## Math 612 Problem Set 5

(due Wed, Mar 30; hand-in at start of class)
Unless otherwise stated, you are allowed to make the blanket assumption that $F=\mathbb{C}$, though many of the problems below hold for more general $F$.

1. [H11.6] Prove that an inclusion of one Dynkin diagram in another (e.g. $E_{6}$ in $E_{7}$ or $E_{7}$ in $E_{8}$ ) induces an inclusion of the corresponding root systems.
2. [H12.3] Let $\Phi \subset E$ satisfy (R1), (R3), (R4), but not (R2). Suppose that $\Phi$ is irreducible. Prove that $\Phi$ is the union of root systems of type $B_{n}, C_{n}$ in $E$ (if $\operatorname{dim} E=n>1$ ), where the long roots of $B_{n}$ are also the short roots of $C_{n}$. (This is called the non-reduced root system of type $B C_{n}$ in the literature.)
3. [H12.5] In constructing $C_{\ell}$, would it be correct to characterize $\Phi$ as the set of all vectors in $I$ of squared length 2 or 4? Explain.
4. Prove that there exists a root system whose Dynkin diagram is $E_{6}$. Prove that there exists a root system whose Dynkin diagram is $E_{7}$. Prove that there exists a root system whose Dynkin diagram is $E_{8}$. (What order you decide to construct/prove this is up to you.)
5. Let $\Phi$ be a root system. Recall that for $\alpha, \beta \in \Phi$ if $(\alpha, \beta)>0$, then $\alpha-\beta \in \Phi \cup\{0\}$ and if $(\alpha, \beta)<0$ then $\alpha+\beta \in \Phi \cup\{0\}$. Prove the converse of these implications assuming that $\Phi$ is simply laced (all roots have the same length). Show by example that this converse fails if $R$ is not simply laced.
6. [H11.4,12.7] Prove that the Weyl group of root system $\Phi$ is isomorphic to the direct product of the respective Weyl groups of its irreducible components. Describe Aut $\Phi$ when $\Phi$ is not irreducible.
7. [H10.14] Prove that each point of $E$ is $W$-conjugate to a point in the closure of the fundamental Weyl chamber relative to a base $\Delta$. (Enlarge the partial order on $E$ by defining $\mu \prec \lambda$ if and only if $\lambda-\mu$ is a nonnegative $\mathbb{R}$-linear combination of simple roots. If $\mu \in E$, choose $\sigma \in W$ for which $\lambda=\sigma \mu$ is maximal in this partial order.)
8. Prove Lemma A of $\S 13.2$ : Each weight is conjugate under $W$ to one and only one dominant weight. If $\lambda$ is a dominant weight, then $\sigma \lambda \prec \lambda$ for all $\sigma \in W$, and if $\lambda$ is a strongly dominant weight, then $\sigma \lambda=\lambda$ only when $\sigma=1$.
