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Body Composition and Genetic 
Lipodystrophy Risk Score Associate With 
Nonalcoholic Fatty Liver Disease and 
Liver Fibrosis
Vincent L. Chen,1,2 Andrew P. Wright,1,3 Brian Halligan,1 Yanhua Chen,1 Xiaomeng Du,1 Samuel K. Handelman,1,2  
Michelle T. Long,4 Douglas P. Kiel,5,6 and Elizabeth K. Speliotes1,2

Up to 25% of patients with nonalcoholic fatty liver disease (NAFLD) are not obese but may have a fat or muscle 
composition that predisposes them to NAFLD. Our aim was to determine whether body composition parameters 
associate with NAFLD and to identify genetic contributors to this association. This study included two cohorts. 
The first included 2,249 participants from the Framingham Heart Study who underwent a computed tomography 
scan to evaluate hepatic steatosis, dual-energy x-ray absorptiometry testing to assess body composition, and clini-
cal examination. Body composition parameters were normalized to total body weight. A subset of participants un-
derwent genotyping with an Affymetrix 550K single-nucleotide polymorphism array. The second cohort, Michigan 
Genomics Initiative, included 19,239 individuals with genotyping on the Illumina HumanCoreExome v.12.1 array 
and full electronic health record data. Using sex-stratified multivariable linear regression, greater central body fat 
associated with increased hepatic steatosis while greater lower extremity body fat associated with decreased hepatic 
steatosis. Greater appendicular lean mass was associated with decreased hepatic steatosis in men but not in women. 
A polygenic risk score for lipodystrophy (regional or global loss of adipose tissue) was associated with increased he-
patic steatosis, increased liver fibrosis, and decreased lower extremity fat mass. Conclusion: Greater central body fat 
associated with increased hepatic steatosis, while greater lower extremity body fat and, in men, greater appendicular 
lean mass were associated with decreased hepatic steatosis. A genetic risk score for lipodystrophy was associated with 
NAFLD and liver fibrosis. Our results suggest that buffering of excess energy by peripheral fat and muscle may 
protect against NAFLD and liver fibrosis in the general population. (Hepatology Communications 2019;3:1073-1084).

Nonalcoholic fatty liver disease (NAFLD) 
is characterized by excessive triglyceride 
accumulation in the liver in the absence of 

significant alcohol use or other underlying cause.(1) 
NAFLD is the most common chronic liver dis-
ease worldwide, affecting 20%-40% of the general 

Abbreviations: APRI, aspartate aminotransferase to platelet ratio index; BMI, body mass index; CI, confidence interval; CT, computed 
tomography; DXA, dual-energy x-ray absorption; FHS, Framingham Heart Study; LPR, liver:phantom ratio; LPRS, lipodystrophy polygenic 
risk score; MGI, Michigan Genomics Initiative; NAFLD, nonalcoholic fatty liver disease; OR, odds ratio; SNP, single-nucleotide polymorphism.
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population, and is associated with metabolic condi-
tions, such as obesity, diabetes, and dyslipidemia.(2-4) 
Unfortunately, treatment options remain limited, and 
a better understanding of the pathophysiology under-
lying NAFLD will be critical in developing more 
effective treatments.

While NAFLD is associated with obesity, approxi-
mately 25% of patients with NAFLD are not obese.(5) 
This finding suggests that not all fat contributes equally 
to NAFLD risk; it may be regional adiposity rather 
than overall adiposity that contributes to liver steatosis. 
Visceral fat is associated with increased risk of NAFLD 
and progression to hepatic fibrosis.(6-8) In contrast, 
gluteofemoral and lower extremity fat correlate with 
decreased transaminases and may be protective against 
hepatic steatosis.(9-11) Despite the importance of dif-
ferent fat depots in NAFLD, the literature on lower 
extremity fat in NAFLD is limited to studies of a few 
hundred subjects, mostly in Asian populations.

Skeletal muscle mass may also protect against 
NAFLD. Sarcopenia, a condition of low skeletal mus-
cle mass, has been linked to increased risk of NAFLD 
and advanced fibrosis.(12-14) Skeletal muscle function, 
too, may influence NAFLD; greater hand grip strength 
has been linked to decreased NAFLD prevalence.(15) 
Further, NAFLD is associated with the substitution 
of adipose tissue in skeletal muscle(16) and increased 
insulin resistance of skeletal muscle.(17) However, 
again, the literature on muscle fat and NAFLD risk is 
limited to small studies of a few hundred subjects and 
has not been studied in a Western population.

A number of genes have been implicated in 
NAFLD, and some of these genes also influence 

body composition.(18) For example, individuals with 
NAFLD in the presence of the patatin-like phos-
pholipase domain-containing 3 (PNPLA3) I148M 
variant are less frequently obese than those with the 
ancestral allele at PNPLA3.(19,20) More recently, sev-
eral genetic contributors to lipodystrophy have been 
identified. Lipodystrophy is characterized by global 
or selective deficiency of adipose tissue in the absence 
of malnutrition or a catabolic state.(21) While most 
patients with NAFLD are not overtly “lipodystrophic,” 
NAFLD is itself a form of ectopic fat accumulation 
and is highly prevalent in patients with familial lipo-
dystrophy.(21,22) Lipodystrophy was previously viewed 
primarily through the lens of rare familial diseases, 
but relative lipodystrophy may also exist in the general 
population as a continuous trait.(23) Nonfamilial lipo-
dystrophy is heritable, and a reported lipodystrophy 
polygenic risk score (LPRS) predicts insulin resistance 
and decreased lower extremity adiposity, a feature of 
lipodystrophy.(24) Whether people with an increased 
polygenic lipodystrophy score store more fat in the 
liver is not known.

We hypothesize that NAFLD may be a marker 
of partial lipodystrophy in the population. We test 
whether body composition, specifically fat distri-
bution and muscle bulk, strength, and fat content, 
associate with NAFLD in a large, well-characterized, 
European ancestry cohort, the Framingham Heart 
Study (FHS). Further, we test whether individuals 
with higher lipodystrophy polygenic scores have a 
higher prevalence of NAFLD and liver fibrosis using 
the FHS and another cohort, the Michigan Genomics 
Initiative (MGI).
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Participants and Methods
etHiCs statement

All FHS participants provided written informed 
consent approved by the Boston University Insti-
tutional Review Board and Hebrew SeniorLife 
Institutional Review Board. All MGI participants 
provided written informed consent approved by the 
institutional review board of the University of Mich-
igan (Ann Arbor, MI), and all research performed in 
this paper was approved by the institutional review 
board of the University of Michigan.

CoHoRts
This study included two cohorts. The first was the 

FHS, a multigenerational prospective cohort study of 
residents in and around Framingham, MA, character-
izing a broad array of phenotypes related to cardio-
vascular health.(25) We included the FHS Offspring 
and Generation 3 subcohorts. Between 1995 and 
1998, 3,492 participants from the Offspring cohort 
completed the seventh clinical examination (exam 7).  
Between 2008 and 2011, 3,399 participants from 
Generation 3 completed the second clinical examina-
tion (exam 2). These examinations included a detailed 
medical history, physical examination, collection of 
blood specimens, and measurement of anthropometric 
data, including hand grip strength assessment (for the 
Offspring cohort, hand grip strength measurements 
were collected separately).(25) Selected subjects par-
ticipated in substudies that involved additional test-
ing, including multidetector computed tomography 
(CT) scan, whole-body dual energy x-ray absorpti-
ometry (DXA) scan, and quadriceps strength testing. 
We excluded participants who reported excess alcohol 
use (>21 alcoholic drinks per week for men and >14 
alcoholic drinks per week for women). The physical 
activity index is a composite score calculated based on 
participant responses to questions regarding differ-
ent levels of physical activity and sleep patterns over 
a 24-hour period.(26) Grip strength and quadriceps 
strength were measured as described.(27,28)

In the FHS, a subset of participants underwent 
genotyping with a 550K single-nucleotide polymor-
phism (SNP) array (Affymetrix 500K Dual GeneChip 
and 50K gene-centered molecular inversion probe 
set).(29) Imputation was performed using the 1000 

Genomes cosmopolitan panel March 2012(v3) on 
the Michigan Imputation Server (https ://imput ation 
server.sph.umich.edu/index.html).(30)

The MGI is a prospective cohort with ongoing 
enrollment; all patients undergoing elective surgery at 
Michigan Medicine (Ann Arbor, MI) are potentially 
eligible for enrollment in this cohort. Enrollment 
involves genotyping of peripheral blood on the Illu-
mina HumanCoreExome v.12.1 array, a genome-wide  
association study and exome array consisting of 
>500,000 SNPs.(31) In addition, full laboratory infor-
mation and billing codes are available.

HepatiC steatosis anD 
musCle attenuation 
assessment

Between 2008 and 2011, multidetector abdominal 
CT scans (64 slice; General Electric Health Care) 
were performed, as described.(32) The mean atten-
uation (Hounsfield units) from three regions in the 
liver as well as from a calibration control (phantom) 
was calculated. The liver:phantom ratio (LPR) was 
calculated by dividing the mean hepatic attenuation 
by the attenuation of the calibration control (“phan-
tom”). LPR ≤0.33 was used to define NAFLD, as 
reported.(33) Muscle attenuation was measured at the 
left and right paraspinous muscles at the midabdomi-
nal level, as described.(34)

BoDy Composition 
assessment

Whole-body and regional measures of lean mass 
and fat mass were obtained by DXA scan (GE Lunar 
Prodigy fan beam densitometer), as described.(28,35) 
For the Offspring cohort, these DXA scans were 
obtained from 1996 to 2001. For Generation 3, they 
were obtained in 2010 and 2011. The DXA protocol 
was the same between the two cohorts. Lower extrem-
ity fat mass was a reported measure that combined the 
fat mass in both legs. Total fat mass was also reported. 
Appendicular lean mass was calculated by combining 
bilateral upper and lower extremity lean mass. Central 
fat mass was calculated by subtracting the bilateral upper 
and lower extremity fat mass from the whole body total 
fat mass. These measures were scaled to body weight 
by dividing the respective values by each participant’s 
weight in kilograms and were reported as a percentage.

https://imputationserver.sph.umich.edu/index.html)
https://imputationserver.sph.umich.edu/index.html)
https://imputationserver.sph.umich.edu/index.html)
.
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CliniCal anD laBoRatoRy 
measuRements

The age of the participant documented at the time 
of the clinical examination was used for the analy-
sis. Body mass index (BMI) was defined as weight  
(kg)/height (m2). Diabetes was defined by the presence 
of a fasting glucose ≥126 mg/dL, hemoglobin A1c 
≥6.5%, medical history of physician-diagnosed diabetes, 
or receiving medication for the treatment of diabetes. 
Hypertension was defined as a systolic blood pressure 
≥140 mm Hg, diastolic blood pressure ≥90 mm Hg, 
physician-diagnosed hypertension, or receiving anti-
hypertensive therapy. Metabolic syndrome was diag-
nosed based on the National Cholesterol Education 
Program’s Adult Treatment Panel III guidelines.(36)

In both the FHS and MGI, the aspartate amino-
transferase to platelet ratio index (APRI) score was 
used for noninvasive assessment of liver fibrosis. In 
the MGI, we defined cirrhosis based on the presence 
of an International Classification of Diseases, Ninth 
Revision (ICD-9) code (571.5, 571.2, and 571.6), 
ICD-10 code (K74.X, K70.2-4, and K71.7), or a text 
search for cirrhosis. A text search of radiology and 
pathology reports was performed for the character 
“cirrho,” and participants with that character were 
flagged as having cirrhosis with the following excep-
tions: (1) if the word “without” or “no” appeared in 
the same sentence as “cirrho,” subjects were consid-
ered to not have cirrhosis; (2) if the words “primary 
biliary cirrhosis” appeared in a sentence, that sentence 
was ignored for text-search purposes; and (3) if the 
words “evaluate,” “assess,” or “rule out” appeared in a 
sentence with “cirrho,” that sentence was ignored for 
text-search purposes. A gastroenterologist (V.L.C.) 
manually reviewed 200 randomly selected text strings 
and identified no false-positive cirrhosis diagnoses.

statistiCal analysis

nongenetic analysis
Differences in characteristics between participants 

with and without NAFLD were determined using a 
t test for continuous variables and chi-square test for 
proportions.

For the graphs of % NAFLD versus central fat 
mass, we computed sex-specific percentiles of central 
body fat mass and identified the percentage of partici-
pants within each percentile with NAFLD, as defined 

by LPR <0.33. These percentages were then stratified 
separately by high versus low appendicular lean mass 
or lower extremity fat mass (i.e., above versus below 
sex-stratified median). Univariable linear regression 
was performed on % NAFLD versus central fat mass 
and graphed as a smoothed linear model. Addition  
of quadratic terms did not improve the regression  
(P > 0.05 for all comparisons).

Multivariable linear regression analysis was per-
formed to determine the relationship between liver 
steatosis (as measured by negative LPR) and measures 
of body composition and strength. For these analyses, 
negative LPR (increased liver steatosis) was treated as 
the dependent (outcome) variable. Note that a higher 
LPR is associated with decreased liver steatosis so 
that positive beta values for covariates actually imply 
decreased liver steatosis. Because this is counterintui-
tive, to increase readability we used negative LPR as the 
dependent variable so that positive beta values imply 
increased liver steatosis. The primary independent 
(exposure) variables were (1) appendicular lean mass, 
(2) lower extremity fat mass, (3) central fat mass, (4) 
grip strength, (5) quadriceps strength, and (6) muscle 
steatosis (negative muscle attenuation for reasons simi-
lar to those for LPR, as above). These were inverse nor-
mally transformed in order to improve interpretability 
and treated as continuous independent variables.(18) β 
values for body composition parameters were reported 
as the effect of one rank unit (one sixth of the total 
variation of that trait) on LPR. In sensitivity analyses, 
we ran these regressions with nontransformed covari-
ates and the results were qualitatively the same (data 
not shown). Regression analyses were stratified by sex. 
Proportion of variation explained by variables was esti-
mated by comparing sums of squares for individual 
variables in the model with the total sum of squares.

Analyses were performed using R version 3.4.4 
(R Foundation for Statistical Computing, Vienna, 
Austria; www.r-proje ct.org) with the tidyverse pack-
age (www.tidyv erse.org). A two-sided P value of 0.05 
was used to determine statistical significance.

genetic analyses
Only participants of European ancestry were 

included in the genetic analyses. First, principal com-
ponents were calculated based on LASER/TRACE 
(https ://laser.sph.umich.edu), using the World imputed  
reference panel.(37) To exclude individuals who did 

http://www.r-project.org
http://www.tidyverse.org
https://laser.sph.umich.edu
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not cluster with the European group, individuals with  
|Z score| >3 for any of the first three principal com-
ponents were removed. Then, the principal compo-
nents were recalculated on the remaining individuals, 
using the European panel.

LPRS was calculated as reported.(24) In brief, LPRS 
was the total number of disease-causing alleles at each 
of 53 reported SNPs each individual carried. These 
SNPs were selected based on being associated with 
increased serum insulin, decreased high-density lipo-
protein cholesterol, and increased triglycerides; they 
were tested and shown to associate with decreased 
lower extremity fat indicative of lipodystrophy.(24) In 
cases when the genotype at that SNP was imputed 
rather than directly genotyped, we used dose, i.e., 
probability of having that given genotype at the SNP. 
First, we calculated the percentage of participants with 
NAFLD in the FHS (defined as LPR ≤0.33(38)) as a 
function of LPRS and performed logistic regression 
using the proportion of NAFLD as the dependent 

variable and the number of risk alleles as the indepen-
dent variable. This was graphed as a smoothed linear 
model. There was no improvement in the model after 
addition to quadratic terms for the number of risk 
alleles. Next, LPRS was used as an independent vari-
able for phenotypes, including the continuous traits of 
hepatic steatosis (negative LPR) and APRI as well as 
the binary traits of cirrhosis or NAFLD. These mod-
els were adjusted for age, age2, and the first 10 prin-
cipal components (to account for ethnic differences) 
and either stratified by or adjusted for sex as well.

Results
stuDy population

FHS participant selection for this study is illus-
trated in Fig. 1. Data on CT-measured hepatic ste-
atosis, whole body DXA scan, quadriceps and hand 

Fig. 1. Study design f lowchart. Abbreviation: PAI, physical activity index.
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grip strength, physical activity index, and clinical 
examination were available from 1,389 individuals 
from Generation 3 and 1,032 from Offspring. After 
excluding individuals with excess alcohol intake, 
1,300 individuals from Generation 3 and 949 indi-
viduals from Offspring remained for a total of 2,249 
individuals.

Overall, the cohort was 49% male participants 
with a mean age of 58.5 ± 11.8 years (Supporting 
Table S1). Prevalence of NAFLD was 28.3%. Clinical 
parameters stratified by presence versus absence of 
NAFLD are shown in Table 1. Participants with 
NAFLD were older and more frequently men and 
had a higher prevalence of diabetes, hypertension, 
and metabolic syndrome as well as expected dif-
ferences in biochemical profiles (P  <  0.05 for all 
comparisons).

BoDy Composition anD 
musCle stRengtH

Body composition and muscle strength in FHS 
participants with or without NAFLD in univariate 
analyses are depicted in Table 1. In the overall cohort, 

participants with NAFLD had greater amounts of total 
fat and central fat and smaller amounts of total lean 
mass and appendicular (i.e., arms and legs) lean mass 
(Table 1; P < 0.0001 for all). There was no difference 
in lower extremity fat mass (P = 0.26). Grip strength 
was greater in participants with NAFLD (P = 0.007), 
while there was no difference in quadriceps strength 
based on NAFLD status (P  =  0.92; Table 1). Sex-
stratified analysis was fairly similar overall. However, 
among women, grip strength no longer differed based 
on NAFLD status (Supporting Table S2). Among 
men, lower extremity fat was higher and grip strength 
lower in those with NAFLD (Supporting Table S3).

eFFeCt oF BoDy Composition 
on naFlD anD FiBRosis

Next, we sought to identify whether differences 
in body composition associated with increased risk 
of NAFLD in the FHS. Because central fat, lower 
extremity fat, and appendicular lean mass are cor-
related, we investigated whether they independently 
affected hepatic steatosis after adjustment for 
one another. The percentage of participants with 

taBle 1. CliniCal anD laBoRatoRy CHaRaCteRistiCs

Characteristic Overall (n = 2,249) No NAFLD (n = 1,613) NAFLD (n = 636) P Value for No NAFLD vs. NAFLD

Age (years) 58.5 (11.8) 58.1 (11.8) 59.3 (11.6) 0.028

Male (%) 48.6% 44.8% 58.2% <0.0001

Hypertension (%) 31.8% 25.6% 47.3% <0.0001

Diabetes (%) 14.9% 9.8% 27.5% <0.0001

Metabolic syndrome (%) 26.1% 15.2% 50.9% <0.0001

BMI (kg/m2) 28.1 (5.0) 26.9 (4.4) 31.1 (5.1) <0.0001

Systolic blood pressure (mm Hg) 120.2 (15.9) 118.5 (15.8) 124.4 (15.3) <0.0001

Diastolic blood pressure (mm Hg) 74.3 (9.2) 73.3 (8.9) 76.9 (9.6) <0.0001

Hemoglobin (g/dL) 13.9 (1.3) 13.8 (1.3) 14.0 (1.3) 0.001

Platelets (109/L) 239.4 (61.2) 239.0 (62.1) 240.3 (59.2) 0.67

Hemoglobin A1c (%) 5.5 (0.5) 5.5 (0.4) 5.8 (0.8) <0.0001

Creatinine (mg/dL) 0.91 (0.23) 0.90 (0.23) 0.93 (0.23) 0.007

Fasting glucose (mg/dL) 99.8 (19.1) 97.0 (15.9) 106.8 (24.0) <0.0001

Total cholesterol (mg/dL) 187.1 (36.0) 188.4 (35.0) 183.9 (38.0) 0.01

Triglycerides (mg/dL) 117.0 (75.3) 103.6 (54.7) 150.9 (104.2) <0.0001

High-density lipoprotein (mg/dL) 60.0 (18.4) 62.7 (18.5) 53.0 (16.2) <0.0001

Alanine aminotransferase (U/L) 24.2 (14.7) 21.9 (13.2) 29.9 (16.7) <0.0001

Aspartate aminotransferase (U/L) 22.5 (10.3) 21.8 (10.4) 24.1 (9.8) <0.0001

Total bilirubin (mg/dL) 0.49 (0.27) 0.49 (0.26) 0.50 (0.30) 0.26

Gamma-glutamyltransferase (U/L) 29.7 (33.7) 25.5 (23.5) 40.3 (49.6) <0.0001

Albumin (g/dL) 4.5 (0.3) 4.5 (0.3) 4.5 (0.3) 0.63

LPR 0.34 (0.06) 0.37 (0.03) 0.27 (0.07) <0.0001

Data are reported as mean (standard deviation) or proportion.
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NAFLD as a function of percentile of central fat 
mass stratified by sex and either lower extremity fat 
mass or appendicular lean mass status is shown in 
Fig. 2. In all analyses, higher central body fat associ-
ated with greater NAFLD prevalence (P  < 0.0001). 
High lower extremity body fat associated with 
lower NAFLD prevalence in both men and women 
(P  <  0.05). High appendicular lean mass associated 
with lower NAFLD prevalence in men (P  <  0.05) 
but not in women (P = 0.16).

We then performed multivariable linear regressions 
to determine whether body composition parameters 
independently associated with hepatic steatosis as a 
continuous variable in the FHS. We used age, physical 

activity, alcoholic drinks per week, and cohort as min-
imal covariates in all models. On multivariable analy-
sis, greater central fat mass associated with more liver 
steatosis in both men and women while greater lower 
extremity fat mass associated with less liver steatosis 
(Table 2; Supporting Table S4). In men but not in 
women, greater appendicular lean mass associated with 
less hepatic steatosis (Table 2; Supporting Table S4). 
In both sexes, greater paraspinal muscle fat associ-
ated with increased hepatic fat (Table 2; Supporting 
Table S4). These findings persisted in models adjusting 
for minimal covariates, central fat mass, lower extrem-
ity fat mass, appendicular lean mass, and hand grip 
strength, quadriceps strength, or muscle attenuation 

Fig. 2. Effect of central body fat, lower extremity body fat, and appendicular lean mass on NAFLD prevalence. Percentage of 
participants with NAFLD based on sex-specific percentile of central fat mass. (A,B) Stratified based on lower extremity fat mass above 
or at the median (“high”) versus below the median (“low”) for (A) women and (B) men. (C,D) Stratified based on appendicular lean 
mass above or at the median (“high”) versus below the median (“low”) for (C) women and (D) men. Shaded areas represent 95% CIs. 
Abbreviations: ALM, appendicular lean mass; LEF, lower extremity fat.
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(Supporting Table S4). In no model did quadriceps 
strength or hand grip strength associate with hepatic 
steatosis (Supporting Table S4).

For reference among women, 1 SD of liver steatosis 
corresponds to an LPR of 0.06. Thus, the fact that in 
women each rank unit of central fat mass was associated 
with a change in liver steatosis of 0.02 implies signifi-
cant explanatory power. Among men, the liver steatosis 
SD was 0.07, and the β values associated in men with 
each inverse-normalized unit of central fat mass (0.03), 
lower extremity fat (−0.01), and appendicular lean mass 
(−0.01) were relatively large. The combination of cen-
tral fat, lower extremity fat, appendicular lean mass, and 
muscle attenuation accounted for 14.4% of variation in 
liver steatosis in women and 18.1% in men.

We also tested whether these fat depots associated 
with the APRI, a noninvasive marker of fibrosis, in the 
FHS. In men, greater central body fat associated with 
increased APRI; each rank unit increase was associ-
ated with a 0.031 increase in APRI (95% confidence 
interval [CI], 0.003-0.061). There were no other asso-
ciations between body composition and APRI in men. 
In women, there was no association between body 
composition and APRI.

genetiC lipoDystRopHy RisK 
sCoRe

We further explored whether genetic predisposi-
tion to partial lipodystrophy influences liver-related 
phenotypes in the FHS and MGI, using the LPRS. 

Mean LPRS was 52.8 (SD, 4.3) in the FHS and 55.1 
(SD, 4.6) in the MGI. Participants with NAFLD had 
a higher LPRS than those without NAFLD (53.2 vs. 
52.7; P  =  0.006). We validated that, consistent with 
conferring a partial lipodystrophy phenotype, a higher 
LPRS associated with dyslipidemia and insulin resis-
tance and decreased lower extremity fat (P  <  0.001 
for all) but did not affect central fat or overall BMI  
(Fig. 3A). These findings held when men and women 
were analyzed separately (Supporting Figs. S1 and S2).

Unadjusted NAFLD prevalence increased signifi-
cantly with increasing LPRS in the overall cohort (Fig. 
3B; P < 0.005). This association remained in women 
(P  <  0.005) but not in men (P  =  0.16; Supporting 
Figs. S1 and S2). On multivariable linear regression, 
higher LPRS was associated with increased liver ste-
atosis in the overall FHS cohort (Fig. 3A) and among 
women (Supporting Fig. S1A). In men, LPRS did not 
associate with liver steatosis but the trend was in the 
same direction as in women (Supporting Fig. S2A). 
Adjusted odds ratio (OR) for NAFLD per allele of 
LPRS in the overall cohort was 1.04 (95% CI, 1.01-
1.06); overall, individuals in the ninetieth percentile 
for LPRS were 36% more likely to have NAFLD than 
those in the tenth percentile (Table 3).

Finally, we examined the effect of LPRS on liver 
fibrosis. We first performed linear regression with 
APRI as the dependent and LPRS as the indepen-
dent variable in the FHS, but the association was not 
significant. Therefore, we tested this hypothesis in 
the hospital-based MGI cohort (n  =  19,239). In the 

taBle 2. BoDy Composition anD stRengtH metRiCs

Characteristic Overall (n = 2,249) No NAFLD (n = 1,613) NAFLD (n = 636)
P Value for No NAFLD 

vs. NAFLD

Total body fat (kg) 27.5 (10.2) 25.4 (9.1) 33.0 (10.7) <0.0001

Central body fat (kg) 15.8 (5.7) 14.4 (5.1) 19.6 (5.8) <0.0001

Lower extremity fat (kg) 8.4 (3.6) 8.0 (3.4) 9.4 (4.1) <0.0001

Total lean mass (kg) 48.2 (11.5) 46.7 (11.1) 52.0 (11.7) <0.0001

Appendicular lean mass (kg) 21.4 (5.9) 20.8 (5.8) 23.2 (6.1) <0.0001

Total body fat/weight (kg/kg × 100%) 34.4% (9.3) 33.5% (9.4) 36.9% (8.5) <0.0001

Central body fat/weight (kg/kg × 100%) 19.7% (4.8) 18.9% (4.9) 21.8% (4.0) <0.0001

Lower extremity fat/ weight (kg/kg × 100%) 10.5% (3.8) 10.6% (3.8) 10.4% (3.7) 0.26

Total lean mass/weight (kg/kg × 100%) 61.1% (9.5) 62.1% (9.6) 58.6% (8.8) <0.0001

Appendicular lean mass/weight (kg/kg × 100%) 27.0% (4.8) 27.4% (4.8) 26.1% (4.5) <0.0001

Hand grip strength (kg) 35.6 (12.3) 35.1 (12.2) 36.7 (12.4) 0.007

Quadriceps muscle strength (kg) 25.5 (8.6) 25.5 (8.5) 25.5 (9.0) 0.92

Muscle attenuation (Hounsfield units) 49.2 (7.3) 50.0 (6.8) 47.4 (7.9) <0.0001

Data are reported as mean (standard deviation) or proportion.
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overall MGI cohort, each allele of LPRS was associ-
ated with an OR of 1.02 for cirrhosis diagnosis (95% 
CI, 1.00-1.03; P  =  0.03; Fig. 3C). Individuals in the 
ninetieth percentile of LPRS were 22% more likely 
to have cirrhosis than those in the tenth percentile. 
Adjusted OR among men was 1.02 (95% CI, 1.00-
1.04; P  =  0.03; Supporting Fig. S2C), and among 
women there was no significant association although 
a consistent direction of effect (OR, 1.01; 95% CI, 
0.99-1.03; Supporting Fig. S1C). After adjustment, 
a higher LPRS was associated with a greater APRI  

(Fig. 3A), indicating increased fibrosis. While the asso-
ciation was not significant when men and women were 
analyzed separately, the directions of effect trended in 
the same direction (P = 0.06 and 0.10 in women and 
men, respectively; Supporting Figs. S1 and S2).

Discussion
In summary, we show that greater central fat mass 

associated with increased hepatic steatosis while 
greater lower extremity fat mass and appendicular lean 
mass associated with less hepatic steatosis. In addi-
tion, greater paraspinal muscle fat was associated with 
increased hepatic steatosis. Overall, these four body 
composition parameters accounted for a substantial 
proportion of variation in hepatic steatosis (14% in 
women and 18% in men). Finally, higher LPRS led to 
increased hepatic steatosis and fibrosis in the popula-
tion, with a 36% and 22% increased risk, respectively, 
in individuals with high versus low LPRS.

Our findings suggest that NAFLD may be a marker  
of partial lipodystrophy in the population. Lipody-
strophy is classically thought of as a rare monogenic 
disease, but partial lipodystrophy (or even differences 
in fat depot distribution) may exist as a continuous 
trait in the population.(21,24) We found that LPRS 
associates with increased hepatic steatosis and fibrosis. 
Further, among participants with NAFLD, nonobese 

Fig. 3. Effect of LPRS on multiple traits. (A) Percentage of FHS participants with NAFLD based on number of LPRS alleles. (B) 
Percentage of MGI participants with cirrhosis based on number of LPRS alleles. Shaded area represents 95% CI. (C) Forest plot of 
associations between LPRS and multiple traits. Scale on the x axis is the allele effect size (β) of one LPRS allele divided by the SD of 
the specific parameter, i.e., what proportion of SD is accounted for by each additional allele of LPRS. Error bars depict 95% CI. Liver 
steatosis represents negative LPR. Muscle steatosis represents negative muscle attenuation in Hounsfield units. All traits except APRI 
were measured in the FHS; APRI was measured in the MGI. Abbreviations: HDL, high-density lipoprotein; HOMA-IR, homeostatic 
model of insulin resistance; LDL, low-density lipoprotein; TRIG, triglycerides.

taBle 3. lineaR RegRession on HepatiC 
steatosis*

Parameter

Beta coefficient

Women Men

Central fat index 0.0193† 0.0272†

Lower extremity fat index −0.0072† −0.012†

Appendicular lean mass index −0.0038 NS −0.0106†

Muscle steatosis 0.0013† 0.0009†

*Linear regression on hepatic steatosis, as defined as LPR (see 
Participants and Methods for details). Muscle steatosis was de-
fined as negative muscle attenuation (Hounsfield units). All four 
traits were inverse normalized. Beta coefficients correspond to the 
effect of one rank unit (approximately one sixth of the total vari-
ation). Analysis was stratified by sex. Covariates were age, age2, 
physical activity index, drinks per week, and cohort (i.e., Offspring 
versus Generation 3) and the four parameters in the above table.
†P < 0.05
Abbreviation: NS, not significant.
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participants had less appendicular fat than did obese 
subjects. Together, these findings imply that inade-
quate appendicular adipose tissue may contribute to 
NAFLD and fibrosis.

Interestingly, we found the LPRS associates with 
increased hepatic steatosis in women but not men. 
This may be because men have less lower extremity fat 
(7.7% vs. 13.2%) and consequently greater total lean 
mass (67% vs. 56%) and appendicular lean mass (31% 
vs. 24%) than women. We note that while there was 
no statistical association between appendicular lean 
mass and hepatic steatosis in women, the direction of 
effect was the same in both men and women, suggest-
ing that muscle mass is protective against NAFLD in 
both sexes. Thus, it may be that muscle may be able 
to buffer excess calories more in men than in women, 
who have less mass and thus use fat to buffer excess 
calories. A genetic decrease in lower extremity fat 
may therefore confer a proportionally greater risk for 
NAFLD in women than in men, who already have a 
small amount of lower extremity fat depot.

We also found that muscle steatosis associates with 
NAFLD, likely because when excess energy cannot be 
buffered by adipose tissue, it may be stored in ecto-
pic fat depots, such as muscle and liver. Unlike mus-
cle steatosis, however, muscle strength as measured by 
quadriceps and hand grip strength did not correlate 
with NAFLD in this study. Thus, while it appears that 
muscle fat is associated with increased hepatic steato-
sis and muscle mass with decreased steatosis, muscle 
strength does not appear to associate with NAFLD.

Consistent with earlier findings, we found that 
greater central (visceral) adiposity associates with 
increased prevalence of NAFLD while greater lower 
extremity adiposity associates with decreased NAFLD 
prevalence.(10,39) The mechanisms underlying these 
differences in disease risk based on fat location remain 
incompletely characterized but may relate to differ-
ences in macrophage and cytokine profiles in visceral 
fat and direct blood flow from visceral fat to the liver 
through the portal circulation.(40,41) In both men and 
women, body composition metrics explained a sub-
stantial proportion of variation in hepatic steatosis 
(18% and 14%, respectively). Additional studies will 
be required to better understand the biology underly-
ing these relationships.

Our study is limited by including only participants 
of European ancestry. The association between hepatic 
steatosis and LPRS may only reflect an association with 

one particular form of lipodystrophy and may not be 
generalizable to all lipodystrophy. Finally, DXA cannot 
distinguish between subcutaneous lower extremity fat 
and deeper lower extremity fat layers or between mus-
cle and other lean tissues, such as skin and connective 
tissue, although there is no clear pathophysiologic rea-
son nonmuscle lean tissue would be related to NAFLD.

Strengths of the study include that it is a large 
population-based study, which increases the general-
izability of our findings. In addition, CT and DXA 
are excellent quantitative noninvasive measurements 
of hepatic steatosis and body composition, respec-
tively, allowing rigorous testing of how body compo-
sition relates to NAFLD. Full genotypic information 
was available for genetic analysis. We also were able 
to assess for effects of the LPRS on fibrosis using two 
independent methods.

In conclusion, we demonstrated a novel association 
between partial lipodystrophy and liver steatosis and 
fibrosis in the population and report a connection 
between CT-measured hepatic steatosis and mus-
cle steatosis. To our knowledge, this is the first such 
report in a Caucasian population. These results sug-
gest that interventions directed at increasing muscle 
quantity, decreasing overall fat burden, or shifting fat 
distribution toward appendicular fat may be beneficial 
in reducing NAFLD and preventing its complications.
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