Math 612 Problem Set 3

(due Fri, Feb 25; hand-in by 11am **can slip under the door of my office**)
Unless otherwise stated, you are allowed to make the blanket assumption that $F=\mathbb{C}$, though many of the problems below hold for more general F.

1. (Semi-direct products)
(a) Let L and M be Lie algebras and assume that we have a Lie algebra morphism $\eta: M \rightarrow \operatorname{Der}(L)$. Show that the vector space $L \oplus M$ equipped with the bracket

$$
\left[(l, m),\left(l^{\prime}, m^{\prime}\right)\right]=\left(\left[l, l^{\prime}\right]_{L}+\eta(m)\left(l^{\prime}\right)-\eta\left(m^{\prime}\right)(l),\left[m, m^{\prime}\right]_{M}\right)
$$

is a Lie algebra and $L \oplus\{0\}$ is an ideal.
(b) Conversely, let X be a Lie algebra, $L \subset X$ an ideal, $M \subset X$ a subalgebra, such that $X=L \oplus M$ as a vector space. Show that $\left.m \mapsto \operatorname{ad}(m)\right|_{L}$ is a Lie algebra morphism $\eta: M \rightarrow \operatorname{Der}(L)$ and that the bracket on X coincides with the bracket on $L \oplus M$ defined above.
(c) Show that M is an ideal if and only if η is trivial.
2. Define the character of an $\mathfrak{s l}(2)$-module V to be the Laurent polynomial

$$
\chi_{V}(t)=\sum_{i}\left(\operatorname{dim} V_{i}\right) t^{i}
$$

where V_{i} denotes the i-weight space of V.
(a) What are the characters of the irreducible $\mathfrak{s l}(2)$-modules?
(b) Show that $\chi_{V}(t)=\chi_{W}(t)$ if and only if $V \cong W$ for any $\mathfrak{s l}(2)$-modules V, W.
(c) Show that $\chi_{V \otimes W}(t)=\chi_{V}(t) \chi_{W}(t)$ for any $\mathfrak{s l}(2)$-modules V, W.
(d) [H7.6] Deduce a tensor product rule for $\mathfrak{s l}(2)$; i.e., how many copies of $\operatorname{Sym}^{l}(\mathrm{std})$ occur in the irreducible decomposition of $\operatorname{Sym}^{m}(\mathrm{std}) \otimes \operatorname{Sym}^{n}(\mathrm{std}) ?$
3. [J. Stembridge]
(a) Deduce from Exercise 2 that the odd and even parts of every character $\chi_{V}=\sum_{i} a_{i} t^{i}$ are symmetric and unimodal; i.e., $a_{i}=a_{-i}, a_{0} \geq a_{2} \geq a_{4} \geq \cdots$, and $a_{1} \geq a_{3} \geq$ $a_{5} \geq \cdots$.
(b) Show that if $W=\operatorname{Sym}^{m}\left(\operatorname{Sym}^{n}(\operatorname{std})\right)$, then the coefficient of $t^{2 k-m n}$ in $\chi_{W}(t)$ is the number of partitions of k into at most m parts, each of size $\leq n$ (i.e., integer solutions of $n \geq \lambda_{1} \geq \cdots \geq \lambda_{m} \geq 0$ and $\sum \lambda_{i}=k$). Thus (a) implies that these numbers are symmetric and unimodal as a function of k.
(c) Show that $\operatorname{Sym}^{m}\left(\operatorname{Sym}^{n}(\operatorname{std})\right) \cong \operatorname{Sym}^{n}\left(\operatorname{Sym}^{m}(\operatorname{std})\right)$ as representations of $\mathfrak{s l}(2)$. [For an arbitrary finite-dimensional L-module V, it is an old conjecture (still open in almost all cases?) that the L-module $\operatorname{Sym}^{n}\left(\operatorname{Sym}^{m}(V)\right)$ contains the L-module $\operatorname{Sym}^{m}\left(\operatorname{Sym}^{n}(V)\right)$ when $n>m$. This is called the Foulkes conjecture.]
(d) (**Optional to prove ${ }^{* *}$) In fact, $t^{m n} \chi_{W}(t)$ is the Gaussian polynomial $\left(t^{2}\right)_{m+n} /\left(\left(t^{2}\right)_{m}\left(t^{2}\right)_{n}\right)$, where $(q)_{k}:=(1-q)\left(1-q^{2}\right) \cdots\left(1-q^{k}\right)$. By (b), the Gaussian polynomial is symmetric and unimodal! (The unimodality is the interesting part of this.)
4. [H8.6] Determine the basis of $\mathfrak{s l}(n)$ that is dual (via the Killing form) to the "standard" basis $\left\{e_{i j}: 1 \leq i \neq j \leq n\right\} \cup\left\{e_{i i}-e_{i+1, i+1}: 1 \leq i<n\right\}$.
5. [H8.5] Prove that if L is semisimple and H is a maximal toral subalgebra, then H is its own normalizer in L.
6. [H8.7] Assume L is semisimple and $H \subset L$ is a maximal toral subalgebra.
(a) Prove that $C_{L}(h)$ is reductive for all $h \in H$.
(b) Prove that it is possible to choose h so that $C_{L}(h)=H$.
(c) Characterize when this happens for $\mathfrak{s l}(n)$.

