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This talk primarily follows sections II.1 and V.3 in Non-Abelian Harmonic Analysis by Roger
Howe and Eng Chye Tan.

Indecomposable, Quasisimple, h-Multiplicity Free Modules

In the following, we denote by s[(2) the Lie algebra of SL(2,R), i.e. the space of 2 x 2 real
matrices with zero trace. There is a basis of s[(2) given by
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The Casimir element is C := h? + 2(eTe™ + e"e™). It generates the center of the universal
enveloping algebra of s((2), i.e. Z(U((2))) = C[C].
Definition. A representation V of s[(2) is

(a) Decomposable if it can be written as a direct sum of two nontrivial subrepresentations.
Otherwise it is indecomposable.

(b) Quasi-simple if C acts via a multiple of the identity on V.
(c) h-multiplicity free if the h-eigenspaces are of dimension at most 1.
Goal: To classify the indecomposable, quasi-simple, h-multiplicity free s[(2)-modules.

Definition. Let V' be an sl(2) module and vy € V' be an h-eigenvector of eigenvalue \. Then
for each k € Z, define v, = (e*)*vy and v_j, = (™) .

Theorem. (Proposition 1.1.4 in Howe-Tan.) For k € Z., vy is either zero or an h eigenvector
of eigenvalue A + 2k and v_y is either zero or an eigenvector of eigenvalue \ — 2k.



If vy is also an eigenvector for C with eigenvalue ;o then the set of nonzero v, forms a basis
for the sl(2)-module Vj generated by vg. Also, for all k € Z we have

— AN +2k—1)2+1
ete v, = po (At 1 )+ v = s1(k)vp
— 2k)? — 2 2
eety, = po (A k)4 (A +26) Vg := So(k)vg

Note in particular that s;(k) = so(k — 1) for all k.

Theorem. Let V' be an indecomposable, quasisimple, h-multiplicity free s[(2)-module. Then
V =V, for some V; as above.

Idea: V is completely classified by which v, are killed by e™ and e~
Recall that
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e'e v, = Vg,
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Hence there are at most two k such that vy € ker(ete™), and so dimker(ete™) < 2. Also
note that dimker(e*e™) = dimker(e”e™) since s;(k) = sy(k — 1). Thus we have three cases:

Case A: If dimker(ete™) = dimker(e"e™) = 0. In this case, there are no e or e -null
vectors, and so all v, are non-zero. We denote this as

(o):...ooo...ooo...

where the dots represent h eigenvectors, arranged by increasing h eigenvalues, from left to
right.

Case B: If dimker(eTe™) = dimker(e"e™) = 1. One option in this case is that dim ker(et) =
1 and dimker(e™) = 0. Then there are two isomorphism classes:

(cJo) = -+-000---00|0--

(o)) =---0000--0]

where the right bracket “|” indicates that the h eigenvector to the immediate left of the
bracket is killed by e™. The other option is that dimker(et) = 0 and dimker(e™) = 1.
There are again two isomorphism classes:



where the left bracket “[” indicates that the h eigenvector to the immediate right of the
bracket is killed by e™.

Case C: If dimker(ete™) = dimker(e"et) = 2. Here there are nine isomorphism classes:

(o[o]o) =---00f0o0---00]00
(o[o]) =+ 0000 -00]
([o]o) = [co---00]oo0
(lo]) = [co---00]
(o]o]Jo) =---00]co---00]00"--
(o]o]) =-+-00]oo---00]
(o[oo) --0o0[oo---00[00
([o[o) = [oo-+ 0000
(oJof[o)=---00]oo---00[00---

where the number of dots between a pair of brackets “[” and “|” is the same in all cases and
is the dimension of the finite-dimensional piece in the composition series.

Vanishing of Matrix Coefficients

Definition. Let (p, V') be a representation of a Lie group G and let V* be the dual space
to V. Then for A € V* v € V,g € G define

Pru(g) = Ap(g)v)
Then each ¢, , is called a matriz coefficient of p.
Matrix coefficients are interesting because:

e In appropriate coordinates, matrix coefficients become various classical special func-
tions. (For example the standard context for understanding the Bessel functions is as
matrix coefficients of the Euclidean groups.)

e The behavior of matrix coefficients at infinity is related to number theoretic questions,
such as the Ramanujan conjecture, and to ergodic theory.
Definition. For s € C define the spaces
S ={f € C¥(R* —{0}) | f(ta) = |t|" f(2)}
ST ={f € C®(R* = {0}) | f(tz) = |t|’ (sent) f(2)},
where SL(2,R) acts on S** through its standard action on R



The SL(2,R) representations S~'*%* (¢t € R) and S~'"~(t € R — {0}) are called the
principal series representations. If s € (—2,0) then S** are called the complementary series
representations. These are both unitarizable and in some cases unitary (see Theorem 1.3.1
in Howe-Tan). Define an SL(2, R)-invariant pairing between S~1=®% and S—!'*e% by for
f c S_l_a’i, h € S—1+a7:|::

27
(f,h):/o f(cos,sinf)h(cos @, sin ) db

This identifies S™'7%* with the conjugate dual space (ST'T®%)" (see example 1.2.12 in
Howe-Tan), hence we have matrix coefficients

drn(a) = (f, p(a)h)
where p denotes the action of SL(2,R).

Definition. Define the semigroup:
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Theorem. (Proposition 3.1.5 in Howe-Tan.) For f € S™17%* h € S~*o* and a =

(8 a01> € A%,
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where C' is a constant dependent on f, h, and a.
Definition. A sequence in a space X goes to infinity if it has no limit point in X.

Definition. A complex-valued function f on a space X wvanishes at oo if, for every sequence
{z,} which goes to oo, we have lim,, . f(x,) =0.

Note: In A", @ — oo iff @ — co. Furthermore, to check that ¢, goes to infinity on SL(2,R),
it is sufficient to check for sequences in A™. Hence the matrix coefficients for complementary
series representations and principal series representations vanish at infinity. In particular,
coefficients for complementary series reps decay like 1/a'~%¢®) and those for principal series
reps decay like 1/a. Furthermore:

Theorem. (Theorem 2.0.3 in Howe-Tan.) Let (p, V') be a unitary representation of SL(2,R)
not containing the trivial representation. Then the matrix coefficients of (p, V') must vanish
at oo.



