Math 612 Problem Set 6

> (due Wed, Apr 13; hand-in at start of class)

Unless otherwise stated, you are allowed to make the blanket assumption that $F=\mathbb{C}$, though many of the problems below hold for more general F.

1. [H13.7] Let $\gamma_{1}, \ldots, \gamma_{\ell}$ be an obtuse basis of a Euclidean space E (i.e., all $\left(\gamma_{i}, \gamma_{j}\right) \leq 0$ for $i \neq j$). Prove that the dual basis is acute (i.e., all $\left(\gamma^{*}, \gamma_{j}^{*}\right) \geq 0$ for $i \neq j$). [Reduce to the case $\ell=2$.]
2. Deduce from the previous exercise that every dominant integral weight has nonnegative rational Δ-coordinates.
3. [H21.2] Draw the weight diagram of $L\left(\lambda_{1}+\lambda_{2}\right)$ for the Lie algebra of type B_{2}, where λ_{1} and λ_{2} are the fundamental dominant integral weights:

$$
\lambda_{1}=\alpha_{1}, \quad \lambda_{2}=\frac{1}{2}\left(\alpha_{1}+2 \alpha_{2}\right) .
$$

4. [H21.6] Let $V=L(\lambda)$ for some $\lambda \in \Lambda^{+}$. Show that $V^{*} \cong V\left(-w_{0} \lambda\right)$ where w_{0} is the unique member of W that sends Δ to $-\Delta$.
5. [H21.7] For any finite-dimensional L-module V, let $\Pi(V)=\left\{\nu \in \Lambda: \operatorname{dim}\left(V_{\nu}\right)>0\right\}$ denote the set of weights occurring in V. Given $V=L(\lambda)$ and $W=L(\mu)$ with $\lambda, \mu \in \Lambda^{+}$, prove that $\Pi(V \otimes W)=\Pi(V)+\Pi(W)$ and determine the weight multiplicities of $V \otimes W$ in terms of those of V and W. Deduce that $V(\lambda+\mu)$ occurs exactly once as a summand of $V \otimes W$.
6. [H21.11] Let $L=\mathfrak{s l}(n, \mathbb{C})$ and let $V_{k}=\Lambda^{k}\left(\mathbb{C}^{n}\right)$ be the subspace of skew-symmetric tensors in $\left(\mathbb{C}^{n}\right)^{\otimes k}$. Show that each V_{k} is an irreducible L-module and determine its highest weight.
7. [H22.2] Prove that the universal Casimir element c_{L} belongs to the center of the universal enveloping algebra.
