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This talk primarily follows sections II.1 and V.3 in Non-Abelian Harmonic Analysis by Roger
Howe and Eng Chye Tan.

Indecomposable, Quasisimple, h-Multiplicity Free Modules

In the following, we denote by sl(2) the Lie algebra of SL(2,R), i.e. the space of 2× 2 real
matrices with zero trace. There is a basis of sl(2) given by

h =

(
1 0
0 −1

)
, e+ =

(
0 1
0 0

)
, e− =

(
0 0
1 0

)
.

The Casimir element is C := h2 + 2(e+e− + e−e+). It generates the center of the universal
enveloping algebra of sl(2), i.e. Z(U((2))) = C[C].

De�nition. A representation V of sl(2) is

(a) Decomposable if it can be written as a direct sum of two nontrivial subrepresentations.
Otherwise it is indecomposable.

(b) Quasi-simple if C acts via a multiple of the identity on V .

(c) h-multiplicity free if the h-eigenspaces are of dimension at most 1.

Goal: To classify the indecomposable, quasi-simple, h-multiplicity free sl(2)-modules.

De�nition. Let V be an sl(2) module and v0 ∈ V be an h-eigenvector of eigenvalue λ. Then
for each k ∈ Z+ de�ne vk = (e+)kv0 and v−k = (e−)kv0.

Theorem. (Proposition 1.1.4 in Howe-Tan.) For k ∈ Z+, vk is either zero or an h eigenvector
of eigenvalue λ+ 2k and v−k is either zero or an eigenvector of eigenvalue λ− 2k.
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If v0 is also an eigenvector for C with eigenvalue µ then the set of nonzero vk forms a basis
for the sl(2)-module V0 generated by v0. Also, for all k ∈ Z we have

e+e−vk =
µ− (λ+ 2k − 1)2 + 1

4
vk := s1(k)vk

e−e+vk =
µ− (λ+ 2k)2 − 2(λ+ 2k)

4
vk := s2(k)vk

Note in particular that s1(k) = s2(k − 1) for all k.

Theorem. Let V be an indecomposable, quasisimple, h-multiplicity free sl(2)-module. Then
V = V0 for some V0 as above.

Idea: V is completely classi�ed by which vk are killed by e+ and e−.
Recall that

e+e−vk =
µ− (λ+ 2k − 1)2 + 1

4
vk

Hence there are at most two k such that vk ∈ ker(e+e−), and so dimker(e+e−) ≤ 2. Also
note that dimker(e+e−) = dimker(e−e+) since s1(k) = s2(k− 1). Thus we have three cases:

Case A: If dimker(e+e−) = dimker(e−e+) = 0. In this case, there are no e+ or e−-null
vectors, and so all vk are non-zero. We denote this as

(◦) = · · · ◦ ◦ ◦ · · · ◦ ◦ ◦ · · ·

where the dots represent h eigenvectors, arranged by increasing h eigenvalues, from left to
right.

Case B: If dimker(e+e−) = dimker(e−e+) = 1. One option in this case is that dimker(e+) =
1 and dimker(e−) = 0. Then there are two isomorphism classes:

(◦]◦) = · · · ◦ ◦ ◦ · · · ◦ ◦] ◦ · · ·
(◦]) = · · · ◦ ◦ ◦ ◦ · · · ◦]

where the right bracket �]� indicates that the h eigenvector to the immediate left of the
bracket is killed by e+. The other option is that dimker(e+) = 0 and dimker(e−) = 1.
There are again two isomorphism classes:

(◦[◦) = · · · ◦ [◦ ◦ · · · ◦ ◦ ◦ ◦ · · ·
([◦) = [◦ ◦ · · · ◦ ◦ ◦ ◦ · · ·
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where the left bracket � [� indicates that the h eigenvector to the immediate right of the
bracket is killed by e−.

Case C: If dimker(e+e−) = dimker(e−e+) = 2. Here there are nine isomorphism classes:

(◦[◦]◦) = · · · ◦ ◦[◦ ◦ · · · ◦ ◦] ◦ ◦ · · ·
(◦[◦]) = · · · ◦ ◦[◦ ◦ · · · ◦ ◦]
([◦]◦) = [◦ ◦ · · · ◦ ◦] ◦ ◦ · · ·
([◦]) = [◦ ◦ · · · ◦ ◦]

(◦]◦]◦) = · · · ◦ ◦] ◦ ◦ · · · ◦ ◦] ◦ ◦ · · ·
(◦]◦]) = · · · ◦ ◦] ◦ ◦ · · · ◦ ◦]

(◦[◦[◦) = · · · ◦ ◦[◦ ◦ · · · ◦ ◦[◦ ◦ · · ·
([◦[◦) = [◦ ◦ · · · ◦ ◦[◦ ◦ · · ·

(◦] ◦ [◦) = · · · ◦ ◦] ◦ ◦ · · · ◦ ◦[◦ ◦ · · ·

where the number of dots between a pair of brackets �[� and � ]� is the same in all cases and
is the dimension of the �nite-dimensional piece in the composition series.

Vanishing of Matrix Coe�cients

De�nition. Let (ρ, V ) be a representation of a Lie group G and let V ∗ be the dual space
to V . Then for λ ∈ V ∗, v ∈ V, g ∈ G de�ne

φλ,v(g) := λ(ρ(g)v)

Then each φλ,v is called a matrix coe�cient of ρ.

Matrix coe�cients are interesting because:

• In appropriate coordinates, matrix coe�cients become various classical special func-
tions. (For example the standard context for understanding the Bessel functions is as
matrix coe�cients of the Euclidean groups.)

• The behavior of matrix coe�cients at in�nity is related to number theoretic questions,
such as the Ramanujan conjecture, and to ergodic theory.

De�nition. For s ∈ C de�ne the spaces

Ss,+ = {f ∈ C∞(R2 − {0}) | f(tx) = |t|s f(x)}
Ss,− = {f ∈ C∞(R2 − {0}) | f(tx) = |t|s (sgn t)f(x)},

where SL(2,R) acts on Ss,± through its standard action on R2.
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The SL(2,R) representations S−1+it,+(t ∈ R) and S−1+it,−(t ∈ R − {0}) are called the
principal series representations. If s ∈ (−2, 0) then Ss,+ are called the complementary series

representations. These are both unitarizable and in some cases unitary (see Theorem 1.3.1
in Howe-Tan). De�ne an SL(2,R)-invariant pairing between S−1−α,± and S−1+α,± by for
f ∈ S−1−α,±, h ∈ S−1+α,±:

(f, h) =

∫ 2π

0

f(cos θ, sin θ)h(cos θ, sin θ) dθ

This identi�es S−1−α,± with the conjugate dual space (S−1+α,±)′ (see example 1.2.12 in
Howe-Tan), hence we have matrix coe�cients

φf,h(ã) = (f, ρ(ã)h)

where ρ denotes the action of SL(2,R).
De�nition. De�ne the semigroup:

A+ =

{(
a 0
0 a−1

) ∣∣∣∣a > 1

}
⊂ SL(2,R)

Theorem. (Proposition 3.1.5 in Howe-Tan.) For f ∈ S−1−α,±, h ∈ S−1+α,±, and ã =(
a 0
0 a−1

)
∈ A+,

|φf,h(ã)| ≤ C
log a

a
, if Re(α) = 0, (Think: princ ser reps)

and

|φf,h(ã)| ≤ C
1

a1−Re(α)
, if 0 < Re(α) < 1.(Think: compl ser reps)

where C is a constant dependent on f, h, and α.

De�nition. A sequence in a space X goes to in�nity if it has no limit point in X.

De�nition. A complex-valued function f on a space X vanishes at ∞ if, for every sequence
{xn} which goes to ∞, we have limn→∞ f(xn) = 0.

Note: In A+, ã→∞ i� a→∞. Furthermore, to check that φf,h goes to in�nity on SL(2,R),
it is su�cient to check for sequences in A+. Hence the matrix coe�cients for complementary
series representations and principal series representations vanish at in�nity. In particular,
coe�cients for complementary series reps decay like 1/a1−Re(α) and those for principal series
reps decay like 1/a. Furthermore:

Theorem. (Theorem 2.0.3 in Howe-Tan.) Let (ρ, V ) be a unitary representation of SL(2,R)
not containing the trivial representation. Then the matrix coe�cients of (ρ, V ) must vanish
at ∞.


