Final Exam - Math 217
Carl Miller
Winter 2008

Name: __________________________

Please circle your answers. Cross out any work that you do not want graded.

<table>
<thead>
<tr>
<th>Problem</th>
<th>Grade</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>
Credit for problems 1-4 is based on your answers only.

(1) Mark the following statements as either “True” or “False.”

- If A and B are invertible square matrices, then $(AB)^{-1}$ must be equal to $A^{-1}B^{-1}$.

- Suppose that S is an orthonormal set of vectors in \mathbb{R}^5. Then S cannot contain more than 5 elements.

- There does not exist a linear transformation $T: \mathbb{R}^5 \to \mathbb{R}^4$ that is both one-to-one and onto.

- The determinant of a diagonal matrix is always equal to the product of its diagonal entries.

- Suppose that V is a vector space and $\mathcal{B} = \{b_1, \ldots, b_n\}$ is a basis for V. Then the coordinate mapping $V \to \mathbb{R}^n$ (given by $v \mapsto [v]_\mathcal{B}$) must be an isomorphism.
(2) Mark the following statements as either “True” or “False.”

- If \(A \) is an \(m \times n \) matrix, and \(b \) is a vector in \(\mathbb{R}^m \), then the set of solutions to the equation \(Ax = b \) must be a subspace of \(\mathbb{R}^n \).

- For any \(n \times n \) matrix \(A \) and any real number \(c \),
 \[
 \det(cA) = c^n \det(A).
 \]

- Let \(\mathbf{w} \) and \(\mathbf{v} \) be vectors in \(\mathbb{R}^n \). If \(\mathbf{v} \) is orthogonal to \(\mathbf{w} \), then the length of \((\mathbf{w} + \mathbf{v}) \) must be the same as the length of \(\mathbf{w} \).

- Let \(M_{n \times n} \) denote the vector space of \(n \times n \) matrices (with the usual rules for addition and scalar multiplication). Then
 \[
 \dim M_{n \times n} = n
 \]
 for any \(n \).

- Let \(A \) be a \(n \times n \) matrix that has one (and only one) real eigenvalue. Then \(A \) must be equal to a scalar multiple of the identity matrix.
(3) Let

\[
A = \begin{bmatrix}
1 & 2 & 2 & 1 \\
0 & 1 & 3 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1 \\
\end{bmatrix}
\].

(a) Compute \(A^{-1} \).

(b) Compute \(\det A \).
(4) Please circle your answers for the following problems.

(a) Let $S: \mathbb{R}^2 \to \mathbb{R}^2$ be the linear transformation which flips vectors across the origin. Find the standard matrix for S.

(b) Let

$$v = \begin{bmatrix} 3 \\ 4 \end{bmatrix}.$$

Find a vector w of length 1 which is orthogonal to v.

(c) Let T be a triangle in \mathbb{R}^2 whose vertices all have integer coordinates. What is the smallest possible area of the interior of T? (Assume that the vertices of T do not all lie on a single line.)
Credit for problems 5-8 is based on answers and on work shown.

(5) Let

\[A = \begin{bmatrix} 1 & 2 \\ -2 & -3 \\ 0 & 2 \end{bmatrix} \quad \text{and} \quad b = \begin{bmatrix} 1 \\ -4 \\ -4 \end{bmatrix}. \]

Find a vector \(x \) which satisfies the equation \(Ax = b \).
(6) Let

\[H = \text{Span} \left\{ \begin{bmatrix} 1 \\ 0 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 1 \\ 1 \end{bmatrix} \right\} \]

Compute the dimension of \(H \). (Be sure to show work that supports your answer.)
(7) Let

\[A = \begin{bmatrix} 1 & -2 \\ 4 & 7 \end{bmatrix}. \]

(a) Find a diagonal matrix \(D \) and an invertible matrix \(P \) such that \(A = PDP^{-1} \).

(b) Let \(\mathbf{v} = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \), and consider the sequence of vectors

\(\mathbf{v}, A\mathbf{v}, A^2\mathbf{v}, \ldots \)

Which of the following statements best describes the geometric behavior of this sequence? (Circle one.)

- The sequence tends towards the origin.
- The sequence tends towards the vector \(\begin{bmatrix} 2 \\ 1 \end{bmatrix} \).
- The sequence tends towards the vector \(\begin{bmatrix} 1 \\ -1 \end{bmatrix} \).
- The sequence tends away from the origin.
Let
\[H = \text{Span} \left\{ \begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix} \right\} \]
and \[v = \begin{bmatrix} 6 \\ 5 \\ 4 \end{bmatrix}. \]
Find the vector \(w \in H \) which makes the distance \(\|w - v\| \) as small as possible.
(9) Let A be a 10×10 matrix such that A^2 is the zero matrix. Prove that the dimension of Nul A must be at least 5.