RTG SEMINAR ON SHIMURA VARIETIES

NOTES TAKEN BY GUANJIE HUANG, EDITED BY CALVIN YOST-WOLFF

Contents

1. Hermitian symmetric domains	1
1.1. Basic definitions	1
1.2. Classification	2
1.3. Hodge structure	2
2. Quotients by arithmetic subgroups	2
3. Shimura varieties	2
3.1. Definition of Shimura varieties	2
3.2. Examples	3
4. Canonical models	3
4.1. Canonical models of tori	3
4.2. Canonical models of general Shimura varieties	4

1. Hermitian symmetric domains

1.1. Basic definitions.

Example 1.1. Let $\mathcal{H} = \{z = x + iy \in \mathbb{C} \mid im(z) = y > 0\}$. This has the following structures:

- complex manifold
- Riemmanian form (given by Petersson inner form) with negative curvature
- transitive SL₂-action
- *i* the unique point fixed by $\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$.

Definition. A Hermitian symmetric domain (HSD) is a mainfold with the following structures:

- (1) complex structure;
- (2) Riemmanian form with negative curvature;
- (3) an transitive action of adjoint real algebraic group;
- (4) an isometric involution (fixes exactly one point);
- (5) non-compact type;

Let X be a connected HSD, then

$$X = G(\mathbb{R})^+ / K_p$$

for some real adjoint Lie group G and some stabilizer K_p of p by (3). It follows from (4) and (5) that involution acts on complexified tangent space at p as Cartan involutions: $\theta : \mathfrak{g}_{\mathbb{C}} \to \mathfrak{g}_{\mathbb{C}}$ such that $\mathfrak{g}_{\mathbb{C}}^{\theta}$ are a compact real form of $\mathfrak{g}_{\mathbb{C}}$. From this we can deduce that G is reductive and K_p is compact.

1.2. Classification. For $p \in X$ we can associate $u_p : U_1 = \{z \in \mathbb{C} \mid |z| = 1\} \to G(\mathbb{R})$ such that u_p fixes p and acts by z at the tangent space at p.

Theorem 1.1 (Classification of HSD). All non-compact connected HSD are of the form (G, X)where G is a real adjoint reductive Lie group, X is a $G(\mathbb{R})^+$ -conjugacy class of $u_p : U_1 \to G(\mathbb{R})$ such that

(1) on $\operatorname{Lie}_{\mathbb{C}}(G)$, characters of $\operatorname{Ad}_{U_1,\mathbb{C}}$ are $z, 1, z^{-1}$;

- (2) $\operatorname{Ad}(u_p(-1))$ is a Cartan involution;
- (3) $u_p(-1)$ does not project to 1 in any factor of G.

1.3. Hodge structure.

Definition. Let V be a real vector space. $V_{\mathbb{C}} = \bigoplus_{p+q=n} V^{p,q}$ is called a *Hodge structure* if $V_{p,q} \cong V_{q,p}$. A filtration given by $F^p V_{\mathbb{C}} = \bigoplus_{r \ge p} V^{r,s}$.

Let $S = \operatorname{Res}_{\mathbb{C}/\mathbb{R}} \mathbb{G}_m$. A Hodge structure can be identified with a representation $h : S \to \operatorname{GL}(V)$ such that the Hodge structure on V is given by

$$h_{\mathbb{C}}(z_1, z_2)v = z_1^{-p} z_2^{-q} v, \quad \forall v \in V^{p,q}.$$

Definition. A polarization of V is a map $\psi : V \otimes V \to \mathbb{R}(-n)$ of S-representations, where $\mathbb{S}_{\mathbb{C}} \cong \mathbb{C}^{\times} \times \mathbb{C}$ acts on $\mathbb{R}(-n)_{\mathbb{C}}$ by $z_1^{-n} z_2^{-n}$, such that $\psi_{\mathbb{C}}(h(i)u, \bar{v})$ is positive definite.

Consider all Hodge structures on V with

- specified dimensions of $V^{p,q}$;
- polarization $\psi: V \otimes V \to \mathbb{R};$
- possible extra conditions (Hodge tensors);

These have a \mathbb{C} -structure inside a Flag manifold denoted by S(d, t). Here $d : \{(p, q)\} \to \mathbb{Z}_{\geq 0}$ refers to the dimension conditions on $V^{p,q}$, and t is the polarization and the extra data.

Theorem 1.2. If S(d,t) satisfies Griffith's transversality (some condition on tangent space of S(d,t) inside that of the flag manifold), then any connected component of S(d,t) is a HSD. Conversely, any connected HSD is a connected component of some S(d,t).

Example 1.2. Let V be 2-dimensional, d(1,0) = 1, d(0,1) = 1, and $\psi = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$. In this case, $S(d,t) \cong \mathcal{H}^- \subset \mathbb{P}^1(\mathbb{C})$ (correction: in the talk I said $\mathbb{H} \cup \mathbb{H}^-$ which is not true).

2. Quotients by arithmetic subgroups

Let (G, X) be a non-compact HSD, Γ an *arithmetic subgroup* (i.e., for any faithful representation $G \hookrightarrow \operatorname{GL}_n, \Gamma \cap G(\mathbb{R}) \cap \operatorname{GL}_n(\mathbb{Z})$ is of finite index in both Γ and $G(\mathbb{R}) \cap \operatorname{GL}_n(\mathbb{Z})$).

Theorem 2.1 (Baily-Borel). $\Gamma \setminus X$ has a unique structure of a quasi-projective algebraic variety if Γ is arithmetic and torsion-free.

This idea behind this theorem is to show the Baily-Borel compactification X^{BB} has automorphic forms for the discrete subgroup Γ which separate the points X^{BB} and then embed X into projective space with these forms and apply Chow;s theorem. The uniqueness comes from

Theorem 2.2. (Borel, Kwack, Kobayashi) Any holomorphic map $f : (\mathbb{D} \setminus \{0\})^r \times \mathbb{D}^s \to X$ extends to a holomorphic map $f : (\mathbb{D} \setminus \{0\})^r \times \mathbb{D}^s \to X^{BB}$.

3. Shimura varieties

3.1. Definition of Shimura varieties.

Definition. A connected Shimura datum is (G, X) where G is a semisimple algebraic group over $\mathbb{Q}, X = G^{\mathrm{ad}}(\mathbb{R})^+$ -conjugacy class of homomorphism $u: U_1 \to G^{\mathrm{ad}}$ such that

- (1) Ad(u) acts by $z, 1, z^{-1}$ on Lie($G_{\mathbb{C}}^{\mathrm{ad}}$);
- (2) $\operatorname{Ad}(u(-1))$ is a Cartan involution.
- (3) G^{ad} has no \mathbb{Q} -factor H with $H(\mathbb{R})$ compact.

Definition. A connected Shimura variety is the inverse limit of varieties $\{\Gamma \setminus X\}_{\Gamma}$ (for Γ small enough and commensurate).

Each $\Gamma \setminus X$ is the quotient of a Hermitian symmetric domain. The $\Gamma \setminus X$ are defined over different fields.

Example 3.1. $\Gamma(N) \setminus \mathcal{H}$ is defined over $\mathbb{Q}(\zeta_n)$.

Definition. A Shimura datum is (G, X) where G is reductive algebraic group over \mathbb{Q} , $X = G(\mathbb{R})$ conjugacy class of homomorphism $h : \mathbb{S} \to G_{\mathbb{R}}$ such that

- (1) Ad(h) acts on Lie($G_{\mathbb{C}}$) with characters $z_1 z_2^{-1}, 1, z_1^{-1} z_2$;
- (2) $\operatorname{Ad}(h(i))$ is a Cartan involution on $G_{\mathbb{R}}^{\operatorname{ad}}$;
- (3) G^{ad} has no \mathbb{Q} -factor H with $H(\mathbb{R})$ compact.

A shimura variety is $\{G(\mathbb{Q}) \setminus X \times G(\mathbb{A}_f)/K\}_K$ where K is a compact subgroup of $G(\mathbb{A}_f)$.

 $G(\mathbb{Q}) \setminus X \times G(\mathbb{A}_f)/K = \bigsqcup_i \Gamma_i \setminus X$ where $\Gamma_i = G(\mathbb{Q}) \cap g_i K g_i^{-1}$ and g_i runs over the representatives of $G(\mathbb{Q})$ -K double cosets. By strong approximation, this is a finite union.

3.2. Examples.

Example 3.2 (Siegel modular variety). We get this from the variation of Hodge structure d(0,1) = n, d(1,0) = n and ψ a symplectic form. The group theoretical way to view this is to look at the group

$$GSp(V,\psi) = \{g \in GL(V) \mid \psi(gv,gu) = \lambda(g)\psi(v,u)\}.$$

acting on $\{X \in M_{n \times n}(\mathbb{C}) \mid Z^t = Z, \operatorname{im}(Z) > 0\}$ by

$$\begin{pmatrix} A & B \\ C & D \end{pmatrix} \cdot Z = (AZ + B)(CZ + D)^{-1}.$$

From the Hodge structure description, $GSp(\mathbb{Q}) \setminus X \times GSp(\mathbb{A}_f)/K$ parameterizes Abelian varieties of dimension dim(V)/2 with a polarization and rigidity data (level structure).

Example 3.3 (Hodge type). A *Hodge type* Shimura variety is one which embeds into a Seigel modular variety. We get these from a variation of Hodge structure d(0,1) = n, d(1,0) = n, ψ a symplectic form, and some Hodge tensors.

Example 3.4. Let B be a quaternion algebra over F, a totally ramified field, $G(\mathbb{Q}) = B^{\times}$ for some algebraic group over \mathbb{Q} . If

$$G(\mathbb{R}) \cong \mathbb{H}^{\times} \times \mathbb{H}^{\times} \times \cdots \times \mathrm{GL}_2(\mathbb{R}) \times \mathrm{GL}_2(\mathbb{R})$$

have at least one $\operatorname{GL}_2(\mathbb{R})$, define

$$h(a+bi) = 1 \times 1 \times \dots \times \begin{pmatrix} a & b \\ -b & a \end{pmatrix} \times \begin{pmatrix} a & b \\ -b & a \end{pmatrix}$$

When there is at least one copy of \mathbb{H} , (G, X) is not of Hodge type.

4. CANONICAL MODELS

4.1. Canonical models of tori. Since a torus is abelian, X is always a single point in a Shimura datum (T, X). Also

Proposition 4.1. Each $T(\mathbb{Q}) \setminus \{h\} \times T(\mathbb{A}_f) / K$ is a finite sets of points.

We can now form a \mathbb{Q} model of Sh(T, X) by turning each point into a $\overline{\mathbb{Q}}$ point. Giving a model of Sh(T, X) over a number field F amounts to giving an action of $\operatorname{Gal}(\overline{\mathbb{Q}}/F)$ on the $\overline{\mathbb{Q}}$ points of $\{T(\mathbb{Q})\setminus\{h\}\times T(\mathbb{A}_f)/K\}_K$ commuting with the maps in the inverse limit. This gives an action of $\operatorname{Gal}(\overline{\mathbb{Q}}/F)$ on the (topological) inverse limit of $\{T(\mathbb{Q})\setminus\{h\}\times T(\mathbb{A}_f)/K\}_K$, which is $T(\mathbb{Q})\setminus\{h\}\times T(\mathbb{A}_f)$, with a $T(\mathbb{A}_f)$ action on the right coming from the translation maps in the inverse system of the Shimura variety. Using CFT, giving our desired action is equivalent to giving a grouphom

$$\operatorname{Hom}(F^{\times} \backslash \mathbb{A}_F, T(\mathbb{Q}) \backslash T(\mathbb{A}_f)).$$

Notice such a grouphom gives an action of $\operatorname{Gal}(\overline{\mathbb{Q}}/F)$ on $T(\mathbb{Q}), \langle T(\mathbb{A}_f)/K$ for all K.

Here is how we choose this grouphom: Define $\mu : G_m \to S_{\mathbb{C}}$ as the composition of $z \mapsto (z, 1)$ and $h_{\mathbb{C}}$. Choose F to the be the field of definition of μ . Then composing $\mu(\mathbb{A}_F)$ with the norm map $T(\mathbb{A}_F) \to T(\mathbb{A})$ and projecting onto the finite part is our desired grouphom.

4.2. Canonical models of general Shimura varieties.

Definition. Define $\mu : G_m \to \mathbb{S}_{\mathbb{C}}$ as the composition of $z \mapsto (z, 1)$ and $h_{\mathbb{C}}$ for some $h \in X$. The *reflex field* of (G, X) is the field of definition of the conjugacy class of μ .

This is a finite extension of \mathbb{Q} : In particular

E(G, X) = the fixed field of $\{\sigma \in \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) : \sigma(W\mu) = W\mu \text{ in the cocharacter lattice}\}.$

Definition. The canonical model of Sh(G, X) is the unique model over E(G, X) such that for all morphisms of Shimura data of the form $(T, \{h\}) \to (G, X)$ where T is a torus, the morphisms

$$\{(M(T, \{h\})_K)_{\mathbb{C}}\} \to \{(M(G, X)_K)_{\mathbb{C}}\}$$

are defined over $E(G, X) \cdot E(T, \{h\})$. The morphisms $(T, \{h\}) \to (G, X)$ are called *special points*.

Theorem 4.1. There exists a unique canonical model of Sh(G, X).

The uniqueness follows from the special points being very dense:

Lemma 4.1. For any field extension L of E(G, X), there exists a special point $(T, \{h\})$ of (G, X) such that $E(T, \{h\}) \cap L = E(G, X)$.