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NOTES AND COMMENTS

ROBUST NONPARAMETRIC CONFIDENCE INTERVALS
FOR REGRESSION-DISCONTINUITY DESIGNS

BY SEBASTIAN CALONICO, MATIAS D. CATTANEO, AND ROCIO TITIUNIK1

In the regression-discontinuity (RD) design, units are assigned to treatment based
on whether their value of an observed covariate exceeds a known cutoff. In this design,
local polynomial estimators are now routinely employed to construct confidence inter-
vals for treatment effects. The performance of these confidence intervals in applica-
tions, however, may be seriously hampered by their sensitivity to the specific bandwidth
employed. Available bandwidth selectors typically yield a “large” bandwidth, leading to
data-driven confidence intervals that may be biased, with empirical coverage well below
their nominal target. We propose new theory-based, more robust confidence interval
estimators for average treatment effects at the cutoff in sharp RD, sharp kink RD, fuzzy
RD, and fuzzy kink RD designs. Our proposed confidence intervals are constructed us-
ing a bias-corrected RD estimator together with a novel standard error estimator. For
practical implementation, we discuss mean squared error optimal bandwidths, which
are by construction not valid for conventional confidence intervals but are valid with
our robust approach, and consistent standard error estimators based on our new vari-
ance formulas. In a special case of practical interest, our procedure amounts to running
a quadratic instead of a linear local regression. More generally, our results give a for-
mal justification to simple inference procedures based on increasing the order of the
local polynomial estimator employed. We find in a simulation study that our confidence
intervals exhibit close-to-correct empirical coverage and good empirical interval length
on average, remarkably improving upon the alternatives available in the literature. All
results are readily available in R and STATA using our companion software packages
described in Calonico, Cattaneo, and Titiunik (2014d, 2014b).

KEYWORDS: Regression discontinuity, local polynomials, bias correction, robust in-
ference, alternative asymptotics.

1. INTRODUCTION

THE REGRESSION-DISCONTINUITY (RD) DESIGN has become one of the
leading quasi-experimental empirical strategies in economics, political sci-
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ence, education, and many other social and behavioral sciences (see van der
Klaauw (2008), Imbens and Lemieux (2008), Lee and Lemieux (2010), and
DiNardo and Lee (2011) for reviews). In this design, units are assigned to
treatment based on their value of an observed covariate (also known as score
or running variable), with the probability of treatment assignment jumping
discontinuously at a known cutoff. For example, in its original application,
Thistlethwaite and Campbell (1960) used this design to study the effects of re-
ceiving an award on future academic achievement, where the award was given
to students whose test scores were above a cutoff. The idea of the RD design
is to study the effects of the treatment using only observations near the cut-
off to control for smoothly varying unobserved confounders. In the simplest
case, flexible estimation of RD treatment effects approximates the regression
function of the outcome given the score near the cutoff for control and treated
groups separately, and computes the estimated effect as the difference of the
values of the regression functions at the cutoff for each group.

Nonparametric local polynomial estimators have received great attention in
the recent RD literature, and have become the standard choice for estimation
of RD treatment effects. This estimation strategy involves approximating the
regression functions above and below the cutoff by means of weighted polyno-
mial regressions, typically of order 1 or 2, with weights computed by applying
a kernel function on the distance of each observation’s score to the cutoff.
These kernel-based estimators require a choice of bandwidth for implementa-
tion, and several bandwidth selectors are now available in the literature. These
bandwidth selectors are obtained by balancing squared-bias and variance of
the RD estimator, a procedure that typically leads to bandwidth choices that
are too “large” to ensure the validity of the distributional approximations usu-
ally invoked; that is, these bandwidth selectors lead to a non-negligible bias
in the distributional approximation of the estimator.2 As a consequence, the
resulting confidence intervals for RD treatment effects may be biased, having
empirical coverage well below their nominal target. This implies that conven-
tional confidence intervals may substantially over-reject the null hypothesis of
no treatment effect.

To address this drawback in conventional RD inference, we propose new
confidence intervals for RD treatment effects that offer robustness to “large”
bandwidths such as those usually obtained from cross-validation or asymptotic
mean squared error minimization. Our proposed confidence intervals are con-
structed as follows. We first bias-correct the RD estimator to account for the
effect of a “large” bandwidth choice; that is, we recenter the usual t-statistic
with an estimate of the leading bias. As it is well known, however, conventional
bias correction alone delivers very poor finite-sample performance because it
relies on a low-quality distributional approximation. Thus, in order to improve

2For example, for the local-linear RD estimator, “small” and “large” bandwidths refer, re-
spectively, to nh5

n → 0 and nh5
n � 0 (e.g., nh5

n → c ∈R++), where hn is the bandwidth and n is the
sample size. Section 2 discusses this case in detail, while the general case is given in the Appendix.
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the quality of the distributional approximation of the bias-corrected t-statistic,
we rescale it with a novel standard error formula that accounts for the addi-
tional variability introduced by the estimated bias. The new standardization is
theoretically justified by a nonstandard large-sample distributional approxima-
tion of the bias-corrected estimator, which explicitly accounts for the potential
contribution that bias correction may add to the finite-sample variability of
the usual t-statistic. Altogether, our proposed confidence intervals are demon-
strably more robust to the bandwidth choice (“small” or “large”), as they are
not only valid when the usual bandwidth conditions are satisfied (being asymp-
totically equivalent to the conventional confidence intervals in this case), but
also continue to offer correct coverage rates in large samples even when the
conventional confidence intervals do not (see Remarks 2 and 3 below). These
properties are illustrated with an empirically motivated simulation study, which
shows that our proposed data-driven confidence intervals exhibit close-to-
correct empirical coverage and good empirical interval length on average.

Our discussion focuses on the construction of robust confidence intervals
for the RD average treatment effect at the cutoff in four settings: sharp RD,
sharp kink RD, fuzzy RD, and fuzzy kink RD designs. These are special cases
of our main theorems given in the Appendix. In all cases, the bias-correction
technique follows the standard approach in the nonparametrics literature (e.g.,
Fan and Gijbels (1996, Section 4.4, p. 116)), but our standard error formulas
are different because they incorporate additional terms not present in the con-
ventional formulas currently used in practice. The resulting confidence inter-
vals allow for mean squared optimal bandwidth selectors and, more generally,
enjoy demonstrable improvements in terms of allowed bandwidth sequences,
coverage error rates, and, in some cases, interval length (see Remarks 2, 4,
and 5 below). As a particular case, our results also justify confidence intervals
estimators based on a local polynomial estimator of an order higher than the
order of the polynomial used for point estimation, a procedure that is easy to
implement in applications (see Remark 7 below). The new confidence inter-
vals may be used both for inference on treatment effects (when the outcome
of interest is used as an outcome in the estimation) as well as for falsification
tests that look for null effects (when pretreatment or “placebo” covariates are
used as outcomes in the estimation).

This paper contributes to the emerging methodological literature on RD
designs. See Hahn, Todd, and van der Klaauw (2001) and Lee (2008) for iden-
tification results, Porter (2003) for optimality results of local polynomial esti-
mators, McCrary (2008) for specification testing, Lee and Card (2008) for in-
ference with discrete running variables, Imbens and Kalyanaraman (2012) for
bandwidth selection procedures for local-linear estimators, Frandsen, Frölich,
and Melly (2012) for quantile treatment effects, Otsu, Xu, and Matsushita
(2014) for empirical likelihood methods, Card, Lee, Pei, and Weber (2014) and
Dong (2014) for kink RD designs, Marmer, Feir, and Lemieux (2014) for weak-
IV robust inference in fuzzy RD designs, Cattaneo, Frandsen, and Titiunik
(2014) for randomization inference methods, Calonico, Cattaneo, and Titiunik
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(2014a) for optimal RD plots, and Keele and Titiunik (2014) for geographic
RD. More broadly, our results also contribute to the literature on asymptotic
approximations for nonparametric local polynomial estimators (Fan and Gij-
bels (1996)), which are useful in econometrics (Ichimura and Todd (2007))—
see Remark 8 and Calonico, Cattaneo, and Farrell (2014) for further discus-
sion.

The rest of the paper is organized as follows. Section 2 describes the sharp
RD design, reviews conventional results, and outlines our proposed robust
confidence intervals. Section 3 discusses extensions to kink RD, fuzzy RD, and
fuzzy kink RD designs. Mean squared error optimal bandwidths and their va-
lidity are examined in Section 4, while valid standard error estimators are dis-
cussed in Section 5. Section 6 presents our simulation study, and Section 7
concludes. In the Appendix, we summarize our general theoretical results,
including extensions to arbitrary polynomial orders and higher-order deriva-
tives, while in the Supplemental Material (Calonico, Cattaneo, and Titiunik
(2014c)) we collect the main mathematical proofs, other methodological and
technical results such as consistent bandwidth selection, additional simula-
tion evidence, and an empirical illustration employing household data from
Progresa/Oportunidades. Companion R and STATA software packages are de-
scribed in Calonico, Cattaneo, and Titiunik (2014d, 2014b).

2. SHARP RD DESIGN

In the canonical sharp RD design, (Yi(0)�Yi(1)�Xi)
′, i = 1�2� � � � � n, is a

random sample and Xi has density f (x) with respect to the Lebesgue measure.
Given a known threshold x̄, set to x̄= 0 without loss of generality, the observed
score or forcing variable Xi determines whether unit i is assigned treatment
(Xi ≥ 0) or not (Xi < 0), while the random variables Yi(1) and Yi(0) denote
the potential outcomes with and without treatment, respectively. The observed
random sample is (Yi�Xi)

′, i = 1�2� � � � � n, where Yi = Yi(0) · (1 −Ti)+Yi(1) ·
Ti with Ti = 1(Xi ≥ 0) and 1(·) is the indicator function.

The parameter of interest is τSRD = E[Yi(1) − Yi(0)|Xi = x̄], the average
treatment effect at the threshold. Under a mild continuity condition, Hahn,
Todd, and van der Klaauw (2001) showed that this parameter is nonparametri-
cally identifiable as the difference of two conditional expectations evaluated at
the (induced) boundary point x̄ = 0:

τSRD = μ+ −μ−� μ+ = lim
x→0+ μ(x)� μ− = lim

x→0− μ(x)�

μ(x) = E[Yi|Xi = x]�
Throughout the paper, we drop the evaluation point of functions whenever
possible to simplify notation. Estimation in RD designs naturally focuses on
flexible approximation, near the cutoff x̄ = 0, of the regression functions
μ−(x) = E[Yi(0)|Xi = x] (from the left) and μ+(x) = E[Yi(1)|Xi = x] (from
the right). We employ the following assumption on the basic sharp RD model.
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ASSUMPTION 1: For some κ0 > 0, the following hold in the neighborhood
(−κ0�κ0) around the cutoff x̄= 0:

(a) E[Y 4
i |Xi = x] is bounded, and f (x) is continuous and bounded away from

zero.
(b) μ−(x) = E[Yi(0)|Xi = x] and μ+(x) = E[Yi(1)|Xi = x] are S times con-

tinuously differentiable.
(c) σ2

−(x) = V[Yi(0)|Xi = x] and σ2
+(x) = V[Yi(1)|Xi = x] are continuous

and bounded away from zero.

Part (a) in Assumption 1 imposes existence of moments, requires that the
running variable Xi be continuously distributed near the cutoff, and ensures
the presence of observations arbitrarily close to the cutoff in large samples.
Part (b) imposes standard smoothness conditions on the underlying regres-
sion functions, which is the key ingredient used to control the leading bi-
ases of the RD estimators considered in this paper. Part (c) puts standard
restrictions on the conditional variance of the observed outcome, which may
be different at either side of the threshold. We set σ2

+ = limx→0+ σ2(x) and
σ2

− = limx→0− σ2(x), where σ2(x) = V[Yi|Xi = x]. Higher-order derivatives of
the unknown regression functions are denoted by μ(ν)

+ (x) = dνμ+(x)/dxν and
μ(ν)

− (x) = dνμ−(x)/dxν , for ν < S (with S in Assumption 1(b)). We also set
μ(ν)

+ = limx→0+ μ(ν)
+ (x) and μ(ν)

− = limx→0− μ(ν)
− (x); by definition, μ+ = μ(0)

+ and
μ− = μ(0)

− .

REMARK 1—Discrete Running Variable: Assumption 1(a) rules out dis-
crete-valued running variables. In applications where Xi exhibits many mass
points near the cutoff, this assumption may still give a good approximation
and our results might be used in practice. However, when Xi exhibits few mass
points, our results do not apply directly without further assumptions and mod-
ifications, and other assumptions and inference approaches may be more ap-
propriate; see, for example, Cattaneo, Frandsen, and Titiunik (2014).

Throughout the paper, we employ local polynomial regression estimators
of various orders to approximate unknown regression functions (Fan and Gij-
bels (1996)). These estimators are particularly well-suited for inference in the
RD design because of their excellent boundary properties (Cheng, Fan, and
Marron (1997)). Section A.1 in the Appendix describes these estimators in full
generality and introduces detailed notation not employed in the main text to
ease the exposition. We impose the following assumption on the kernel func-
tion employed to construct these estimators.

ASSUMPTION 2: For some κ > 0, the kernel function k(·) : [0�κ] �→ R is
bounded and nonnegative, zero outside its support, and positive and continuous
on (0�κ).
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Assumption 2 permits all kernels commonly used in empirical work, includ-
ing the triangular kernel k(u) = (1 − u)1(0 ≤ u ≤ 1) and the uniform kernel
k(u) = 1(0 ≤ u ≤ 1). Our results apply when different kernels are used on ei-
ther side of the threshold, but we set K(u) = k(−u) ·1(u < 0)+k(u) ·1(u≥ 0)
for concreteness. This implies that, for κ > 0 in Assumption 2, K(·) is symmet-
ric, bounded and nonnegative on [−κ�κ], zero otherwise, and positive and con-
tinuous on (−κ�κ). For simplicity, we employ the same kernel function k(·) to
form all estimators in the paper.

2.1. Robust Local-Linear Confidence Intervals

Following Hahn, Todd, and van der Klaauw (2001) and Porter (2003), we
consider confidence intervals based on the popular local-linear estimator of
τSRD, which is the difference in intercepts of two first-order local polynomial
estimators, one from each side of the threshold. Formally, for a positive band-
width hn,

τ̂SRD(hn)= μ̂+�1(hn)− μ̂−�1(hn)�(
μ̂+�1(hn)� μ̂

(1)
+�1(hn)

)′

= arg min
b0�b1∈R

n∑
i=1

1(Xi ≥ 0)(Yi − b0 −Xib1)
2K(Xi/hn)�

(
μ̂−�1(hn)� μ̂

(1)
−�1(hn)

)′

= arg min
b0�b1∈R

n∑
i=1

1(Xi < 0)(Yi − b0 −Xib1)
2K(Xi/hn)�

Conventional approaches to constructing confidence intervals for τSRD using
the local-linear estimator rely on the following large-sample approximation for
the standardized t-statistic (see Lemma A.1(D) in the Appendix for the gen-
eral result): if nh5

n → 0 and nhn → ∞, then

TSRD(hn)= τ̂SRD(hn)− τSRD√
VSRD(hn)

→d N (0�1)�

VSRD(hn) =V
[
τ̂SRD(hn)|Xn

]
� Xn = [X1� � � � �Xn]′�

This justifies the conventional (infeasible) 100(1 − α)-percent confidence in-
terval for τSRD given by

ISRD(hn)= [
τ̂SRD(hn)±	−1

1−α/2

√
VSRD(hn)

]
�

with 	−1
α the appropriate α-quantile of the standard normal distribution. In

practice, a standard error estimator is needed to construct feasible confidence
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intervals because the variance VSRD(hn) involves unknown quantities, but for
now we assume VSRD(hn) is known and postpone the issue of standard error
estimation until Section 5. Even in this simplified known-variance case, the
choice of the bandwidth hn is crucial. The condition nh5

n → 0 is explicitly im-
posed to eliminate the contribution of the leading bias to the distributional ap-
proximation, which depends on the unknown second derivatives μ(2)

+ and μ(2)
− ,

as described in Lemma A.1(B) in the Appendix. This means that, in general,
the confidence intervals ISRD(hn) will have correct asymptotic coverage only if
the bandwidth hn is “small” enough to satisfy the bias condition nh5

n → 0.
Several approaches are available in the literature to select hn, including plug-

in rules and cross-validation procedures; see Imbens and Kalyanaraman (2012)
for a recent account of the state of the art in bandwidth selection for RD de-
signs. Unfortunately, these approaches lead to bandwidths that are too “large”
because they do not satisfy the bias condition nh5

n → 0: minimizing the asymp-
totic mean squared error (MSE) of τ̂SRD(hn) gives the optimal plug-in band-
width choice hMSE = CMSEn

−1/5 with CMSE a constant, which by construction im-
plies that n(hMSE)

5 → c ∈ (0�∞) and hence leads to a first-order bias in the
distributional approximation. This is a well-known problem in the nonpara-
metric curve estimation literature. Moreover, implementing this MSE-optimal
bandwidth choice in practice is likely to introduce additional variability in the
chosen bandwidth that may lead to “large” bandwidths as well. Similarly, cross-
validation bandwidth selectors tend to have low convergence rates, and thus
also typically lead to “large” bandwidth choices; see, for example, Ichimura
and Todd (2007) and references therein. These observations suggest that com-
monly used local-linear RD confidence intervals may not exhibit correct cov-
erage in applications due to the presence of a potentially first-order bias in
their construction, a phenomenon we illustrate with simulation evidence in
Section 6. Since applied researchers often estimate RD treatment effects us-
ing local-linear regressions with MSE-optimal bandwidths and implicitly ig-
nore the asymptotic bias of the estimator, the poor coverage of conventional
confidence intervals we highlight potentially affects many RD empirical appli-
cations.

We propose a novel approach to inference based on bias correction to ad-
dress this problem. Conventional bias correction seeks to remove the leading
bias term of the statistic by subtracting off a consistent bias estimate, thus re-
moving the impact of the potentially first-order bias. While systematic and easy
to justify theoretically, this approach usually delivers poor performance in fi-
nite samples. We propose an alternative large-sample distributional approxi-
mation that takes bias correction as a starting point, but improves its perfor-
mance in finite samples by accounting for the added variability introduced by
the bias estimate.

To describe our approach formally, consider first the conventional bias-
correction approach. The leading asymptotic bias of the local-linear estima-
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tor is

E
[
τ̂SRD(hn)|Xn

] − τSRD = h2
nBSRD(hn)

{
1 + op(1)

}
�

BSRD(hn) = μ(2)
+

2! B+�SRD(hn)− μ(2)
−

2! B−�SRD(hn)�

where B+�SRD(hn) and B−�SRD(hn) are asymptotically bounded, observed quan-
tities (function of Xn, k(·), and hn) explicitly given in Lemma A.1(B) in the
Appendix. Therefore, a plug-in bias-corrected estimator is

τ̂bcSRD(hn�bn)= τ̂SRD(hn)− h2
nB̂SRD(hn�bn)�

B̂SRD(hn�bn)= μ̂(2)
+�2(bn)

2! B+�SRD(hn)− μ̂(2)
−�2(bn)

2! B−�SRD(hn)�

with μ̂(2)
+�2(bn) and μ̂(2)

−�2(bn) denoting conventional local-quadratic estimators
of μ(2)

+ and μ(2)
− , as described in Section A.1 in the Appendix. Here, bn is the

so-called pilot bandwidth sequence, usually larger than hn. As shown in the
Appendix for the general case, if nh7

n → 0 and hn/bn → 0, and other regularity
conditions hold, then the bias-corrected (infeasible) t-statistic satisfies

T bc
SRD(hn�bn)= τ̂bcSRD(hn�bn)− τSRD√

VSRD(hn)
→d N (0�1)�

which justifies confidence intervals for τSRD of the form

IbcSRD(hn�bn)= [(
τ̂SRD(hn)− h2

nB̂SRD(hn�bn)
) ±	−1

1−α/2

√
VSRD(hn)

]
�

That is, in the conventional bias-correction approach, the confidence intervals
are recentered to account for the presence of the bias. This approach allows
for potentially “larger” bandwidths hn, such as the MSE-optimal choice, be-
cause the leading asymptotic bias is manually removed from the distributional
approximation. In practice, bn may also be selected using an MSE-optimal
choice, denoted bMSE, which can be implemented by a plug-in estimate, de-
noted b̂MSE; see Section 4 for details. While bias correction is an appealing
theoretical idea, a natural concern with the conventional large-sample approx-
imation for the bias-corrected local-linear RD estimator is that it does not ac-
count for the additional variability introduced by the bias estimates μ̂(2)

+�2(bn)

and μ̂(2)
−�2(bn), and thus the distributional approximation given above tends to

provide a poor characterization of the finite-sample variability of the statis-
tic. This large-sample approximation relies on the carefully tailored condition
hn/bn → 0, which makes the variability of the bias-correction estimate disap-
pear asymptotically. However, hn/bn is never zero in finite samples.
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Our alternative asymptotic approximation for bias-corrected local polyno-
mial estimators removes the restriction hn/bn → 0, leading to alternative confi-
dence intervals for RD treatment effects capturing the (possibly first-order) ef-
fect of the bias correction on the distributional approximation. The alternative
large-sample approximation we propose for the (properly centered and scaled)
estimator τ̂bcSRD(hn�bn) allows for the more general condition ρn = hn/bn → ρ ∈
[0�∞], which in particular permits a pilot bandwidth bn of the same order of
(and possibly equal to) the main bandwidth hn. This approach implies that the
bias-correction term may not be asymptotically negligible (after appropriate
centering and scaling) in general, in which case it will converge in distribution
to a centered at zero normal random variable, provided the asymptotic bias
is small. Thus, the resulting distributional approximation includes the contri-
bution of both the point estimate τ̂SRD(hn) and the bias estimate, leading to a
different asymptotic variance in general. This idea is formalized in the follow-
ing theorem.

THEOREM 1: Let Assumptions 1–2 hold with S ≥ 3. If nmin{h5
n� b

5
n} ×

max{h2
n� b

2
n} → 0 and nmin{hn�bn} → ∞, then

T rbc
SRD (hn�bn)= τ̂bcSRD(hn�bn)− τSRD√

Vbc
SRD(hn�bn)

→d N (0�1)�

Vbc
SRD(hn�bn)= VSRD(hn)+ Cbc

SRD(hn�bn)�

provided κmax{hn�bn} < κ0. The exact form of Vbc
SRD(hn�bn) is given in Theo-

rem A.1(V) in the Appendix.

Theorem 1 shows that by standardizing the bias-corrected estimator by
its (conditional) variance, the asymptotic distribution of the resulting bias-
corrected statistic T rbc

SRD (hn�bn) is Gaussian even when the condition hn/bn → 0
is violated. The standardization formula Vbc

SRD(hn�bn) depends explicitly on the
behavior of ρn = hn/bn, and Cbc

SRD(hn�bn) may be interpreted as a correction
to account for the variability of the estimated bias-correction term. The ad-
ditional term Cbc

SRD(hn�bn) depends on the (asymptotic) variability of the bias-
correction estimate as well as on its correlation with the original RD estimator
τ̂SRD(hn). The key practical implication of Theorem 1 is that it justifies the more
robust, theory-based 100(1 − α)-percent confidence intervals:

IrbcSRD(hn�bn) =
[(
τ̂SRD(hn)− h2

nB̂SRD(hn�bn)
)

±	−1
1−α/2

√
VSRD(hn)+ Cbc

SRD(hn�bn)
]
�

We summarize important features of our main result in the remarks below.
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REMARK 2—Robustness: The distributional approximation in Theorem 1
permits one bandwidth (but not both) to be fixed, provided this bandwidth
is not too “large”; that is, both must satisfy κmax{hn�bn} < κ0 for all n large
enough, but only one needs to vanish. This theorem allows for all conventional
bandwidth sequences and, in addition, permits other bandwidth sequences that
would make ISRD(hn) and IbcSRD(hn�bn) invalid (i.e., P[τSRD ∈ ISRD(hn)] � 1 − α
and P[τSRD ∈ IbcSRD(hn)]� 1 − α).

REMARK 3—Asymptotic Variance: Three limiting cases are obtained de-
pending on ρn → ρ ∈ [0�∞].

Case 1: ρ = 0. In this case, hn = o(bn) and Cbc
SRD(hn�bn) = op(VSRD(hn)), thus

making our approach asymptotically equivalent to the standard approach to
bias correction: Vbc

SRD(hn�bn)/VSRD(hn)→p 1.
Case 2: ρ ∈ (0�∞). In this case, hn = ρbn, a knife-edge case, where both

τ̂SRD(hn) and B̂SRD(hn�bn) contribute to the asymptotic variance.
Case 3: ρ = ∞. In this case, bn = o(hn) and VSRD(hn) = op(Cbc

SRD(hn�bn)),
implying that the bias estimate is first-order while the actual estimator τ̂SRD(hn)

is of smaller order: Vbc
SRD(hn�bn)/V[h2

nB̂SRD(hn�bn)|Xn] →p 1.

REMARK 4—Higher-Order Implications: Under the smoothness assump-
tions imposed, if hn and bn are such that the confidence intervals have correct
asymptotic coverage, then the coverage error of IrbcSRD(hn�bn) decays at a faster
rate than the coverage error of ISRD(hn). See Calonico, Cattaneo, and Farrell
(2014) for further details.

REMARK 5—Interval Length: If ρn = hn/bn → ρ ∈ [0�∞), then IrbcSRD(hn�bn)
and ISRD(hn) have interval length proportional to 1/

√
nhn. If, in addition,

hn and bn are chosen so that the confidence intervals have correct asymp-
totic coverage, then IrbcSRD(hn�bn) will have shorter interval length than ISRD(hn)
for n large enough. However, because the proportionality constant is larger
for IrbcSRD(hn�bn) than for ISRD(hn), the interval ISRD(hn) may be shorter than
IrbcSRD(hn�bn) in small samples. See Section 6 for simulation evidence, and
Calonico, Cattaneo, and Farrell (2014) for further details.

REMARK 6—Bootstrap: Bootstrapping τ̂SRD(hn) or TSRD(hn) will not im-
prove the performance of the conventional confidence intervals because the
bootstrap distribution is centered at E[τ̂SRD(hn)|Xn]. Bootstrapping τ̂bcSRD(hn�bn)
or T bc

SRD(hn�bn) is possible, but these statistics are not asymptotically pivotal in
general. Bootstrapping the asymptotically pivotal statistic T rbc

SRD (hn�bn) is possi-
ble, as an alternative to the Gaussian approximation. See Horowitz (2001) for
further details.

REMARK 7—Special Case hn = bn: If hn = bn (and the same kernel func-
tion k(·) is used), then τ̂bcSRD(hn�hn) is numerically equivalent to the (not bias-
corrected) local-quadratic estimator of τSRD, and Vbc

SRD(hn�hn) coincides with
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the variance of the latter estimator. This is true for any polynomial order used
(see the Appendix and Supplemental Material), which gives a simple connec-
tion between local polynomial estimators of order p and p + 1 and manual
bias correction. Thus, this result provides a formal justification for an infer-
ence approach based on increasing the order of the RD estimator: choose hn

to be the MSE-optimal bandwidth for the local-linear estimator, but construct
confidence intervals using a t-statistic based on the local-quadratic estimator
instead. This approach corresponds to the case hn = bn in Theorem 1.

REMARK 8—Nonparametrics and Undersmoothing: Our results apply more
broadly to nonparametric kernel-based curve estimation problems, and also
offer a new theoretical perspective on the tradeoffs and connections between
undersmoothing (i.e., choosing an ad hoc “smaller” bandwidth) and explicit
bias correction. See Calonico, Cattaneo, and Farrell (2014) for further details.

REMARK 9—Different Bandwidths: All our results may be extended to al-
low for different bandwidths entering the estimators for control and treatment
units. In this case, the different bandwidth sequences should satisfy the condi-
tions imposed in the theorems.

3. OTHER RD DESIGNS

We discuss three extensions of our approach to other empirically relevant
settings: sharp kink RD, fuzzy RD, and fuzzy kink RD designs. The results
presented here are special cases of Theorems A.1 and A.2 in the Appendix. In
all cases, the construction follows the same logic: (i) the conventional large-
sample distribution is characterized, (ii) the leading bias is presented and a
plug-in bias correction is proposed, and (iii) the alternative large-sample dis-
tribution is derived to obtain robust confidence intervals.

3.1. Sharp Kink RD

In the sharp kink RD design, interest lies on the difference of the first deriva-
tive of the regression functions at the cutoff, as opposed to the difference in the
levels of those functions (see, e.g., Card et al. (2014), Dong (2014), and refer-
ences therein). The estimand is, up to a known scale factor, τSKRD = μ(1)

+ −μ(1)
− .

Although a local-linear estimator could still be used in this context, it is
more appropriate to employ a local-quadratic estimator due to boundary-
bias considerations. Thus, we focus on the local-quadratic RD estimator
τ̂SKRD(hn) = μ̂(1)

+�2(hn) − μ̂(1)
−�2(hn), where μ̂(1)

+�2(hn) and μ̂(1)
−�2(hn) denote local-

quadratic estimators of μ(1)
+ and μ(1)

− , respectively; see Section A.1 in the Ap-
pendix. Lemma A.1(D) in the Appendix gives TSKRD(hn)= (τ̂SKRD(hn)− τSKRD)/√

VSKRD(hn) →d N (0�1) with VSKRD(hn) = V[τ̂SKRD(hn)|Xn], which corresponds
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to the conventional distributional approximation. The MSE-optimal band-
width choice for τ̂SKRD(hn) is derived in Lemma 1 in Section 4. This choice,
among others, will again lead to a non-negligible first-order bias. Proceed-
ing as before, we have E[τ̂SKRD(hn)|Xn] − τSKRD = h2

nBSKRD(hn){1 + op(1)} with
BSKRD(hn) = μ(3)

+ B+�SKRD(hn)/3! − μ(3)
− B−�SKRD(hn)/3!, where B+�SKRD(hn) and

B−�SKRD(hn) are asymptotically bounded observed quantities (function of Xn,
k(·), and hn), also given in Lemma A.1(B).

A bias-corrected local-quadratic estimator of τSKRD is τ̂bcSKRD(hn�bn) =
τ̂SKRD(hn) − h2

nB̂SKRD(hn�bn) with B̂SKRD(hn�bn) = μ̂(3)
+�3(bn)B+�SKRD(hn)/3! −

μ̂(3)
−�3(bn)B−�SKRD(hn)/3!, where μ̂(3)

+�3(bn) and μ̂(3)
−�3(bn) are the local-cubic estima-

tors of μ(3)
+ and μ(3)

− , respectively; see Section A.1 in the Appendix for details.

THEOREM 2: Let Assumptions 1–2 hold with S ≥ 4. If nmin{h7
n� b

7
n} ×

max{h2
n� b

2
n} → 0 and nmin{hn�bn} → ∞, then

T rbc
SKRD(hn�bn)= τ̂bcSKRD(hn�bn)− τSKRD√

Vbc
SKRD(hn�bn)

→d N (0�1)�

provided κmax{hn�bn} < κ0. The exact form of Vbc
SKRD(hn�bn) is given in Theo-

rem A.1(V) in the Appendix.

This theorem is analogous to Theorem 1, and derives the new variance
formula Vbc

SKRD(hn�bn) for the sharp kink RD design capturing the addi-
tional contribution of the bias correction to the sampling variability. The
new variance also takes the form Vbc

SKRD(hn�bn) = VSKRD(hn) + Cbc
SKRD(hn�bn),

where Cbc
SKRD(hn�bn) is the correction term. This result theoretically justifies

the following more robust 100(1 − α)-percent confidence interval for τSKRD:
IrbcSKRD(hn�bn)= [τ̂bcSKRD(hn�bn)±	−1

1−α/2

√
Vbc
SKRD(hn�bn)].

3.2. Fuzzy RD

In the fuzzy RD design, actual treatment status may differ from treat-
ment assignment and is thus only partially determined by the running vari-
able. We introduce the following notation: (Yi(0)�Yi(1)�Ti(0)�Ti(1)�Xi)

′, i =
1�2� � � � � n, is a random sample where now treatment status for each unit is Ti =
Ti(0) · 1(Xi < 0) + Ti(1) · 1(Xi ≥ 0), with Ti(0)�Ti(1) ∈ {0�1}. The observed
random sample is {(Yi�Ti�Xi)

′ : i = 1�2� � � � � n}. The estimand of interest is
τFRD = (E[Yi(1)|X = 0]−E[Yi(0)|X = 0])/(E[Ti(1)|X = 0]−E[Ti(0)|X = 0]),
provided that E[Ti(1)|X = 0] −E[Ti(0)|X = 0] 
= 0. Under appropriate condi-
tions, this estimand is nonparametrically identifiable as

τFRD = τY�SRD

τT�SRD
= μY+ −μY−

μT+ −μT−
�
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where here, and elsewhere as needed, we make explicit the outcome variable
underlying the population parameter. That is, τY�SRD = μY+ − μY− with μY+ =
limx→0+ μY(x) and μY− = limx→0− μY(x), μY(x) = E[Yi|Xi = x], and τT�SRD =
μT+ − μT− with μT+ = limx→0+ μT(x) and μT− = limx→0− μT(x), μT(x) =
E[Ti|Xi = x]. We employ the following additional assumption.

ASSUMPTION 3: For κ0 > 0, the following hold in the neighborhood (−κ0�κ0)
around the cutoff x̄ = 0:

(a) μT−(x) = E[Ti(0)|Xi = x] and μT+(x) = E[Ti(1)|Xi = x] are S times con-
tinuously differentiable.

(b) σ2
T−(x) = V[Ti(0)|Xi = x] and σ2

T+(x) = V[Ti(1)|Xi = x] are continuous
and bounded away from zero.

A popular estimator in this setting is the ratio of two reduced-form, sharp
local-linear RD estimators:

τ̂FRD(hn)= τ̂Y�SRD(hn)

τ̂T�SRD(hn)
= μ̂Y+�1(hn)− μ̂Y−�1(hn)

μ̂T+�1(hn)− μ̂T−�1(hn)
�

again now making explicit the outcome variable being used in each expression.
That is, for a random variable U (equal to either Y or T ), we set μ̂U+�1(hn) and
μ̂U−�1(hn) to be the local-linear estimators employing Ui as outcome variable;
see Section A.1 in the Appendix for details.

Under Assumptions 1–3, and appropriate bandwidth conditions, the con-
ventional large-sample properties of τ̂FRD are characterized by noting that
τ̂FRD(hn) − τFRD = τ̃FRD(hn) + Rn with τ̃FRD(hn) = (τ̂Y�SRD(hn) − τY�SRD)/τT�SRD −
τY�SRD(τ̂T�SRD(hn) − τT�SRD)/τ

2
T�SRD and Rn a higher-order reminder term. This

shows that, to first order, the fuzzy RD estimator behaves like a linear combi-
nation of two sharp RD estimators. Thus, as Lemma A.2(D) in the Appendix
shows,

TFRD(hn)= τ̂FRD(hn)− τFRD√
VFRD(hn)

→d N (0�1)�

VFRD(hn)=V
[
τ̃FRD(hn)|Xn

]
�

The bias (after linearization) of the local-linear fuzzy RD estimator τ̂FRD(hn) is
E[τ̃FRD(hn)|Xn] = h2

nBFRD(hn){1 + op(1)} with

BFRD(hn) =
(

1
τT�SRD

μ(2)
Y+
2! − τY�SRD

τ2
T�SRD

μ(2)
T+
2!

)
B+�FRD(hn)

−
(

1
τT�SRD

μ(2)
Y−
2! − τY�SRD

τ2
T�SRD

μ(2)
T−
2!

)
B−�FRD(hn)�
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where B+�FRD(hn) and B−�FRD(hn) are also asymptotically bounded observed
quantities (function of Xn, k(·), and hn) and are given in Lemma A.2(B).
A bias-corrected estimator of τFRD employing a local-quadratic estimate of the
leading biases is τ̂bcFRD(hn�bn)= τ̂FRD(hn)− h2

nB̂FRD(hn�bn) with

B̂FRD(hn�bn)

=
(

1
τ̂T�SRD(hn)

μ̂(2)
Y+�2(bn)

2! − τ̂Y�SRD(hn)

τ̂2
T�SRD(hn)

μ̂(2)
T+�2(bn)

2!
)
B+�FRD(hn)

−
(

1
τ̂T�SRD(hn)

μ̂(2)
Y−�2(bn)

2! − τ̂Y�SRD(hn)

τ̂2
T�SRD(hn)

μ̂(2)
T−�2(bn)

2!
)
B−�FRD(hn)�

We propose to bias-correct the fuzzy RD estimator using its first-order linear
approximation, as opposed to directly bias-correct τ̂Y�SRD(hn) and τ̂T�SRD(hn)
separately in the numerator and denominator of τ̂FRD(hn). The former ap-
proach seems more intuitive, as it captures the leading bias of the actual es-
timator of interest.

THEOREM 3: Let Assumptions 1–3 hold with S ≥ 3, and τT�SRD 
= 0. If
nmin{h5

n� b
5
n}max{h2

n� b
2
n} → 0 and nmin{hn�bn} → ∞, then

T rbc
FRD (hn�bn) = τ̂bcFRD(hn�bn)− τFRD√

Vbc
FRD(hn�bn)

→d N (0�1)�

provided that hn → 0 and κbn < κ0. The exact form of Vbc
FRD(hn�bn) is given in

Theorem A.2(V).

3.3. Fuzzy Kink RD

We retain the notation and assumptions introduced above for the fuzzy RD
design. In the fuzzy kink RD, the parameter of interest and plug-in estimators
are, respectively,

τFKRD = τY�SKRD

τT�SKRD
= μ(1)

Y+ −μ(1)
Y−

μ(1)
T+ −μ(1)

T−

and

τ̂FKRD(hn)= τ̂Y�SKRD(hn)

τ̂T�SKRD(hn)
= μ̂(1)

Y+�2(hn)− μ̂(1)
Y−�2(hn)

μ̂(1)
T+�2(hn)− μ̂(1)

T−�2(hn)
�

where τ̂FKRD(hn) is based on two local-quadratic (reduced-form) estimates; see
Section A.1 in the Appendix.
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The linearization argument given for the fuzzy RD estimator applies here
as well. Employing Lemma A.2(D) in the Appendix once more, we verify
that TFKRD(hn) = (τ̂FKRD(hn) − τFKRD)/

√
VFKRD(hn) →d N (0�1) with VFKRD(hn) =

V[τ̃FKRD(hn)|Xn], and E[τ̃FKRD(hn)|Xn] = h2
nBFKRD(hn){1 + op(1)} with

BFKRD(hn) = (μ(3)
Y+/τT�SKRD − τY�SKRDμ

(3)
T+/τ

2
T�SKRD)B+�FKRD(hn)/3! − (μ(3)

Y−/τT�SKRD −
τY�SKRDμ

(3)
T−/τ

2
T�SKRD)B−�FKRD(hn)/3!, where B+�FKRD(hn) and B−�FKRD(hn) are also

given in Lemma A.2. A plug-in bias-corrected estimator of τFKRD employ-
ing local-cubic estimates of the leading biases is τ̂bcFKRD(hn�bn) = τ̂FKRD(hn) −
h2
nB̂FKRD(hn�bn), where B̂FKRD(hn�bn) = (μ̂(3)

Y+�3(bn)/τ̂T�SKRD(hn) − τ̂Y�SKRD(hn) ×
μ̂(3)

T+�3(bn)/τ̂
2
T�SKRD(hn))B+�FKRD(hn)/3! − (μ̂(3)

Y−�3(bn)/τ̂T�SKRD(hn) − τ̂Y�SKRD(hn) ×
μ̂(3)

T−�3(bn)/τ̂
2
T�SKRD(hn))B−�FKRD(hn)/3!.

THEOREM 4: Let Assumptions 1–3 hold with S ≥ 4, and τT�SKRD 
= 0. If
nmin{h7

n� b
7
n}max{h2

n� b
2
n} → 0 and nmin{h3

n� bn} → ∞, then

T rbc
FKRD(hn�bn)= τ̂bcFKRD(hn�bn)− τFKRD√

Vbc
FKRD(hn�bn)

→d N (0�1)�

provided that hn → 0 and κbn < κ0. The exact form of Vbc
FKRD(hn�bn) is given in

Theorem A.2(V).

4. VALIDITY OF MSE-OPTIMAL BANDWIDTH SELECTORS

Following Imbens and Kalyanaraman (2012), we derive MSE-optimal band-
width choices for hn (bandwidth for RD point estimator) and bn (bandwidth
for bias estimator), which can be used to implement in practice all of the re-
sults discussed previously. As explained above, these bandwidth choices are
not valid when conventional distributional approximations are used, but they
are fully compatible with our distributional approach. Data-driven consistent
bandwidth selectors are discussed in detail in Calonico, Cattaneo, and Titiunik
(2014c, Section S.2.6).

Let ν�p�q ∈ Z+, with ν ≤ p < q. Unless otherwise noted, throughout
the paper ν will denote the derivative of interest, p will denote the or-
der of the local polynomial point estimator, and q will denote the order
of the local polynomial bias estimator. Define Γp = ∫ ∞

0 K(u)rp(u)rp(u)
′ du,

ϑp�q = ∫ ∞
0 K(u)uqrp(u)du, and Ψp = ∫ ∞

0 K(u)2rp(u)rp(u)
′ du, where rp(x) =

(1�x� � � � � xp)′, and let eν be a conformable (ν + 1)th unit vector. See Sec-
tion A.1 in the Appendix for more details.

4.1. Sharp Designs

To handle the sharp RD and sharp kink RD designs together, as well as
the choice of pilot bandwidths, we introduce more general notation. The esti-
mands in the sharp RD designs are τν = μ(ν)

+ −μ(ν)
− with, in particular, τSRD = τ0



2310 S. CALONICO, M. D. CATTANEO, AND R. TITIUNIK

and τSKRD = τ1. The pth-order local polynomial RD estimators are τ̂ν�p(hn) =
μ̂(ν)

+�p(hn) − μ̂(ν)
−�p(hn) with ν ≤ p with, in particular, τ̂SRD(hn) = τ̂0�1(hn) and

τ̂SKRD(hn)= τ̂1�2(hn). From Lemma A.1(B) in the Appendix,

E
[
τ̂ν�p(hn)|Xn

] − τν = hp+1−ν
n Bν�p�p+1�0

{
1 + op(1)

}
�

Bν�p�r�s = μ(r)
+ − (−1)ν+r+sμ(r)

−
r! ν!e′

νΓ
−1
p ϑp�r�

which shows that, in general, the bias of the RD estimator could depend on a
difference or a sum of higher-order derivatives. Thus, to develop MSE-optimal
bandwidth choices for both RD estimators and their bias estimates, we con-
sider the following generic MSE objective function:

MSEν�p�s(hn) = E
[((

μ̂(ν)
+�p(hn)− (−1)sμ̂(ν)

−�p(hn)
)

− (
μ(ν)

+ − (−1)sμ(ν)
−

))2|Xn

]
� ν�p� s ∈ Z+�

where hn denotes a generic vanishing bandwidth sequence. The following
lemma gives the general result.

LEMMA 1: Suppose Assumptions 1–2 hold with S ≥ p+ 1, and ν ≤ p. If hn →
0 and nhn → ∞, then

MSEν�p�s(hn)= h2(p+1−ν)
n

[
B2
ν�p�p+1�s + op(1)

] + 1
nh1+2ν

n

[
Vν�p + op(1)

]
�

where Vν�p = (σ2
− + σ2

+)ν!2e′
νΓ

−1
p ΨpΓ

−1
p eν/f . If Bν�p�p+1�s 
= 0, then the (asymp-

totic) MSE-optimal bandwidth is

hMSE�ν�p�s = C1/(2p+3)
MSE�ν�p�sn

−1/(2p+3)� CMSE�ν�p�s = (1 + 2ν)Vν�p

2(p+ 1 − ν)B2
ν�p�p+1�s

�

This lemma justifies a set of MSE-optimal (infeasible) choices for hn and bn,
which are determined by the estimand (ν and s) and estimator (p). For exam-
ple, in the case of Theorem 1, hn = hMSE�0�1�0 is MSE-optimal for τ̂SRD(hn) and
bn = hMSE�2�2�2 is MSE-optimal for the bias estimate (of τ̂SRD(hn)). Similarly, for
Theorem 2, hn = hMSE�1�2�0 and bn = hMSE�3�3�3 are the MSE-optimal choices for
the local-quadratic estimator τ̂SKRD(hn) and its bias estimate, respectively. For
the general case, depending on the choice of (ν�p�q), see Calonico, Cattaneo,
and Titiunik (2014c, Section S.2.6).

REMARK 10—Bandwidths Validity: The MSE-optimal bandwidth choices
are fully compatible with our confidence intervals because they satisfy the
rate restrictions in Theorems 1–2. For example, in Theorem 1, nmin{hMSE�0�1�0�
hMSE�2�2�2} → ∞ and nmin{h5

MSE�0�1�0�h5
MSE�2�2�2}max{h2

MSE�0�1�0�h2
MSE�2�2�2} → 0.
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REMARK 11—Estimated Bandwidths: Section S.2.6 of the Supplemental
Material describes general data-driven direct plug-in (DPI) bandwidth selec-
tors for sharp RD designs based on Lemma 1. Following Imbens and Kalya-
naraman (2012), our proposed bandwidths incorporate “regularization” to
avoid small denominators. But our bandwidth selectors are different from the
selectors proposed by Imbens and Kalyanaraman (2012) in two ways: (i) our
estimator of Vν�p avoids estimating σ2

+, σ2
−, and f directly, and (ii) pilot band-

widths are chosen to be MSE-optimal and thus the final bandwidth selectors
are of the �-stage DPI variety (Wand and Jones (1995, Section 3.6)). Our final
bandwidth selectors are consistent and optimal in the sense of Li (1987); see
Calonico, Cattaneo, and Titiunik (2014c, Section S.2.6, Theorem A.4).

REMARK 12—Optimal ρn: The MSE-optimal bandwidth choices imply
ρn → 0. In research underway, we are investigating whether this is an opti-
mal choice from a distributional approximation perspective. See Remarks 4
and 5, and Calonico, Cattaneo, and Farrell (2014) for related discussion.

4.2. Fuzzy Designs

Let ςν = τY�ν/τT�ν with τY�ν = μ(ν)
Y+ − μ(ν)

Y− and τT�ν = μ(ν)
T+ − μ(ν)

T−. In par-
ticular, τFRD = ς0 and τFKRD = ς1. The pth-order local polynomial estima-
tors are ς̂ν�p(hn) = τ̂Y�ν�p(hn)/τ̂T�ν�p(hn) with ν ≤ p, τ̂Y�ν�p(hn) = μ̂(ν)

Y+�p(hn) −
μ̂(ν)

Y−�p(hn), and τ̂T�ν�p(hn) = μ̂(ν)
T+�p(hn)− μ̂(ν)

T−�p(hn); see Section A.1 in the Ap-
pendix. In particular, τ̂FRD(hn) = ς̂0�1(hn) and τ̂FKRD(hn) = ς̂1�2(hn). The first-
order linear approximation of ς̂ν�p(hn) is ς̃ν�p(hn) = (τ̂Y�ν�p(hn) − τY�ν)/τT�ν −
τY�ν(τ̂T�ν�p(hn) − τT�ν)/τ

2
T�ν , which we employ to construct the (approximate)

MSE objective function for the main RD point estimators.

LEMMA 2: Suppose Assumptions 1–3 hold with S ≥ p+ 1, and ν ≤ p. If hn →
0 and nhn → ∞, then

E
[(
ς̃ν�p(hn)

)2|Xn

] = h2(p+1−ν)
n

[
B2
F�ν�p�p+1 + op(1)

]
+ n−1h−1−2ν

n

[
VF�ν�p + op(1)

]
�

where

BF�ν�p�r =
(

1
τT�ν

μ(r)
Y+ − (−1)ν+rμ(r)

Y−
r!

− τY�ν

τ2
T�ν

μ(r)
T+ − (−1)ν+rμ(r)

T−
r!

)
ν!e′

νΓ
−1
p ϑp�r

and VF�ν�p = ((σ2
YY− + σ2

YY+)/τ
2
T�ν − 2τY�ν(σ2

YT− + σ2
YT+)/τ

3
T�ν + τ2

Y�ν(σ
2
TT− +

σ2
TT+)/τ

4
T�ν)ν!2e′

νΓ
−1
p ΨpΓ

−1
p eν/f . If BF�ν�p�p+1 
= 0, then the (asymptotic) MSE-
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optimal bandwidth is

hMSE�F�ν�p = C
1/(2p+3)
MSE�F�ν�pn

−1/(2p+3)� CMSE�F�ν�p = (2ν + 1)VF�ν�p

2(p+ 1 − ν)B2
F�ν�p�p+1

�

Valid bandwidth choices of hn for fuzzy RD designs are also readily available
using Lemma 2: hn = hMSE�F�0�1 for Theorem 3 and hn = hMSE�F�1�2 for Theorem 4.
Following the logic outlined for sharp RD designs, it is possible to develop an
MSE-optimal choice of the bandwidth bn entering the bias estimator of the
fuzzy RD estimators. As a simpler alternative, Lemma 1 can be used directly
on the estimators of μ(r)

Y+ − (−1)ν+rμ(r)
Y− and μ(r)

T+ − (−1)ν+rμ(r)
T−, separately. Fea-

sible versions of these bandwidth selectors for fuzzy RD designs can also be
developed along the lines of Section S.2.6 in the Supplemental Material. Im-
portantly, just as in the sharp RD cases (Remark 10), these MSE-optimal band-
width choices will be fully compatible with our asymptotic approximations.

5. STANDARD ERRORS

The exact formulas for the new variances Vbc
SRD(hn�bn) [sharp RD],

Vbc
SKRD(hn�bn) [sharp kink RD], Vbc

FRD(hn�bn) [fuzzy RD], and Vbc
FKRD(hn�bn) [fuzzy

kink RD] in Theorems 1–4, respectively, are straightforward to derive but no-
tationally cumbersome. They all have the same structure because they are
derived by computing the conditional variance of (linear combinations of
weighted) linear least-squares estimators. The only unknowns in these variance
matrices are, depending on the setting under consideration (sharp or fuzzy
RD designs), the matrices ΨYY+�p�q(hn�bn), ΨYT+�p�q(hn�bn), ΨTT+�p�q(hn�bn),
ΨYY−�p�q(hn�bn), ΨYT−�p�q(hn�bn), and ΨTT−�p�q(hn�bn), with p�q ∈ N+ and the
generic notation

ΨUV +�p�q(hn�bn)=
n∑

i=1

1(Xi ≥ 0)Khn(Xi)Kbn(Xi)

× rp(Xi/hn)rq(Xi/bn)
′σ2

UV +(Xi)/n�

ΨUV −�p�q(hn�bn)=
n∑

i=1

1(Xi < 0)Khn(Xi)Kbn(Xi)

× rp(Xi/hn)rq(Xi/bn)
′σ2

UV −(Xi)/n�

where σ2
UV +(x) = Cov[U(1)�V (1)|X = x] and σ2

UV −(x) = Cov[U(0)�V (0)|
X = x], and U and V are placeholders for either Y or T . This generality
is required to handle the fuzzy designs, where the covariances between Yi

and Ti arise naturally. Theorems A.1 and A.2 in the Appendix give the ex-
act standard error formulas, showing how the matrices ΨUV +�p�q(hn�bn) and
ΨUV −�p�q(hn�bn) are employed.
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The (p + 1) × (q + 1) matrices ΨUV +�p�q(hn�bn) and ΨUV −�p�q(hn�bn) are
a generalization of the middle matrix in the traditional Huber–Eicker–White
heteroskedasticity-robust standard error formula for linear models, and thus
an analogue of this standard error estimator can be constructed by plugging
in the corresponding estimated residuals. See Calonico, Cattaneo, and Titiu-
nik (2014c, Section S.2.4) for further details. This choice, although simple and
convenient, may not perform well in finite-samples because it implicitly em-
ploys the bandwidth choices used to construct the estimates of the underlying
regression functions. As an alternative, following Abadie and Imbens (2006),
we propose standard error estimators based on nearest-neighbor estimators
with a fixed tuning parameter, which may be more robust in finite samples.
Specifically, we define

Ψ̂UV +�p�q(hn�bn)=
n∑

i=1

1(Xi ≥ 0)Khn(Xi)Kbn(Xi)

× rp(Xi/hn)rq(Xi/hn)
′σ̂2

UV +(Xi)/n�

Ψ̂UV −�p�q(hn�bn)=
n∑

i=1

1(Xi < 0)Khn(Xi)Kbn(Xi)

× rp(Xi/hn)rq(Xi/hn)
′σ̂2

UV −(Xi)/n�

with

σ̂2
UV +(Xi)= 1(Xi ≥ 0)

J

J + 1

×
(
Ui −

J∑
j=1

U�+�j (i)/J

)(
Vi −

J∑
j=1

V�+�j (i)/J

)
�

σ̂2
UV −(Xi)= 1(Xi < 0)

J

J + 1

×
(
Ui −

J∑
j=1

U�−�j (i)/J

)(
Vi −

J∑
j=1

V�−�j (i)/J

)
�

where �+
j (i) is the jth closest unit to unit i among {Xi :Xi ≥ 0} and �−

j (i) is
the jth closest unit to unit i among {Xi :Xi < 0}, and J denotes the number of
neighbors. (“Local sample covariances” could be used instead; see Abadie and
Imbens (2010).)

In the Supplemental Material (Calonico, Cattaneo, and Titiunik (2014c,
Section S.2.4)), we show that these estimators are asymptotically valid for
any choice of J ∈ N+, because they are approximately conditionally unbiased
(even though inconsistent for fixed nearest-neighbors J ≥ 1). This justifies
employing Ψ̂UV +�p�q(hn�bn) and Ψ̂UV −�p�q(hn�bn) in place of ΨUV +�p�q(hn�bn)

and ΨUV −�p�q(hn�bn) to construct the estimators V̂bc
SRD(hn�bn), V̂bc

SKRD(hn�bn),
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V̂bc
FRD(hn�bn), and V̂bc

FKRD(hn�bn). For example, in Theorem 1, feasible confidence
intervals are

ÎrbcSRD(hn�bn)=
[
τ̂bcSRD(hn�bn)±	−1

1−α/2

√
V̂bc
SRD(hn�bn)

]
�

where V̂bc
SRD(hn�bn) is constructed using

Ψ̂YY+�1�1(hn�bn)� Ψ̂YY+�1�2(hn�bn)� Ψ̂YY+�2�1(hn�bn)�

Ψ̂YY+�2�2(hn�bn)� Ψ̂YY−�1�1(hn�bn)� Ψ̂YY−�1�2(hn�bn)�

Ψ̂YY−�2�1(hn�bn)� and Ψ̂YY−�2�2(hn�bn)�

The other feasible confidence intervals are constructed analogously.

6. SIMULATION EVIDENCE

We report the main results of a Monte Carlo experiment. We conducted
5000 replications, and for each replication we generated a random sample
{(Xi� εi)

′ : i = 1� � � � � n} with size n = 500, Xi ∼ 2B(2�4) − 1 with B(p1�p2)
denoting a beta distribution with parameters p1 and p2, and εi ∼ N (0�σ2

ε)
with σε = 0�1295. We considered three regression functions (Figure 1), de-
noted μ1(x), μ2(x), and μ3(x), and labeled Model 1, 2, and 3, respectively.
The outcome was generated as Yi = μj(Xi) + εi, i = 1�2� � � � � n, for each re-
gression model j = 1�2�3. The exact functional form of μ1(x) and μ2(x) was
obtained from the data in Lee (2008) and Ludwig and Miller (2007), respec-
tively, while μ3(x) was chosen to exhibit more curvature. All other features
of the simulation study were held fixed, matching exactly the data generating
process in Imbens and Kalyanaraman (2012). For further details, see Calonico,
Cattaneo, and Titiunik (2014c, Section S.3).

We consider confidence intervals for τSRD (sharp RD), employing a local-
linear RD estimator (p = 1) with local-quadratic bias correction (q = 2), de-

FIGURE 1.—Regression functions for models 1–3 in simulations.
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noted τ̂rbcSRD(hn�bn) as in Section 2. We report empirical coverage and interval
length of conventional (based on TSRD(hn)) and robust (based on T rbc

SRD (hn�bn))
95% confidence intervals for different bandwidth choices:

ÎSRD(hn)= [
τ̂SRD(hn)± 1�96

√
V̂SRD(hn)

]
and

ÎrbcSRD(hn�bn) =
[
τ̂bcSRD(hn�bn)± 1�96

√
V̂bc
SRD(hn�bn)

]
�

where the estimators V̂SRD(hn) and V̂bc
SRD(hn�bn) are constructed using the

nearest-neighbor procedure discussed in Section 5 with J = 3. For compari-
son, we also report infeasible confidence intervals employing infeasible stan-
dard errors (VSRD(hn) and Vbc

SRD(hn�bn)), and those constructed using the stan-
dard “plug-in estimated residuals” approach, which we denote V̌SRD(hn) and
V̌bc
SRD(hn�bn).
Table I presents the main simulation results. The main bandwidth hn is cho-

sen in four different ways: (i) infeasible MSE-optimal choice hMSE�0�1, denoted
hMSE; (ii) plug-in, regularized MSE-optimal selector as described in Imbens
and Kalyanaraman (2012, Section 4.1), denoted ĥIK; (iii) cross-validation as
described in Imbens and Kalyanaraman (2012, Section 4.5), denoted ĥCV; and
(iv) plug-in choice proposed in Section 4 (Remark 11) above, denoted ĥCCT.
Similarly, to choose the pilot bandwidth bn, we construct modified versions of
the choices just enumerated, with the exception of ĥCV because cross-validation
is not readily available for derivative estimation; these choices are denoted
bMSE, b̂IK, and b̂CCT, respectively. For further results, including other bandwidth
selectors and test statistics, see Calonico, Cattaneo, and Titiunik (2014c, Sec-
tion S.3).

The simulation results show that the robust confidence intervals lead to im-
portant improvements in empirical coverage (EC) with moderate increments
in average empirical interval length (IL). The empirical coverage of the inter-
val estimator IrbcSRD(hn�bn) exhibits an improvement of about 10–15 percentage
points on average with respect to the conventional interval ISRD(hn), depend-
ing on the particular model, standard error estimator, and bandwidth choices
considered. As expected, the feasible versions of the confidence intervals ex-
hibit slightly more empirical coverage distortion and longer intervals than their
infeasible counterparts. The conventional plug-in residual standard error es-
timators (V̌SRD(hn) and V̌bc

SRD(hn�bn)) tend to exhibit more undercoverage in
our simulations than the proposed fixed-neighbor standard error estimators
(V̂SRD(hn) and V̂bc

SRD(hn�bn)). The choice ρn = 1 (equivalent to employing a
local-quadratic estimator) is not only simple and intuitive (Remark 7), but also
performed well in our simulations. Although not the main goal of this paper,
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TABLE I

EMPIRICAL COVERAGE AND AVERAGE INTERVAL LENGTH OF DIFFERENT 95% CONFIDENCE INTERVALSa

Conventional Approach Robust Approach Bandwidths

EC (%) IL EC (%) IL

V V̂ V̌ V V̂ V̌ Vbc V̂bc V̌bc Vbc V̂bc V̌bc hn bn

Model 1
ISRD(hMSE) 93.5 92.0 91.0 0.225 0.223 0.213 IrbcSRD(hMSE� bMSE) 94.5 93.0 92.2 0.273 0.270 0.258 0.166 0.251
ISRD(ĥIK) 83.4 82.3 81.5 0.153 0.152 0.149 IrbcSRD(ĥIK� b̂IK) 92.4 91.4 91.1 0.270 0.267 0.262 0.375 0.350
ISRD(ĥCV) 80.8 79.7 79.0 0.145 0.144 0.141 IrbcSRD(ĥCV� ĥCV) 91.8 90.5 90.0 0.213 0.211 0.206 0.428 0.428
ISRD(ĥCCT) 90.7 89.4 88.4 0.206 0.203 0.195 IrbcSRD(ĥCCT� b̂CCT) 92.7 91.6 90.7 0.243 0.239 0.231 0.204 0.332

IrbcSRD(hMSE�hMSE) 94.7 92.4 92.0 0.339 0.332 0.315 0.166 0.166
IrbcSRD(ĥIK� ĥIK) 92.8 91.5 91.2 0.226 0.223 0.219 0.375 0.375
IrbcSRD(ĥCCT� ĥCCT) 94.8 92.8 92.4 0.308 0.300 0.288 0.204 0.204

Model 2
ISRD(hMSE) 92.7 91.3 86.4 0.327 0.355 0.290 IrbcSRD(hMSE� bMSE) 94.8 93.6 89.9 0.355 0.386 0.315 0.082 0.189
ISRD(ĥIK) 27.2 30.3 30.1 0.214 0.225 0.223 IrbcSRD(ĥIK� b̂IK) 89.3 89.5 90.1 0.247 0.261 0.262 0.184 0.325
ISRD(ĥCV) 76.8 77.3 72.8 0.264 0.281 0.249 IrbcSRD(ĥCV� ĥCV) 94.6 93.5 91.6 0.401 0.439 0.376 0.124 0.124
ISRD(ĥCCT) 87.4 87.3 80.8 0.300 0.319 0.265 IrbcSRD(ĥCCT� b̂CCT) 94.1 93.2 90.5 0.326 0.347 0.289 0.097 0.223

IrbcSRD(hMSE�hMSE) 95.2 93.3 89.3 0.513 0.569 0.441 0.082 0.082
IrbcSRD(ĥIK� ĥIK) 94.1 93.6 94.4 0.320 0.345 0.344 0.184 0.184
IrbcSRD(ĥCCT� ĥCCT) 94.7 93.2 90.5 0.465 0.508 0.399 0.097 0.097

(Continues)
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TABLE I—Continued

Conventional Approach Robust Approach Bandwidths

EC (%) IL EC (%) IL

V V̂ V̌ V V̂ V̌ Vbc V̂bc V̌bc Vbc V̂bc V̌bc hn bn

Model 3
ISRD(hMSE) 85.8 84.6 84.0 0.179 0.178 0.175 IrbcSRD(hMSE� bMSE) 94.7 93.5 93.6 0.235 0.233 0.229 0.260 0.322
ISRD(ĥIK) 85.7 84.2 83.6 0.187 0.185 0.181 IrbcSRD(ĥIK� b̂IK) 94.8 93.6 93.5 0.234 0.231 0.227 0.241 0.352
ISRD(ĥCV) 93.1 91.6 90.8 0.219 0.217 0.207 IrbcSRD(ĥCV� ĥCV) 94.9 92.6 92.2 0.329 0.322 0.307 0.177 0.177
ISRD(ĥCCT) 91.4 89.8 89.1 0.216 0.213 0.205 IrbcSRD(ĥCCT� b̂CCT) 95.0 93.3 92.6 0.249 0.245 0.236 0.183 0.329

IrbcSRD(hMSE�hMSE) 94.9 93.2 93.4 0.266 0.262 0.258 0.260 0.260
IrbcSRD(ĥIK� ĥIK) 94.9 93.2 93.2 0.278 0.274 0.268 0.241 0.241
IrbcSRD(ĥCCT� ĥCCT) 95.4 93.1 92.5 0.324 0.316 0.302 0.183 0.183

a(i) EC denotes empirical coverage in percentage points; (ii) IL denotes empirical average interval length; (iii) columns under “Bandwidths” report the population and
average estimated bandwidth choices, as appropriate, for main bandwidth hn and pilot bandwidth bn ; (iv) V = V(hn) and Vbc = Vbc(hn�bn) denote infeasible variance estimators
using the population variance of the residuals, V̂ = V̂(hn) and V̂bc = V̂bc(hn�bn) denote variance estimators constructed using nearest-neighbor standard errors with J = 3, and
V̌ = V̌(hn) and V̌bc = V̌bc(hn�bn) denote variance estimators constructed using the conventional plug-in estimated residuals.



2318 S. CALONICO, M. D. CATTANEO, AND R. TITIUNIK

we also found that our two-stage direct plug-in rule selector of hn performs
well relative to the other plug-in selectors, and on par with the cross-validation
bandwidth selector.

7. CONCLUSION

We introduced new confidence interval estimators for several regression-
discontinuity estimands that enjoy demonstrably superior robustness proper-
ties. The results cover the sharp (level or kink) and fuzzy (level or kink) RD
designs. Our confidence intervals were constructed using an alternative asymp-
totic theory for bias-corrected local polynomial estimators in the context of RD
designs, which leads to a different asymptotic variance in general and thus jus-
tifies a new standard error estimator. We found that the resulting data-driven
confidence intervals performed very well in simulations, suggesting in particu-
lar that they provide a robust (to the choice of bandwidths) alternative when
compared to the conventional confidence intervals routinely employed in em-
pirical work.

APPENDIX
In this appendix, we summarize our main results for arbitrary order of local

polynomials. Here p denotes the order of main RD estimator, while q denotes
the order in the bias correction. Proofs and other results are given in the Sup-
plemental Material (Calonico, Cattaneo, and Titiunik (2014c)).

A.1. Local Polynomial Estimators and Other Notation
For ν�p ∈ N with ν ≤ p, the pth-order local polynomial estimators of the

νth-order derivatives μ(ν)
Y+ and μ(ν)

Y− are

μ̂(ν)
Y+�p(hn)= ν!e′

νβ̂Y+�p(hn)�

β̂Y+�p(hn)= arg min
β∈Rp+1

n∑
i=1

1(Xi ≥ 0)
(
Yi − rp(Xi)

′β
)2
Khn(Xi)�

μ̂(ν)
Y−�p(hn)= ν!e′

νβ̂Y−�p(hn)�

β̂Y−�p(hn)= arg min
β∈Rp+1

n∑
i=1

1(Xi < 0)
(
Yi − rp(Xi)

′β
)2
Khn(Xi)�

where rp(x) = (1�x� � � � � xp)′, eν is the conformable (ν + 1)th unit vector
(e.g., e1 = (0�1�0)′ if p = 2), Kh(u) = K(u/h)/h, and hn is a positive band-
width sequence. (We drop the evaluation point of functions at x̄ = 0 to sim-
plify notation.) Let Y = (Y1� � � � �Yn)

′, Xp(h) = [rp(X1/h)� � � � � rp(Xn/h)]′,
Sp(h) = [(X1/h)

p� � � � � (Xn/h)
p]′, W+(h) = diag(1(X1 ≥ 0)Kh(X1)� � � � �

1(Xn ≥ 0)Kh(Xn)), W−(h) = diag(1(X1 < 0)Kh(X1)� � � � �1(Xn < 0)Kh(Xn)),
Γ+�p(h) = Xp(h)

′W+(h)Xp(h)/n, and Γ−�p(h) = Xp(h)
′W−(h)Xp(h)/n, with
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diag(a1� � � � � an) denoting the (n × n) diagonal matrix with diagonal elements
a1� � � � � an. It follows that β̂Y+�p(hn)=Hp(hn)Γ

−1
+�p(hn)Xp(hn)

′W+(hn)Y/n and
β̂Y−�p(hn)=Hp(hn)Γ

−1
−�p(hn)Xp(hn)

′W−(hn)Y/n, with Hp(h)=diag(1�h−1� � � � �

h−p). We set μ̂Y+�p(hn) = μ̂(0)
Y+�p(hn) and μ̂Y−�p(hn) = μ̂(0)

Y−�p(hn) and, when-
ever possible, we also drop the outcome variable subindex notation. Under
conditions given below, β̂+�p(hn)→p β+�p = (μ+�μ

(1)
+ /1!�μ(2)

+ /2!� � � � �μ(p)
+ /p!)′

and β̂−�p(hn)→p β−�p = (μ−�μ
(1)
− /1!�μ(2)

− /2!� � � � �μ(p)
− /p!)′, implying that local

polynomial regression estimates consistently the level of the unknown regres-
sion function (μ+ and μ−) as well as its first p derivatives (up to a known
scale).

We also employ the following notation: ϑ+�p�q(h) = Xp(h)
′W+(h)Sq(h)/n

and ϑ−�p�q(h) = Xp(h)
′W−(h)Sq(h)/n, and ΨUV +�p�q(h�b) = Xp(h)

′W+(h) ×
ΣUV W+(b)Xq(b)/n and ΨUV −�p�q(h�b) = Xp(h)

′W−(h)ΣUV W−(b)Xq(b)/n with
ΣUV = diag(σ2

UV (X1)� � � � �σ
2
UV (Xn)) with σ2

UV (Xi) = Cov[Ui�Vi|Xi], where
U and V are placeholders for Y or T . We set ΨUV +�p(h) = ΨUV +�p�p(h�h)
and ΨUV −�p(h) = ΨUV −�p�p(h�h) for brevity, and drop the outcome variable
subindex notation whenever possible. Recall that Γp = ∫ ∞

0 K(u)rp(u)rp(u)
′ du,

ϑp�q = ∫ ∞
0 K(u)uqrp(u)du, and Ψp = ∫ ∞

0 K(u)2rp(u)rp(u)
′ du.

A.2. Sharp RD Designs

As in the main text, in this section we drop the notational dependence
on the outcome variable Y . The general estimand is τν = μ(ν)

+ − μ(ν)
− with

μ(ν)
+ = ν!e′

νβ+�p and μ(ν)
− = ν!e′

νβ−�p, ν ≤ p. Recall that τSRD = τ0 and τSKRD = τ1.
For any ν ≤ p, the conventional pth-order local polynomial RD estimator is
τ̂ν�p(hn) = μ̂(ν)

+�p(hn) − μ̂(ν)
−�p(hn) with μ̂(ν)

+�p(hn) = ν!e′
νβ̂+�p(hn) and μ̂(ν)

−�p(hn) =
ν!e′

νβ̂−�p(hn). Recall that τ̂SRD(hn)= τ̂0�1(hn) and τ̂SKRD(hn)= τ̂1�2(hn).
The following lemma describes the asymptotic bias, variance, and distribu-

tion of τ̂ν�p(hn).

LEMMA A.1: Suppose Assumptions 1–2 hold with S ≥ p + 2, and nhn → ∞.
Let r ∈ N and ν ≤ p.

(B) If hn → 0, then

E
[
τ̂ν�p(hn)|Xn

] = τν + hp+1−ν
n Bν�p�p+1(hn)+ hp+2−ν

n Bν�p�p+2(hn)

+ op

(
hp+2−ν
n

)
�

where

Bν�p�r(hn)= μ(r)
+ B+�ν�p�r(hn)/r! −μ(r)

− B−�ν�p�r(hn)/r!�
B+�ν�p�r(hn)= ν!e′

νΓ
−1

+�p(hn)ϑ+�p�r(hn)= ν!e′
νΓ

−1
p ϑp�r + op(1)�

B−�ν�p�r(hn)= ν!e′
νΓ

−1
−�p(hn)ϑ−�p�r(hn)= (−1)ν+rν!e′

νΓ
−1
p ϑp�r + op(1)�
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(V) If hn → 0, then Vν�p(hn)=V[τ̂ν�p(hn)|Xn] = V+�ν�p(hn)+ V−�ν�p(hn) with

V+�ν�p(hn)= n−1h−2ν
n ν!2e′

νΓ
−1

+�p(hn)Ψ+�p(hn)Γ
−1

+�p(hn)eν

= n−1h−1−2ν
n σ2

+ν!2e′
νΓ

−1
p ΨpΓ

−1
p eν/f

{
1 + op(1)

}
�

V−�ν�p(hn)= n−1h−2ν
n ν!2e′

νΓ
−1

−�p(hn)Ψ−�p(hn)Γ
−1

−�p(hn)eν

= n−1h−1−2ν
n σ2

−ν!2e′
νΓ

−1
p ΨpΓ

−1
p eν/f

{
1 + op(1)

}
�

(D) If nh2p+5
n → 0, then (τ̂ν�p(hn) − τν − hp+1−ν

n Bν�p�p+1(hn))/
√

Vν�p(hn) →d

N (0�1).

A qth-order (p < q) local polynomial bias-corrected estimator is
τ̂bcν�p�q(hn�bn)= τ̂p(hn)− hp+1

n B̂ν�p�q(hn�bn) with

B̂ν�p�q(hn�bn) = (
e′
p+1β̂+�q(bn)

)
B+�ν�p�p+1(hn)

− (
e′
p+1β̂−�q(bn)

)
B−�ν�p�p+1(hn)�

The following theorem gives the asymptotic bias, variance, and distribution
of τ̂bcν�p�q(hn�bn). Theorems 1 and 2 are special cases with (ν�p�q) = (0�1�2)
and (ν�p�q) = (1�2�3), respectively.

THEOREM A.1: Suppose Assumptions 1–2 hold with S ≥ q + 1, and
nmin{hn�bn} → ∞. Let ν ≤ p< q.

(B) If max{hn�bn} → 0, then

E
[
τ̂bcν�p�q(hn�bn)|Xn

] = τν + hp+2−ν
n Bν�p�p+2(hn)

{
1 + op(1)

}
− hp+1−ν

n bq−p
n Bbc

ν�p�q(hn�bn)
{
1 + op(1)

}
�

where

Bbc
ν�p�q(h�b) = [

μ
(q+1)
+ B+�p+1�q�q+1(b)B+�ν�p�p+1(h)

−μ
(q+1)
− B−�p+1�q�q+1(b)B−�ν�p�p+1(h)

]
/
[
(q+ 1)!(p+ 1)!]�

(V) Vbc
ν�p�q(hn�bn) = V[τ̂bcν�p�q(hn�bn)|Xn] = Vbc

+�ν�p�q(hn�bn) + Vbc
−�ν�p�q(hn�bn)

with

Vbc
+�ν�p�q(h�b) = V+�ν�p(h)

− 2hp+1−νC+�ν�p�q(h�b)B+�ν�p�p+1(h)/(p+ 1)!
+ h2(p+1−ν)V+�p+1�q(b)B2

+�ν�p�p+1(h)/(p+ 1)!2�
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Vbc
−�ν�p�q(h�b) = V−�ν�p(h)

− 2hp+1−νC−�ν�p�q(h�b)B−�ν�p�p+1(h)/(p+ 1)!
+ h2(p+1−ν)V−�p+1�q(b)B2

−�ν�p�p+1(h)/(p+ 1)!2�

C+�ν�p�q(h�b) = n−1h−νb−p−1ν!(p+ 1)!
× e′

νΓ
−1

+�p(h)Ψ+�p�q(h�b)Γ
−1

+�q(b)ep+1�

C−�ν�p�q(h�b) = n−1h−νb−p−1ν!(p+ 1)!
× e′

νΓ
−1

−�p(h)Ψ−�p�q(h�b)Γ
−1

−�q(b)ep+1�

(D) If nmin{h2p+3
n � b2p+3

n }max{h2
n� b

2(q−p)
n } → 0, and κmax{hn�bn} < κ0, then

T rbc
ν�p�q(hn�bn)= (τ̂bcν�p�q(hn�bn)− τν)/

√
Vbc
ν�p�q(hn�bn) →d N (0�1).

In Theorem 1, Vbc
SRD(hn�bn) = Vbc

0�1�2(hn�bn), VSRD(hn) = V0�1(hn) =
V+�0�1(hn) + V−�0�1(hn), and Cbc

SRD(hn�bn) = Vbc
SRD(hn�bn) − VSRD(hn) =

Vbc
0�1�2(hn�bn) − V0�1(hn). In Theorem 2, Vbc

SKRD(hn�bn) = Vbc
1�2�3(hn�bn),

VSKRD(hn) = V1�2(hn) = V+�1�2(hn) + V−�1�2(hn), and Cbc
SKRD(hn�bn) =

Vbc
SKRD(hn�bn)− VSKRD(hn)= Vbc

1�2�3(hn�bn)− V1�2(hn).

A.3. Fuzzy RD Designs

The νth fuzzy RD estimand is ςν = τY�ν/τT�ν with τY�ν = μ(ν)
Y+ −μ(ν)

Y− and τT�ν =
μ(ν)

T+ − μ(ν)
T−, provided that ν ≤ S. Note that τFRD = ς0 and τFKRD = ς1. The fuzzy

RD estimator based on the pth-order local polynomial estimators τ̂Y�ν�p(hn)

and τ̂T�ν�p(hn) is ς̂ν�p(hn) = τ̂Y�ν�p(hn)/τ̂T�ν�p(hn) with τ̂Y�ν�p(hn) = μ̂(ν)
Y+�p(hn) −

μ̂(ν)
Y−�p(hn) and τ̂T�ν�p(hn) = μ̂(ν)

T+�p(hn) − μ̂(ν)
T−�p(hn), where μ̂(ν)

Y+�p(hn) = ν! ×
e′
νβ̂Y+�p(hn), μ̂(ν)

Y−�p(hn) = ν!e′
νβ̂Y−�p(hn), μ̂(ν)

T+�p(hn) = ν!e′
νβ̂T+�p(hn), and

μ̂(ν)
T−�p(hn) = ν!e′

νβ̂T−�p(hn). Note that τ̂FRD(hn) = ς̂0�1(hn) and τ̂FKRD(hn) =
ς̂1�2(hn).

The following lemma gives an analogue of Lemma A.1 for fuzzy RD designs.
Note that ς̂ν�p(hn)− ςν = ς̃ν�p(hn)+Rn with ς̃ν�p(hn) = (τ̂Y�ν�p(hn)−τY�ν)/τT�ν −
τY�ν(τ̂T�ν�p(hn) − τT�ν)/τ

2
T�ν and Rn = τY�ν(τ̂T�ν�p(hn) − τT�ν)

2/(τ2
T�ντ̂T�ν�p(hn)) −

(τ̂Y�ν�p(hn)− τY�ν)(τ̂T�ν�p(hn)− τT�ν)/(τT�ντ̂T�ν�p(hn)).

LEMMA A.2: Suppose Assumptions 1–3 hold with S ≥ p + 2, and nhn → ∞.
Let r ∈ N and ν ≤ p.

(R) If hn → 0 and nh1+2ν
n → ∞, then Rn =Op(n

−1h−1−2ν
n + h2p+2−2ν

n ).
(B) If hn → 0, then

E
[
ς̃ν�p(hn)|Xn

] = hp+1−ν
n BF�ν�p�p+1(hn)+ hp+2−ν

n BF�ν�p�p+2(hn)

+ op

(
hp+2−ν
n

)
�
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where

BF�ν�p�r(hn)= BY�ν�p�r(hn)/τT�ν − τY�νBT�ν�p�r(hn)/τ
2
T�ν�

BY�ν�p�r(hn)= μ(r)
Y+B+�ν�p�r(hn)/r! −μ(r)

Y−B−�ν�p�r(hn)/r!�
BT�ν�p�r(hn) = μ(r)

T+B+�ν�p�r(hn)/r! −μ(r)
T−B−�ν�p�r(hn)/r!�

(V) If hn → 0, then VF�ν�p(hn) = V[ς̃ν�p(hn)|Xn] = VF�+�ν�p(hn) + VF�−�ν�p(hn)
with

VF�+�ν�p(hn) = (
1/τ2

T�ν

)
VYY+�ν�p(hn)− (

2τY�ν/τ3
T�ν

)
VYT+�ν�p(hn)

+ (
τ2
Y�ν/τ

4
T�ν

)
VTT+�ν�p(hn)�

VF�−�ν�p(hn) = (
1/τ2

T�ν

)
VYY−�ν�p(hn)− (

2τY�ν/τ3
T�ν

)
VYT−�ν�p(hn)

+ (
τ2
Y�ν/τ

4
T�ν

)
VTT−�ν�p(hn)�

where, for U = Y�T and V = Y�T ,

VUV +�ν�p(hn)= n−1h−2ν
n ν!2e′

νΓ
−1

+�p(hn)ΨUV +�p(hn)Γ
−1

+�p(hn)eν

= n−1h−1−2ν
n σ2

UV +ν!2e′
νΓ

−1
p ΨpΓ

−1
p eν/f

{
1 + op(1)

}
�

VUV −�ν�p(hn)= n−1h−2ν
n ν!2e′

νΓ
−1

−�p(hn)ΨUV −�p(hn)Γ
−1

−�p(hn)eν

= n−1h−1−2ν
n σ2

UV −ν!2e′
νΓ

−1
p ΨpΓ

−1
p eν/f

{
1 + op(1)

}
�

(D) If nh2p+5
n →0 and nh1+2ν

n →∞, then (ς̂ν�p(hn)−ςν −hp+1−ν
n BF�ν�p�p+1(hn))/√

VF�ν�p(hn) →d N (0�1).

The following theorem gives an analogue of Theorem A.1 for fuzzy RD
designs; Theorems 3 and 4 are special cases with (ν�p�q) = (0�1�2) and
(ν�p�q) = (1�2�3), respectively. This theorem summarizes the asymptotic
bias, variance, and distribution of the bias-corrected fuzzy RD estimator:

ς̂bcν�p�q(hn�bn)= ς̂ν�p(hn)− hp+1−ν
n B̂F�ν�p�q(hn�bn)�

B̂F�ν�p�q(hn�bn)= [(
e′
p+1β̂Y+�q(bn)

)
B+�ν�p�p+1(hn)

− (
e′
p+1β̂Y−�q(bn)

)
B−�ν�p�p+1(hn)

]
/τ̂T�ν�p(hn)

− τ̂Y�ν�p(hn)
[(
e′
p+1β̂T+�q(bn)

)
B+�ν�p�p+1(hn)

− (
e′
p+1β̂T−�q(bn)

)
B−�ν�p�p+1(hn)

]
/τ̂T�ν�p(hn)

2�
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Linearizing the estimator, we obtain

ς̂bcν�p�q(hn�bn)− ςν = ς̃bcν�p�q(hn�bn)+Rn −Rbc
n �

ς̃bcν�p�q(hn�bn)= (
τ̂bcY�ν�p�q(hn�bn)− τY�ν

)
/τT�ν

− τY�ν
(
τ̂bcT�ν�p�q(hn�bn)− τT�ν

)
/τ2

T�ν�

Rn = τY�ν
(
τ̂T�ν�p(hn)− τT�ν

)2
/
(
τ2
T�ντ̂T�ν�p(hn)

)
− (

τ̂Y�ν�p(hn)− τY�ν
)(
τ̂T�ν�p(hn)− τT�ν

)
/
(
τT�ντ̂T�ν�p(hn)

)
�

Rbc
n = hp+1−ν

n

(
B̂F�ν�p�q(hn�bn)− B̌F�ν�p�q(hn�bn)

)
�

B̌F�ν�p�q(hn�bn)= [(
e′
p+1β̂Y+�q(bn)

)
B+�ν�p�p+1(hn)

− (
e′
p+1β̂Y−�q(bn)

)
B−�ν�p�p+1(hn)

]
/τT�ν

− τY�ν
[(
e′
p+1β̂T+�q(bn)

)
B+�ν�p�p+1(hn)

− (
e′
p+1β̂T−�q(bn)

)
B−�ν�p�p+1(hn)

]
/τ2

T�ν�

THEOREM A.2: Suppose Assumptions 1–3 hold with S ≥ p + 2, and
nmin{hn�bn} → ∞. Let ν ≤ p< q.

(Rbc) If hn → 0 and nh1+2ν
n → ∞, and provided that κbn < κ0, then Rbc

n =
Op(n

−1/2hp+1/2
n + h2p+2−2ν

n )Op(1 + n−1/2b−3/2−p
n ).

(B) If max{hn�bn} → 0, then

E
[
ς̃bcν�p�q(hn�bn)|Xn

] = hp+2−ν
n BF�ν�p�p+2(hn)

{
1 + op(1)

}
+ hp+1−ν

n bq−p
n Bbc

F�ν�p�q(hn�bn)
{
1 + op(1)

}
�

where

Bbc
F�ν�p�q(h�b) = Bbc

Y�ν�p�q(hn�bn)/τT�ν − τY�νB
bc
T�ν�p�q(hn�bn)/τ

2
T�ν�

Bbc
Y�ν�p�q(h�b) = [

μ
(q+1)
Y+ B+�p+1�q�q+1(b)B+�ν�p�p+1(h)

−μ
(q+1)
Y− B−�p+1�q�q+1(b)B−�ν�p�p+1(h)

]
/
[
(q+ 1)!(p+ 1)!]�

Bbc
T�ν�p�q(h�b) = [

μ
(q+1)
T+ B+�p+1�q�q+1(b)B+�ν�p�p+1(h)

−μ
(q+1)
T− B−�p+1�q�q+1(b)B−�ν�p�p+1(h)

]
/
[
(q+ 1)!(p+ 1)!]�
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(V) Vbc
F�ν�p�q(hn�bn)=V[ς̃bcν�p�q(hn�bn)|Xn]=Vbc

F�+�ν�p�q(hn�bn)+Vbc
F�−�ν�p�q(hn�bn)

with

Vbc
F�+�ν�p�q(h�b) = VF�+�ν�p(h)

− 2hp+1−νCF�+�ν�p�q(h�b)B+�ν�p�p+1(h)/(p+ 1)!
+ h2p+2−2νVF�+�p+1�q(b)B2

+�ν�p�p+1(h)/(p+ 1)!2�

Vbc
F�−�ν�p�q(h�b) = VF�−�ν�p(h)

− 2hp+1−νCF�−�ν�p�q(h�b)B−�ν�p�p+1(h)/(p+ 1)!
+ h2p+2−2νVF�−�p+1�q(b)B2

−�ν�p�p+1(h)/(p+ 1)!2�

CF�+�ν�p�q(h�b) = (
1/τ2

T�ν

)
CYY+�ν�p�q(h�b)− (

2τY�ν/τ3
T�ν

)
CYT+�ν�p�q(h�b)

+ (
τ2
Y�ν/τ

4
T�ν

)
CTT+�ν�p�q(h�b)�

CF�−�ν�p�q(h�b) = (
1/τ2

T�ν

)
CYY−�ν�p�q(h�b)− (

2τY�ν/τ3
T�ν

)
CYT−�ν�p�q(h�b)

+ (
τ2
Y�ν/τ

4
T�ν

)
CTT−�ν�p�q(h�b)�

where, for U = Y�T and V = Y�T ,

CUV +�ν�p�q(h�b) = n−1h−νb−p−1ν!(p+ 1)!
× e′

νΓ
−1

+�p(h)ΨUV +�p�q(h�b)Γ
−1

+�q(b)ep+1�

CUV −�ν�p�q(h�b) = n−1h−νb−p−1ν!(p+ 1)!
× e′

νΓ
−1

−�p(h)ΨUV −�p�q(h�b)Γ
−1

−�q(b)ep+1�

(D) If nmin{h2p+3
n � b2p+3

n }max{h2
n� b

2(q−p)
n } → 0 and nmin{h1+2ν

n � bn} →
∞, and hn → 0 and κbn < κ0, then T rbc

F�ν�p�q(hn�bn) = (ς̂bcν�p�q(hn�bn) − ςν)/√
Vbc
F�ν�p�q(hn�bn)→d N (0�1).

In Theorem 3, Vbc
FRD(hn�bn) = Vbc

F�0�1�2(hn�bn), VFRD(hn) = VF�0�1(hn) =
VF�+�0�1(hn) + VF�−�0�1(hn), and Cbc

FRD(hn�bn) = Vbc
FRD(hn�bn) − VFRD(hn) =

Vbc
F�0�1�2(hn�bn) − VF�0�1(hn). In Theorem 4, Vbc

FKRD(hn�bn) = Vbc
F�1�2�3(hn�bn),

VFKRD(hn) = VF�1�2(hn) = VF�+�1�2(hn) + VF�−�1�2(hn), and Cbc
FKRD(hn�bn) =

Vbc
FKRD(hn�bn)− VFKRD(hn)= Vbc

F�1�2�3(hn�bn)− VF�1�2(hn).
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