information to the unlabeled instances that share similar feature values, hence achieving the purpose of learning. After TUMBL terminates, we classify each unlabeled instance according to its final class distribution, choosing the class with higher probability over the other.

A comprehensive description of this algorithm is beyond the scope of this paper but may be found

<table>
<thead>
<tr>
<th>Feature Id</th>
<th>Feature Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>If some action verb and one of the interacting entities co-appear in a same clause.</td>
</tr>
<tr>
<td>2</td>
<td>If some action verb co-appears with both entities of the interaction in a same clause.</td>
</tr>
<tr>
<td>3</td>
<td>If the sentence has at least one action verb.</td>
</tr>
<tr>
<td>4</td>
<td>If the sentence has at least 3 action verbs.</td>
</tr>
<tr>
<td>5</td>
<td>If the sentence has at least 2 negation words.</td>
</tr>
<tr>
<td>6</td>
<td>If the sentence has at least 1 negation word.</td>
</tr>
<tr>
<td>7</td>
<td>If both interacting entities co-appear in a same clause.</td>
</tr>
<tr>
<td>8</td>
<td>If the maximum distance between an action verb and an interacting entity is small (d ≤ 13).</td>
</tr>
<tr>
<td>9</td>
<td>If the maximum average distance between an action verb and an interacting entity is small (d ≤ 10).</td>
</tr>
<tr>
<td>10</td>
<td>If the minimum distance between an action verb and an interacting entity is small (d ≤ 11).</td>
</tr>
<tr>
<td>11</td>
<td>If the minimum distance between the two interacting entities is small (d ≤ 9).</td>
</tr>
<tr>
<td>12</td>
<td>If the minimum distance between the two interacting entities is large (d > 11).</td>
</tr>
<tr>
<td>13</td>
<td>If the maximum average distance between an action verb and an interacting entity is medium (2 < d ≤ 5).</td>
</tr>
<tr>
<td>14</td>
<td>If the minimum average distance between an action verb and the two interacting entities is small (d ≤ 2).</td>
</tr>
<tr>
<td>15</td>
<td>If the minimum average distance between an action verb and the two interacting entities is medium (2 < d ≤ 9).</td>
</tr>
<tr>
<td>16</td>
<td>If the minimum average distance between an action verb and the two interacting entities is large (d > 9).</td>
</tr>
<tr>
<td>17</td>
<td>If the minimum average distance between a negation word and an action verb is small (d ≤ 5).</td>
</tr>
<tr>
<td>18</td>
<td>If the minimum distance between a negation word and an action verb is medium (2 < d ≤ 5).</td>
</tr>
<tr>
<td>19</td>
<td>If the minimum distance between a negation word and an action verb is large (d > 5).</td>
</tr>
<tr>
<td>20</td>
<td>If the minimum distance between a negation word and an action verb is small (d ≤ 2).</td>
</tr>
<tr>
<td>21</td>
<td>If the minimum distance between the two interacting entities is large (d > 2).</td>
</tr>
<tr>
<td>22</td>
<td>If the minimum distance between the two interacting entities is medium (2 < d ≤ 2).</td>
</tr>
<tr>
<td>23</td>
<td>If the minimum distance between the two interacting entities is small (d ≤ 2).</td>
</tr>
<tr>
<td>24</td>
<td>If some action verb and one negation word co-appear in a same clause.</td>
</tr>
</tbody>
</table>

Table 3: Binary features used in our classification problem.
in (Radev, 2004). We include the pseudocode of TUMBL in Figure 2 and a snapshot of the software visualizing the learning process of TUMBL in Figure 6.2.

\[
\text{TUMBL}(n, d_0) \\
// n: number of iterations; \ d_0: damping factor \\
\text{Initialize class distribution matrices } X, Y_0, \text{ and } Z_0 \text{ for labeled nodes, feature nodes, and unlabeled nodes.} \\
d = 1 \\
\text{for } t = 1 : n \\
\quad Y_t = d \times T_t^T X + Y_{t-1} \\
\quad \text{Row-normalize } Y_t \\
\quad Z_t = d \times T_t Y_t + Z_{t-1} \\
\quad \text{Row-normalize } Z_t \\
\quad Y_t = d \times T_t^T Z_t + Y_{t-1} \\
\quad \text{Row-normalize } Y_t \\
\quad d = d \ast d_0 \\
\text{endfor} \\
\text{for } i = 1 : ||U|| \\
\quad \text{if } Z_n(i, 1) > Z_n(i, 2) \text{ then} \\
\quad \quad \text{Assign positive to instance} \\
\quad \text{elseif } Z_n(i, 1) < Z_n(i, 2) \text{ then} \\
\quad \quad \text{Assign negative to instance} \\
\quad \text{else} \\
\quad \quad \text{Assign more probable class to instance} \\
\quad \text{endif} \\
\text{endfor} \\
\]

Figure 2: TUMBL Algorithm.

![Image 1](https://via.placeholder.com/150)

Figure 3: Snapshot of the visualization software for TUMBL.

7 Experimental Data

7.1 Data Collection

Data used in our study represent a small fraction of a larger MEDLINE corpus our collaborators in University of Michigan Bioinformatics have retrieved from NCBI (National Center for Biotechnology Information) through its Linkout Entrez Programming Utility.

The BIND article set we selected was comprised of 121 PubMed Ids, from which HTML full texts were obtained through the NCBI’s Linkout utility if available. There were several cases where full text was not retrieved. These cases were typically when the system was unable to retrieve the full-text directly from the publisher or if the articles were only available in PDF format. The successfully retrieved HTML articles were then converted into XML, with the tags representing common sections such as Title, Abstract, Methods, Conclusions, References, and so on. For each of the articles, BIND provides a list of entity interactions curated as being supported by the paper. An interaction may be backed up by more than one article, and likewise a single article can provide evidence of multiple interactions. Table 4 shows the 4 interactions returned by BIND with a search on PubMed Id 11283018.

<table>
<thead>
<tr>
<th>Interaction Id</th>
<th>Entity 1</th>
<th>Entity 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>6096</td>
<td>Bcl-XL</td>
<td>Bak1</td>
</tr>
<tr>
<td>6097</td>
<td>Bcl-XL</td>
<td>BaxB</td>
</tr>
<tr>
<td>6098</td>
<td>Bcl-XL</td>
<td>BCL2L12</td>
</tr>
<tr>
<td>6099</td>
<td>Bcl-XL</td>
<td>BimL</td>
</tr>
</tbody>
</table>

Table 4: Four interactions recorded by BIND to be supported by PubMed article 11283018.

7.2 Human Annotation

For each (article, interaction) pair, we drew from the article sentences that contained both entity names in the specified interaction – resulting in 3216 sentences. There were duplicates in these 3216 because a sentence from some articles could be extracted multiple times for distinct interactions of interest.

Annotation was developed by a voting system deployed as a PHP web interface to a relational database (MS SQL Server 2000). Thirteen voters enrolled, of which 1 was a faculty member and 12 were graduate students or research scientists with training in molecular biology. Voters were randomly assigned and identified via unique login to roughly equivalent-sized batches of sentences and instructed to vote over a one week period as time permitted. Voters were instructed to vote in small batches and in short intervals to prevent fatigue. At login into
the voting system, each voter was presented with sequential batches of 10 sentences at a time and instructed to assign vote of “yes” to each sentence where the two proteins listed for the sentence interacted directly (e.g. a physical interaction or a statement of two proteins cooperating as a complex). Voters were instructed to vote “no” for sentences where the protein names were not mentioned, for hypothesis statements (e.g. “we test interaction between A and B”), and for sentences where no interaction was mentioned. Voters were permitted to vote multiple times on the same sentences to accommodate changes in opinion, and each voter was shown the latest previous vote made by themselves or by another voter, for any sentences in the batch where such votes existed. In the database, all votes were tallied in a cumulative manner, and we maintained a time-stamped record of votes-by-voters throughout the project, recording every vote made, even in cases where more than one vote was made for each sentence. Figure 7.2 shows a snapshot of the GUI (graphical user interface) for the annotation task.

Table 5: Inter-judge agreement on multiply scored sentences.

<table>
<thead>
<tr>
<th>Vote 1</th>
<th>Vote 2</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>27</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>226</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>30</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>220</td>
</tr>
</tbody>
</table>

To measure inter-judge agreement, we examine all sentences that are annotated by more than one reviewer. In case where a sentence is scored by more than two judges, we consider all possible pairs of annotations when calculating inter-judge agreement. For example, if an instance receives 3 votes, 2 of which are 1 (yes) and the other 0 (no). The instance would then contribute 1 (pair) to the agreed set and 2 (pairs) to the disagreed set. Table 5 reports the counts of agreed and disagreed instances. Although only a subset of the sentences get multiple reviewers, the multiply scored instances are randomly picked. Inter-judge agreement is $\frac{226 + 220}{27 + 226 + 30 + 220} = 0.89$. While this number represents a relatively high level of consistency among our human reviewers, we excluded the 57 disagreed sentences from our experiments.

7.3 Data Split
Given the expense of human annotation, we left out some data for future extension and/or development of new classifiers for this problem. The rest of the data are divided into training, devtest, and test sets. Test data remained intact until we reported final performance of the algorithms.

- Training - 1000 sentences
- Devtest - 500 sentences
- Test - 500 sentences
- Untouched - 1159 sentences (excluding the 57 disagreed)

8 Results and Analysis
We measure accuracy and F-score of classification results. Whereas accuracy is well understood, F-score is computed as the follows,

$$F\text{-score} = \frac{2 \times \text{Precision} \times \text{Recall}}{\text{Precision} + \text{Recall}}$$

Using F-score (instead of Precision or Recall) can avoid awarding systems that achieve perfect precision but very low recall or vice versa (e.g. the baseline algorithm that assigns all instances uniformly to the majority class). Improving the F-score of classification remains a big challenge in the literature.

We first present in Table 6 the performance achieved by all four classifiers on the test data when
Table 6: Classification accuracy and F-score achieved by various algorithms on the test data.

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Accuracy</th>
<th>F-score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>0.5780</td>
<td>0.7326</td>
</tr>
<tr>
<td>Naive Bayes</td>
<td>0.6880</td>
<td>0.7459</td>
</tr>
<tr>
<td>Support Vector Machine</td>
<td>0.7000</td>
<td>0.7781</td>
</tr>
<tr>
<td>Decision Tree</td>
<td>0.6780</td>
<td>0.7330</td>
</tr>
<tr>
<td>TUMBL</td>
<td>0.7040</td>
<td>0.7879</td>
</tr>
</tbody>
</table>

they are trained on the entire training set. As a reference, we also show the baseline numbers, which corresponds to classifying all test sentences to the majority class (1). The numbers represent different levels of effectiveness of these machine learning algorithms. All have achieved improvement over the baseline with respect to both metrics. In particular, TUMBL and SVM (support vector machines) outperform the baseline by over 6.2% on F-score and over 21.1% on accuracy. Both are statistically significant.

8.1 Error Analysis

We examine the sentences that our machine classifiers label wrong, and notice all algorithms get many more false-positives than false-negatives (a ratio of around 10:1). Table 7 shows the confusion matrix of the classification results of TUMBL on the test data. To interpret the numbers, there exist a large number (134) of negative instances that are classified as positive. In contrast, only 14 truly positive data points are labeled the other way. The most probable cause is that features designed to discover clues for negativity or uncertainties are not yet robust enough. As remarked earlier in Table 1, several non-assertion cases are beyond the capabilities of the lexical-level features. We are showing a small list of real examples from the test set for which human reviewers mark negative, but the learning methods are tricked to classify otherwise.

- SLP-76 vs. FYN-T – “Immunofluorescence co-localization of FYB with FYN-T and SLP76.”
- SLP-76 vs. SLAP-130 – “These observations place SLAP-130 downstream of SLP-76 in CRP-induced signaling.”
- Bim vs. Bcl-2 – “Bim induces apoptosis which
can be inhibited by the general caspase inhibitor p35 and Bcl-2 but not by CrmA.
- Nkx-2.5 vs. GATA-4 – “MBP-GATA-4 pull-down assays were used to investigate the interaction of Nkx-2.5 and GATA-4 in solution.”

The first three examples trap machine classifiers by mentioning a third object having interaction with the one of the entities of interest. Lexical features are particularly vulnerable in such cases because the entities of interest are usually close to each other in the sentences, and sometimes, an action verb (e.g. “induce”) can also appear in the very proximity of the two entities. We expect the use of syntactic information is necessary to resolve problems of this sort. For example, a syntactic parsing of the second sentence would recognize that the verb “induced” is attached to CRP instead of the two we are about, hence concluding the sentence having no action verbs (relevant to the two entities of interest). The reason human scorers nullify the last sentence is even more subtle – it does not explicitly confirm the interaction. However, the sentence is also free of any negation signaling word, making it extremely hard for automated systems. It is unclear so far how such cases can be correctly handled.

9 Discussion

Naive Bayes, Support Vector Machine, and Decision Tree are machine learning algorithms well known for simplicity yet efficiency in a lot of tasks. To our knowledge, there is no previous application of these learning algorithms to the task of verifying protein interactions asserted in protein-interaction database entries. To this end, we have introduced a new graph-based learning algorithm, the initial version of which has already shown substantial success in classification.

Our future goals include further validation of potential discriminant features, perhaps employing a greedy search to select features in the order that
give the biggest performance boost in each iteration. We expect these optimizations, however, to be classifier-dependent, in that each algorithm may require a unique set of best performing features. In TUMBL, in lieu of dropping weaker features, we instead weigh all features to differing degrees, placing larger weights on the ones with larger predictive power.

We may also gain significant improvements by including additional syntax-related features, which could better capture true relations among action verbs, protein names, negation words, and other critical words. Incorporating higher-level information such as syntax could potentially lead to more accurate classification than simple word-distance metrics.

10 Conclusion

In the annotation effort required to establish exact sentence level provenance for database entries in BIND, even expert reviewers suffer from fatigue and often experience difficulty reading a large group of papers in search of individual annotations. Categorically, this experience is not unique to our researchers, instead it is something which biological researchers must undertake on a regular basis when establishing the deep factual basis for data extracted from a reference database for which only citation information is available.

The task for database curators attempting to remain current with the literature can be almost as difficult as the initial database survey if updates and literature indexing or error correction must be performed manually.

To this end, we have shown the application of various machine learning methods in validating the claimed biological interactions, and have shown that they compare well against the human reviewers. With four learning algorithms, Naive Bayes, Support Vector Machine, Decision Tree, and TUMBL, we have demonstrated that automatic methods for establishing direct-to-sentence citations from just pairs of interacting members in a protein database is a feasible task. The system performs this without fatigue, and without bias to the location of specific facts in a paper, and can highlight key sentences in papers where often the interactions are not readily found unless by careful reading.

As a method for pathway curation for biological models and databases, automated text processing holds much promise in both speed and accuracy of extracting information, but to date, little has been investigated with respect to the automated provenance and error-verification of facts already existing in databases or currently being input into those databases.

The system we presented may be a useful utility for automated database curation and provenance extension, both as a verification utility and as an update utility for when the database becomes outdated and needs to be re-established from a new corpus. The system could also serve as a useful adjunct to information extraction systems that rely on contextual information to automatically extract ancillary facts about specific entries in existing databases.

Acknowledgements

This work was supported in part by NIH Grant RO1-LM008106.

The authors also owe special thanks to Jeremy Phillips, Anura Hewagama, Kristen Veresh, Baxter Allen, Yili Chen, Rajasree Mennon, Damian Fermin, Ji Chen, Heather Grifka, Yin Xu, Jacob Balazer, Jahna Otterbacher, Chenyue Xing, and Yang Ye for their kind help in annotation and various other parts of the paper.

References

