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Abstract. This paper investigates the explicit solutions and stability properties of certain
continuous-time homogeneous polynomial dynamical systems via tensor algebra. In particular, if
a system of homogeneous polynomial differential equations can be represented by an orthogonally
decomposable tensor, we can construct its explicit solution by exploiting tensor Z-eigenvalues and
Z-eigenvectors. By utilizing the form of the explicit solution, we are able to discuss the stability
properties of the homogeneous polynomial dynamical system. We illustrate that the Z-eigenvalues
from the orthogonal decomposition of the corresponding dynamic tensor can be utilized to establish
necessary and sufficient stability conditions, similar to these from linear systems theory. Furthermore,
we explore the complete solution to the homogeneous polynomial dynamical system with constant
inputs. These results are demonstrated via several numerical examples.
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1. Introduction. Tensor algebra has been applied to model and simulate non-
linear dynamics [6, 9, 16, 27, 28]. The key idea is to represent nonlinear dynam-
ics using tensor products, and then to exploit tensor decomposition techniques such
that CANDECOMP/PARAFAC decomposition, higher-order singular value decom-
position, Tucker decomposition, and tensor train decomposition [14, 24, 25, 33].
Kruppa [27, 28] represented a multilinear polynomial dynamical system by a con-
tracted product between a parameter tensor and a monomial tensor, and utilized
CANDECOMP/PARAFAC decomposition and Tucker decomposition for efficiently
simulating the evolution of the dynamics. Moreover, Chen et al. [9] proposed a new
tensor-based multilinear dynamical system for characterizing the dynamics of hyper-
graphs, a generalization of graphs in which edges can contain more than one nodes.
The mulitlinear dynamical system evolution is described by the action of tensor vector
multiplications between a dynamic tensor and the state vector. In fact, the multilin-
ear dynamical system belongs to the family of homogeneous polynomial dynamical
systems if one expands the tensor vector multiplications.

The explicit solution and stability properties of a linear dynamical system can be
readily obtained from the eigenvalue decomposition of the dynamic matrix. However,
the results can hardly be extended to homogeneous polynomial dynamical systems
due to its nonlinear nature [1, 2, 21, 39, 41]. In terms of stability, many methods
such as generalized characteristic value problems [39] and optimization-based Lya-
punov functions [1] have been proposed to establish stability of some homogeneous
polynomial dynamical systems. Similarly, in this paper, we will exploit tensor orthog-
onal decomposition with Z-eigenvalues and Z-eigenvectors to summarize the explicit
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solutions and stability properties of certain homogeneous polynomial dynamical sys-
tems that can be represented by orthogonally decomposable tensors via tensor vector
multiplications as defined in [9].

Tensor eigenvalue problems of real supersymmetric tensors were first explored
by Qi [34, 35] and Lim [29] independently in 2005. There are many different no-
tions of tensor eigenvalues such as H-eigenvalues, Z-eigenvalues, M-eigenvalues, and
U-eigenvalues [10, 34, 35], which have different applications in network theory, ma-
chine learning, elasticity theory, and dynamical systems. Surana et al. [43] compared
the H-eigenvalue spectrum between the two Laplacian tensors for measuring hyper-
graph distance. Chen et al. [13] showed that the Z-eigenvector associated with the
second smallest Z-eigenvalue of a normalized Laplacian tensor can be used for hy-
pergraph partition. Moreover, Huang and Qi [19] used M-eigenvalues to prove the
strong ellipticity of elasticity tensors in solid mechanics. Furthermore, Chen et al.
[8, 10] utilized U-eigenvalues to determine the stability of multilinear time-invariant
systems, which can be unfolded to linear dynamical systems via tensor unfolding, an
operation that transforms a tensor into a matrix. Of particular interest of this paper
are Z-eigenvalues.

Recently, Chen [6] investigated the explicit solutions and stability properties of
certain discrete-time homogeneous polynomial dynamical systems (also called multi-
linear dynamical systems in [6]) via tensor orthogonal decomposition. In particular,
the author showed that Z-eigenvalues play a significant role in the stability analysis
offering necessary and sufficient conditions if the corresponding dynamic tensors are
orthogonally decomposable [6]. This paper will focus on continuous-time homogeneous
polynomial dynamical systems. Continuous-time polynomial dynamical systems are
a popular tool to model various robotic systems [30, 42, 45]. The key contributions
of the paper are:

1. We investigate the explicit solutions of certain continuous-time homogeneous
polynomial dynamical systems that can be represented by orthogonally de-
composable tensors. We derive an explicit solution formula by using the
Z-eigenvalues and Z-eigenvectors from the orthogonal decomposition of the
corresponding dynamic tensors.

2. According to the form of the explicit solutions, we are able to discuss the
stability properties of such homogeneous polynomial dynamical systems. We
find that similar to the linear stability, the Z-eigenvalues from the orthogonal
decomposition of the corresponding dynamic tensors can offer necessary and
sufficient stability conditions. Furthermore, we apply an upper bound of the
largest Z-eigenvalue to determine the stability efficiently.

3. We explore the complete solutions of such homogeneous polynomial dynam-
ical systems with constant inputs. We discover that the complete solutions
can be solved implicitly by exploiting Gauss hypergeometric functions.

4. We verify our results on four numerical examples. In addition, we discuss
the controllability and observability of homogeneous polynomial dynamical
systems with linear inputs and outputs.

The paper is organized into six sections. In section 2, we review tensor preliminar-
ies including tensor vector multiplications, tensor eigenvalues, and tensor orthogonal
decomposition. We derive an explicit solution formula of the continuous-time ho-
mogeneous polynomial dynamical systems that can be represented by orthogonally
decomposable tensors in subsection 3.1. In subsection 3.2, we discuss the stability
properties of such homogeneous polynomial dynamical systems based on the form
of the explicit solutions. We also explore the complete solutions of the homogeneous
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polynomial dynamical systems with constant inputs in subsection 3.3. Four numerical
examples are presented in section 4. We discuss the controllability and observability
of the homogeneous polynomial dynamical systems with linear inputs and outputs in
section 5. Finally, we conclude in section 6 with future research directions.

2. Tensor preliminaries. A tensor is a multidimensional array [7, 10, 14, 24,
25, 36]. The order of a tensor is the number of its dimensions, and each dimension
is called a mode. A kth order tensor usually is denoted by A ∈ Rn1×n2×···×nk . It is
therefore reasonable to consider scalars x ∈ R as zero-order tensors, vectors v ∈ Rn
as first-order tensors, and matrices M ∈ Rm×n as second-order tensors. A tensor is
called cubical if every mode is the same size, i.e., A ∈ Rn×n×···×n. A cubical tensor A
is called supersymmetric if Aj1j2...jk is invariant under any permutation of the indices.

2.1. Tensor vector multiplication. The tensor vector multiplication A ×p v
along mode p for a vector v ∈ Rnp is defined by

(2.1) (A×p v)j1j2...jp−1jp+1...jk =

np∑
jp=1

Aj1j2...jp...jkvjp ,

which can be extended to

A×1 v1 ×2 v2 ×3 · · · ×k vk = Av1v2 . . .vk ∈ R(2.2)

for vp ∈ Rnp . If A is supersymmetric and vp = v for all p = 1, 2, . . . , k, the product
(2.2) is also known as the homogeneous polynomial associated with A, and we write
it as Avk for simplicity.

2.2. Tensor eigenvalues. The tensor eigenvalues of real supersymmetric ten-
sors were first explored by Qi [34, 35] and Lim [29] independently. There are many
different notions of tensor eigenvalues including H-eigenvalues, Z-eigenvalues, M-
eigenvalues, and U-eigenvalues [10, 34, 35]. Of particular interest of this paper are
Z-eigenvalues. Given a kth order supersymmetric tensor A ∈ Rn×n×···×n, the E-
eigenvalues λ ∈ C and E-eigenvectors v ∈ Cn of A are defined as

(2.3)

{
Avk−1 = λv

v>v = 1
.

The E-eigenvalues λ could be complex. If λ are real, we call them Z-eigenvalues.
Computing the E-eigenvalues and the Z-eigenvalues of a tensor is NP-hard [18]. How-
ever, many numerical algorithms such that homotopy continuation approaches [11, 12]
and adaptive shifted power methods [26] are proposed in order to compute the E-
eigenvalues or Z-eigenvalues of a tensor.

2.3. Orthogonal decomposition. There are many types of tensor decom-
positions including CANDECOMP/PARAFAC decomposition, higher-order singular
value decomposition, Tucker decomposition, and tensor train decomposition, which
all play important roles in tensor algebra [14, 24, 25, 32, 33]. Tensor orthogonal de-
composition is a special case of CANDECOMP/PARAFAC decomposition. A kth
order suppersymmetric tensor A ∈ Rn×n×···×n is called orthogonally decomposable if
it can be written as a sum of vector outer products

(2.4) A =

n∑
r=1

λrvr ◦ vr◦
k· · · ◦vr,
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where λr ∈ R in the descending order, and vr ∈ Rn are orthonormal [37]. Here “ ◦ ”
denotes the vector outer product.

It is easy to show that λr are the Z-eigenvalues of A with the corresponding
Z-eigenvectors vr. Note that λr do not include all the Z-eigenvalues of A, which
means that λ1 may not be the largest Z-eigenvalue of A. Reobeva [37] speculated
that orthogonally decomposable tensors satisfy a set of polynomial equations that
vanish on the orthogonally decomposable variety, which is the Zariski closure of the
set of orthogonally decomposable tensors inside the space of kth order n-dimensional
complex supersymmetric tensors. Although the author only proved for the case when
n = 2, she provided with strong evidence for its overall correctness [37]. Further-
more, a tensor power method was proposed in [37] in order to obtain the orthogonal
decomposition of an orthogonally decomposable tensor.

3. Results. In this paper, we are interested in finding the explicit solution to a
continuous-time homogeneous polynomial dynamical systems of degree k−1 that can
be represented by

(3.1) ẋ(t) = A×1 x(t)×2 x(t)×3 · · · ×k−1 x(t) = Ax(t)k−1,

whereA ∈ Rn×n×···×n is a kth order n-dimensional orthogonally decomposable tensor,
and x(t) ∈ Rn is the state variable. Chen [6] investigated the explicit solution and
stability properties of the discrete-time version of the system (3.1) by exploiting tensor
orthogonal decomposition. In the following subsections, we extend the results to the
continuous-time case, which are quite different from the discrete-time case.

3.1. Explicit solutions. Finding an explicit solution of a homogeneous polyno-
mial dynamical system is usually challenging due to its nonlinear nature. However, if
a homogeneous polynomial dynamical system can be represented in the form of (3.1)
with orthogonally decomposable dynamic tensor A, we can write down its explicit
solution in a simple fashion by exploiting its Z-eigenvalues and Z-eigenvectors.

Proposition 3.1. Suppose that k ≥ 3 and A ∈ Rn×n×···×n is orthogonally de-
composable. Let the initial condition x0 =

∑n
r=1 αrvr. Then the explicit solution

to the homogeneous polynomial dynamical system (3.1), given initial condition x0, is
given by

(3.2) x(t) =

n∑
r=1

(
1− (k − 2)λrα

k−2
r t

)− 1
k−2

αrvr,

where λr are the Z-eigenvalues with the corresponding Z-eigenvectors vr in the orth-
gogonal decomposition of A. Moreover, if λrα

k−2
r > 0 for some r, the solution (3.2)

is only defined over the interval

(3.3) t ∈
[
0,min

S

1

(k − 2)λrα
k−2
r

)
,

where S = {r = 1, 2, . . . , n|λrαk−2r > 0}.
Proof. Since vr are orthonormal, suppose that

x(t) =

n∑
r=1

cr(t)vr = Vc(t),
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where V =
[
v1 v2 . . . vn,

]
and c(t) =

[
c1(t) c2(t) . . . cn(t)

]>
. Clearly,

cr(0) = αr for all r = 1, 2, . . . , n. Based on the property of tensor vector multiplica-
tions, it can be shown that

ẋ(t) =
( n∑
r=1

λrvr ◦ vr ◦ · · · ◦ vr
)
×1 x(t)×2 x(t)×3 · · · ×k−1 x(t)

=
( n∑
r=1

λrvr ◦ vr ◦ · · · ◦ vr
)
×1

( n∑
i=1

ci(t)vi

)
×2

( n∑
i=1

ci(t)vi

)
×3 . . .

×k−1
( n∑
i=1

ci(t)vi

)
=

n∑
r=1

λr

〈
vr,

n∑
i=1

ci(t)vi

〉k−1
vr

=

n∑
r=1

λrcr(t)
k−1vr.

Thus, we have

Vċ(t) = V(λ ∗ c(t)[k−1])⇒ ċ(t) = λ ∗ c(t)[k−1] ⇒ ċr(t) = λrcr(t)
k−1,

where λ =
[
λ1 λ2 . . . λn

]>
, “ ∗ ” denotes the element-wise multiplication, and

the superscript “[k − 1]” denotes the element-wise (k − 1)th power. By the method
of separation of variables, we can solve for cr(t), which are given by

∫
cr(t)

−(k−1)dcr(t) =

∫
λrdt

⇒ cr(t) =
(

(k − 2)(wr − λrt)
)− 1

k−2

.

Thus, plugging the initial condition yields

cr(t) =
(

1− (k − 2)λrα
k−2
r t

)− 1
k−2

αr,

and the result follows immediately. Moreover, if λrα
k−2
r > 0 for some r, the corre-

sponding coefficient functions cr(t) will have singularities at t = 1

(k−2)λrα
k−2
r

. Thus,

the domains of cr(t) are given by t ∈
[
0, 1

(k−2)λrα
k−2
r

)
. The other branches of cr(t) over

t ∈
(

1

(k−2)λrα
k−2
r

,∞
)

do not satisfy the initial conditions, so they are not included in

the solutions of cr(t). Therefore, the domain of the solution (3.2) will be

D =
⋂
S

[
0,

1

(k − 2)λrα
k−2
r

)
=
[
0,min

S

1

(k − 2)λrα
k−2
r

)
,

where S = {r = 1, 2, . . . , n|λrαk−2r > 0}. Note that if λrα
k−2
r ≤ 0 for all r, the

domain of the solution (3.2) will be D = [0,∞).

The coefficients αr can be found from the inner product between x0 and vr.
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When k = 2, the result reduces to the famous linear systems’ solutions, i.e.,

lim
k→2

x(t) = lim
k→2

n∑
r=1

(
1− (k − 2)λrα

k−2
r t

)− 1
k−2

αrvr

= lim
p→∞

n∑
r=1

(
1 +

λrt

p

)p
αrvr =

n∑
r=1

exp {λrt}αrvr,

where λr become the eigenvalues of the dynamic matrix with the corresponding eigen-
vectors vr. Furthermore, based on the form of the explicit solution, we can discuss
the stability properties of the homogeneous polynomial dynamical system (3.1).

3.2. Stability. In linear control theory, it is conventional to investigate so-called
(internal) stability [38]. The stability of a linear dynamical system only relies on the
locations of the eigenvalues of the dynamic matrix. Similarly, the equilibrium point
x = 0 of the homogeneous polynomial dynamical system (3.1) is called stable if
‖x(t)‖ ≤ γ‖x0‖ for some initial condition x0 and γ > 0, asymptotically stable if
‖x(t)‖ → 0 as t → ∞, and unstable if ‖x(t)‖ → ∞ as t → c (c could be positive
real numbers or infinity). Here “‖ · ‖” denotes the Frobenius norm. We discover that
the stability properties of the homogeneous polynomial dynamical system (3.1) with
orthogonally decomposable dynamic tensor are similar to those of linear systems, but
depend on both the Z-eigenvalues of A and initial conditions.

Corollary 3.2. Suppose that k ≥ 3 and A ∈ Rn×n×···×n is orthogonally decom-
posable. Let the initial condition x0 =

∑n
r=1 αrvr. For the homogeneous polynomial

dynamical system (3.1), the equilibrium point x = 0 is:
1. stable if and only if λrα

k−2
r ≤ 0 for all r = 1, 2, . . . , n;

2. asymptotically stable if and only if λrα
k−2
r < 0 for all r = 1, 2, . . . , n;

3. unstable if and only if λrα
k−2
r > 0 for some r = 1, 2, . . . , n,

where λr are the Z-eigenvalues in the orthogonal decomposition of A.

Proof. First, by the triangle inequality, it can be shown that

‖x(t)‖ = ‖
n∑
r=1

cr(t)vr‖ ≤
n∑
r=1

|cr(t)|‖vr‖ =

n∑
r=1

|cr(t)|.

Since λrα
k−2
r ≤ 0 for all r = 1, 2, . . . , n, the coefficient functions |cr(t)| are bounded

by |αr| over t ∈ [0,∞). Then we have

‖x(t)‖ ≤
n∑
r=1

|αr| = ‖x0‖1 ≤
√
n‖x0‖.

Therefore, the equilibrium point x = 0 is stable. On the other hand, since vr are
orthonormal, ‖x(t)‖ = ‖Vc(t)‖ = ‖c(t)‖ where V and c(t) are same as defined in
Proposition 3.1. If ‖x(t)‖ = ‖c(t)‖ ≤ γ‖x0‖, all the coefficient functions cr(t) must be
bounded for t ≥ 0. Thus, λrα

k−2
r must lie in the left-half plane for all r = 1, 2, . . . , n.

Second, if λrα
k−2
r < 0 for all r = 1, 2, . . . , n, the coefficient functions cr(t) follow

that limt→∞ |cr(t)| = 0. Therefore,

lim
t→∞

‖x(t)‖ ≤ lim
t→∞

n∑
r=1

|cr(t)| =
n∑
r=1

lim
t→∞

|cr(t)| = 0,
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and the equilibrium point x = 0 is asymptotically stable. On the other hand, if
limt→∞ ‖x(t)‖ = limt→∞ ‖c(t)‖ = 0, all the coefficient functions cr(t) should satisfy
that limt→∞ |cr(t)| = 0. Thus, λrα

k−2
r must lie in the open left-half plane for all

r = 1, 2, . . . , n.
Finally, if λrα

k−2
r > 0 for some r = 1, 2, . . . , n, the corresponding coefficient

functions cr(t) will have singularities at ts = 1

(k−2)λrα
k−2
r

such that limt→ts cr(t) =∞.

Hence,

lim
t→min ts

‖x(t)‖ = lim
t→min ts

‖c(t)‖ =∞,

and the equilibrium point x = 0 is unstable. On the other hand, if limt→c ‖x(t)‖ =
limt→c ‖c(t)‖ = ∞ for some c > 0, the coefficient functions cr(t) should satisfy that
limt→c |cr(t)| = ∞ for some r. Since c cannot be infinity, those cr(t) must have the
singularities at t = c. Therefore, we have λrα

k−2
r = 1

(k−2)c > 0 for some r.

When k = 2, the above conditions reduce to the famous linearity stability condi-
tions. The inequalities obtained from the asymptotic stability condition can provide
us with the region of attraction of the homogeneous polynomial dynamical system
(3.1), i.e.,

(3.4) R = {x : λrα
k−2
r < 0 where x =

n∑
r=1

αrvr},

where vr are the Z-eigenvectors in the orthogonal decomposition of A corresponding
to the Z-eigenvalues λr. Furthermore, when k is even, αk−2r will be always greater than
or equal to zero. Thus, the stability conditions can be simplified for the homogeneous
polynomial dynamical system (3.1) of odd degree.

Corollary 3.3. Suppose that k ≥ 4 is even and A ∈ Rn×n×···×n is orthogonally
decomposable. For the homogeneous polynomial dynamical system (3.1), the equilib-
rium point x = 0 is:

1. stable if and only if λr ≤ 0 for all r = 1, 2, . . . , n;
2. asymptotically stable if and only if λr < 0 for all r = 1, 2, . . . , n;
3. unstable if and only if λr > 0 for some r = 1, 2, . . . , n,

where λr are the Z-eigenvalues in the orthogonal decomposition of A.

Proof. The results follow immediately from Corollary 3.2 when k is even.

When k is even, the stability conditions are exactly same as those of linear sys-
tems, i.e., the homogeneous polynomial dynamical system (3.1) of odd degree is glob-
ally stable if and only if all the Z-eigenvalues λr from the orthogonal decomposition
of A lie in the left-half plane. On the other hand, computing the orthogonal decom-
position or Z-eigenvalues of a supersymmetric tensor is NP-hard [18, 37]. If we know
an upper bound of the largest Z-eigenvalue of a supersymmetric tensor, it will save
a great amount of computations for determining the stability of the homogeneous
polynomial dynamical systems (3.1). Chen [6] found that the largest Z-eigenvalue of
an even-order supersymmetric tensor is upper bounded by the largest eigenvalue of
one of its unfolded matrices.

Lemma 3.4. Let A ∈ Rn×n×···×n be an even-order supersymmetric tensor. Then
the largest Z-eigenvalue λmax of A is upper bounded by µmax where µmax is the largest
eigenvalue of ϕ(A) defined by:

(3.5) A = ϕ(A) such that Aj1i1...jkik
ϕ−→ Aji,
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with j = j1 +
∑k
p=2(jp − 1)np−1 and i = i1 +

∑k
p=2(ip − 1)np−1.

Corollary 3.5. Suppose that k ≥ 4 is even and A ∈ Rn×n×···×n is orthogonally
decomposable. For the homogeneous polynomial dynamical system (3.1), the equilib-
rium point x = 0 is:

1. stable if µmax ≤ 0;
2. asymptotically stable if µmax < 0,

where µmax is the largest eigenvalue of ϕ(A) defined in (3.5).

Proof. Based on Lemma 3.4, we know that λ1 ≤ λmax ≤ µmax. Therefore, the
result follows immediately from Corollary 3.3.

Note that λ1 is the largest Z-eigenvalue in the orthogonal decomposition of A,
while λmax is the largest Z-eigenvalue of A. There are many other upper bounds for
the largest Z-eigenvalue or Z-spectral radius of a supersymmetric tensor [5, 17, 31, 44].
Given an orthogonally decomposable dynamic tensor, the better upper bound of the
largest Z-eigenvalue, the more strong stability conditions we can obtain.

3.3. Constant inputs case. In this subsection, we consider the homogeneous
polynomial system (3.1) with constant inputs, i.e.,

(3.6) ẋ(t) = Ax(t)k−1 + b,

where A ∈ Rn×n×···×n is a kth order n-dimensional orthgonally decomposable ten-
sor, and b ∈ Rn is a constant input vector. We find that the complete solution
to this polynomial dynamical system (3.6) can be solved implicitly by using Gauss
hypergeometric functions.

Proposition 3.6. Suppose that k ≥ 3 and A ∈ Rn×n×···×n is orthogonally de-
composable. Let x(t) =

∑n
r=1 cr(t)vr with initial conditions cr(0) = αr. For the

polynomial dynamical system (3.6), the coefficient functions cr(t) can be solved im-
plicitly by

(3.7) t = −
g
(
k−2
k−1 ,−

b̃r
λrcr(t)k−1

)
(k − 2)λrcr(t)k−2

+
g
(
k−2
k−1 ,−

b̃r
λrα

k−1
r

)
(k − 2)λrα

k−2
r

,

where λr are the Z-eigenvalues with the corresponding Z-eigenvectors vr in the orth-
gogonal decomposition of A, and g(·, ·) is the specified Gauss hypergeometric function
[20] defined by

g(a, z) = 2F1(1, a; a+ 1; z) = a

∞∑
m=0

zm

a+m
.

Proof. Since x(t) =
∑n
r=1 cr(t)vr, we can rewrite the polynomial dynamical sys-

tem (3.6) as follows:

Vċ(t) = V(λ ∗ c(t)[k−1]) + VV>b⇒ ċ(t) = λ ∗ c(t)[k−1] + b̃,

where b̃ = V>b. Therefore, for each coefficient function cr(t), we have

(3.8) ċr(t) = λrcr(t)
k−1 + b̃r,

where b̃r is the rth entry of b̃. The differential equation (3.8) is a particular form of
the Chini’s equation [23], and can be solved implicitly by using Gauss hypergeometric
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functions. Based on the method of separation of variables, it can be shown that

∫
1

λrcr(t)k−1 + b̃r
dcr(t) =

∫
1dt⇒ −

g
(
k−2
k−1 ,−

b̃r
λrcr(t)k−1

)
(k − 2)λrcr(t)k−2

= t+ wr.

Plugging the initial conditions yields

t = −
g
(
k−2
k−1 ,−

b̃r
λrcr(t)k−1

)
(k − 2)λrcr(t)k−2

+
g
(
k−2
k−1 ,−

b̃r
λrα

k−1
r

)
(k − 2)λrα

k−2
r

,

and the proof is complete.

The solutions of cr(t) can be further solved by any nonlinear solver given a specific
time point t. We then can recover the complete solution of x(t) based on the values
of cr(t). Moreover, although g(a, z) is defined for |z| < 1, it can be analytically
continued along any path in the complex plane that avoids the branch points one and
infinity [15]. When k = 3, the differential equation (3.8) is also known as the Riccati
equation, which can be converted to a second-order linear system. Furthermore, we
can use the implicit solutions to determine the system properties of the dynamics of
cr(t) at some particular points. Denote the implicit solution (3.7) by t = f(cr) + β.
For example, if we consider cr approaches to infinity, it can be shown that

lim
cr→±∞

f(cr) + β = β.

Thus, if the second terms β in (3.7) are positive for some r, the domains of the
coefficient functions cr(t) will be [0, β). We can therefore conclude that the dynamical
systems of the coefficient functions are unstable, which can be used for inferring the
system properties of the original polynomial dynamical system.

4. Numerical examples. All the numerical examples presented were performed
on a Macintosh machine with 16 GB RAM and a 2 GHz Quad-Core Intel Core i5
processor in MATLAB R2020b.

4.1. Explicit solutions. In this example, we try to compute the explicit solu-
tion of a homogeneous polynomial dynamical system, and compare it to the trajectory
using the MATLAB ODE45 solver. Given a following 3-dimensional homogeneous
polynomial dynamical system of degree two

ẋ1 = 0.0962x2
1 + 0.0291x2

2 + 0.0957x2
3 − 0.0170x1x2 − 0.0048x1x3 − 0.0322x2x3

ẋ2 = −0.0085x2
1 + 0.1840x2

2 + 0.0992x2
3 + 0.0582x1x2 − 0.0322x1x3 + 0.0474x2x3

ẋ3 = −0.0024x2
1 + 0.0237x2

2 − 0.4400x2
3 − 0.0322x1x2 + 0.1914x1x3 + 0.1984x2x3

,

it can be represented in the form of (3.1) with

A::1 =

 0.0962 −0.0085 −0.0024
−0.0085 0.0291 −0.0161
−0.0024 −0.0161 0.0957

 , A::2 =

−0.0085 0.0291 −0.0161
0.0291 0.1844 0.0237
−0.0161 0.0237 0.0992

 ,
A::3 =

−0.0024 −0.0161 0.0957
−0.0161 0.0237 0.0992
0.0957 0.0992 −0.4402

 ,
9



Fig. 1. Trajectories of the homogeneous polynomial dynamical system with the initial condition

x0 =
[
0.6516 −1.3239 0.9070

]>
using the MATLAB ODE45 solver.

such that A is orthogonally decomposable. Thus, we can write down the explicit
solution of the dynamical system according to Proposition 3.1, which is given by

x(t) =
α1

1 + 0.5α1t

−0.1990
−0.1953
0.9603

+
α2

1 + 0.2α2t

−0.1218
−0.9674
−0.2220

+
α3

1− 0.1α3t

 0.9724
−0.1612
0.1687

 ,
where αr can be determined by initial conditions. The results are shown in Ta-
ble 1, in which we compute the state coordinates for the initial condition x0 =[
0.6516 −1.3239 0.9070

]>
with αr = 1 for r = 1, 2, 3 at t = 2, 4, 6, 8. The do-

main of the solution is given by [0, 10). It is evident that the state coordinates are
very close at each time point between the two approaches. Moreover, since the equi-
librium point is unstable given this initial condition, we also see an increasing trend
in the Frobenius norm of the state as t approaches to ten, see Table 1 and Figure 1.

4.2. Stability. In this example, we try to verify the stability results discussed in
Corollary 3.3. Given a following 2-dimensional homogeneous polynomial dynamical
system of degree three{

ẋ1 = −1.2593x31 + 1.6630x21x2 − 1.5554x1x
2
2 − 0.1386x32

ẋ2 = 0.5543x31 − 1.5554x21x2 − 0.4158x1x
2
2 − 0.7037x32

,

10



Table 1
Trajectories of the homogeneous polynomial dynamical system using the explicit solution for-

mula and the MATLAB ODE45 solver. We also report the relative errors between the two trajecto-
ries.

Time t = 0 t = 2 t = 4 t = 6 t = 8

Explicit Sol.
0.6516
−1.3239
0.9070

1.0290
−0.9901
0.5325

1.4867
−0.8712
0.4779

2.3259
−0.8915
0.5609

4.7753
−1.2170
0.9502

ODE45 Solver
0.6516
−1.3239
0.9070

1.0290
−0.9902
0.5325

1.4866
−0.8712
0.4780

2.3259
−0.8915
0.5610

4.7793
−1.2177
0.9509

Relative Error 0 5.1× 10−5 2.3× 10−5 1.8× 10−5 8.1× 10−4

Table 2
The Frobenius norm of x(t) for the five initial conditions at t = 0, 10, 102, 103, 104, 105, 106.

Time t = 0 t = 10 t = 102 t = 103 t = 104 t = 105 t = 106

IC 1 1.4142 0.2655 0.0864 0.0274 0.0087 0.0027 8.7× 10−4

IC 2 50.9902 0.2740 0.0867 0.0274 0.0087 0.0027 8.7× 10−4

IC 3 104.4031 0.2740 0.0867 0.0274 0.0087 0.0027 8.7× 10−4

IC 4 203.9608 0.2740 0.0867 0.0274 0.0087 0.0027 8.7× 10−4

IC 5 1280.6248 0.2740 0.0867 0.0274 0.0087 0.0027 8.7× 10−4

it can be represented in the form of (3.1) with

A::11 =

[
−1.2593 0.5543
0.5543 −0.5185

]
, A::12 =

[
0.5543 −0.5185
−0.5185 −0.1386

]
,

A::21 =

[
0.5543 −0.5185
−0.5185 −0.1386

]
, A::22 =

[
−0.5185 −0.1386
−0.1386 −0.7037

]
,

such that A is orthogonally decomposable. The two Z-eigenvalues in the orthogonal
decomposition of A are λ1 = −1 and λ2 = −2. Therefore, according to Corollary 3.3,
the homogeneous polynomial dynamical system is asymptotically stable for arbitrary
initial conditions. The results are shown in Table 2, in which we compute the Frobe-
nius norm of x(t) for five random initial conditions at t = 0, 10, 102, 103, 104, 105, 106.
The five initial conditions are given by

IC 1 =

[
1
1

]
, IC 2 =

[
10
50

]
, IC 3 =

[
100
30

]
,

IC 4 =

[
−40
−200

]
, and IC 5 =

[
−1000

800

]
.

It is clear to see that all the trajectories of the homogeneous polynomial dynamical
system with the five initial conditions converge to the origin. In addition, we plot the
vector field of the dynamical system, which also indicates that the equilibrium point
x = 0 is asymptotically stable, see Figure 2.

4.3. Stability using the upper bound. In this example, we try to apply the
upper bound of the largest Z-eigenvalue defined in (3.5) to determine the stability
of the homogeneous polynomial dynamical system defined in the last example. The
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Fig. 2. Vector field plot of the homogeneous polynomial dynamical system.

unfolded matrix ϕ(A) is given by

ϕ(A) =


−1.2593 0.5543 0.5543 −0.5185
0.5543 −0.5185 −0.5185 −0.1386
0.5543 −0.5185 −0.5185 −0.1386
−0.5185 −0.1386 −0.1386 −0.7037

 .
The maximum eigenvalue of the unfolded matrix is µmax = 0. Therefore, according
to Corollary 3.5, the homogeneous polynomial dynamical system is stable at the
equilibrium point x = 0 (although we know that the system is actually asymptotically
stable from the last example).

4.4. Constant inputs case. In this example, we try to solve the complete
solution of a homogeneous polynomial dynamical system with constant inputs which
is given by{

ẋ1 = 1.2593x31 − 1.6630x21x2 + 1.5554x1x
2
2 + 0.1386x32 − 0.4105

ẋ2 = −0.5543x31 + 1.5554x21x2 + 0.4158x1x
2
2 + 0.7037x32 + 1.3533

.

The above dynamics can be represented in the form of (3.6) such that A ∈ R2×2×2×2

is orthogonally decomposable, and b =
[
−0.4105 1.3533

]>
. The Z-eigenvalues in

the orthogonal decompostion of A are λ1 = 2 and λ2 = 1 with the corresponding

Z-eigenvectors v1 =
[
−0.8819 0.4717

]>
and v2 =

[
0.4714 0.8819

]>
. Suppose that

the initial condition is x0 =
[
−0.4105 1.3533

]>
. Then the differential equations for

12



Fig. 3. Trajectories of the coefficient functions c1(t) and c2(t) with initial conditions c1(0) =
c2(0) = 1. Here we only show the branches that satisfy the initial conditions.

the coefficient functions cr(t) are given by{
ċ1(t) = 2c1(t)3 + 1

ċ2(t) = c2(t)3 + 1

with c1(0) = c2(0) = 1. Thus, the coefficient functions c1(t) and c2(t) can be solved
implicitly by

t = −
g
(

2
3 ,−

1
2c1(t)3

)
4c1(t)2

+
g
(

2
3 ,−

1
2

)
4

and t = −
g
(

2
3 ,−

1
c2(t)3

)
2c2(t)2

+
g
(

2
3 ,−1

)
2

,

respectively. The trajectories of c1(t) and c2(t) are shown in Figure 3, both of which

increase rapidly as t approaches to g
(

2
3 ,−

1
2

)
/4 and g

(
2
3 ,−1

)
/2, respectively. This

implies that the original polynomial dynamical system is unstable. In addition, we
compare the complete solution solved from the implicit equations of cr(t) to the
trajectory using the MATLAB ODE45 solver, in which the solution is defined over

t ∈
[
0, g
(

2
3 ,−

1
2

)
/4
)

. It is clear that the state coordinates are very close at each time

point between the two approaches, see in Table 3.

5. Discussion. In linear systems theory, it is important to investigate the con-
trollability and observability of a dynamical system. The controllability of homoge-
neous polynomial dynamical systems was studied extensively back in 1970s and 80s
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Table 3
Trajectories of the polynomial dynamical system using the implicit solution equations of cr(t)

and the MATLAB ODE45 Solver. We also report the relative errors between the two trajectories.

Time t = 0 t = 0.05 t = 0.1 t = 0.15 t = 0.2

Complete Sol.
−0.4105
1.3533

−0.5165
1.5330

−0.6965
1.7773

−1.0941
2.1768

−3.3331
3.6261

ODE45 Solver
−0.4105
1.3533

−0.5165
1.5330

−0.6965
1.7773

−1.0941
2.1768

−3.3360
3.6277

Relative Error 0 4.1× 10−7 6.0× 10−7 1.2× 10−5 6.7× 10−4

[3, 4, 22, 40]. In particular, Jurdjevic and Kupka [22] obtained strong results in terms
of the controllability of homogeneous polynomial dynamical systems with constant
input multipliers. In addition, Chen et al. [9] showed that the Lie algebra-based
rank condition from [22] can be represented using tensor vector multiplications for
determining the controllability of the system (3.1). We are interested in exploring the
homogeneous polynomial dynamical system with linear inputs and outputs

(5.1)

{
ẋ(t) = Ax(t)k−1 + Bu(t)

y(t) = Cx(t)
,

where A ∈ Rn×n×···×n, B ∈ Rn×m, and C ∈ Rp×n. x(t) ∈ Rn, u(t) ∈ Rm, and
y(t) ∈ Rp are the state, input, and output variables, respectively. Since the result
of controllability has been provided in [9], we here simply discuss the observability of
the dynamical system (5.1) by the duality principal.

Definition 5.1. Let O0 be the linear span of {c>1 , c>2 , . . . , c>p } (c1, c2, . . . , cp ∈
Rn are the row vectors of C) and A ∈ Rn×n×···×n be a supersymmetric tensor. For
each integer q ≥ 1, define Oq inductively as the linear span of

(5.2) Oq−1 ∪ {Av1v2 . . . vk−1|vl ∈ Oq−1}.

Denote the subspace O(A,C) = ∪q≥0Oq.
Proposition 5.2. Suppose that k is even. The dynamical system (5.1) is ob-

servable if and only if the subspace O(A,C) spans Rn, or equivalently, the matrix O,
including all the column vectors from O(A,C), has rank n.

Proof. According to the duality principal, the proof can be formulated similarly
to Corollary 1 in [9].

Since O(A,C) is a finite-dimensional vector space, there exists an integer q ≤ n
such that O(A,C) = Oq. When k = 2 and q = n − 1, it reduces to the famous
Kalman rank condition for observability. Controllability and observability are related
to the stability of an input-output dynamical system with the corresponding notions
- stabilizability and detectability. It will be interesting to develop the state feedback
and observer design frameworks for the polynomial dynamical system (5.1) according
to the controllability and observability conditions.

6. Conclusion. This paper investigated the explicit solutions and stability prop-
erties of certain continuous-time homogeneous polynomial dynamical systems that can
be represented by orthogonally decomposable tensors. We derived an explicit solution
formula using the Z-eigenvalues and Z-eigenvectors from the orthogonal decomposi-
tion of the corresponding dynamic tensors. By utilizing the form of the explicit so-
lutions, the stability properties of such homogeneous polynomial dynamical systems
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could be formalized. In particular, the Z-eigenvalues can offer can offer necessary
and sufficient stability conditions. Furthermore, we explored the complete solutions
of such homogeneous polynomial dynamical systems with constant inputs. Future
work will explore stability conditions for homogeneous polynomial dynamical systems
with non-orthogonally decomposable dynamic tensors or even non-supersymmetric
dynamic tensors. We will also explore the potential of tensor algebra-based com-
putations for Lyapunov equations and Lyapunov stability. This will be particularly
important for applications in the robotic context [30, 42, 45]. As mentioned in sec-
tion 5, stabilizability and detectability are also important for future research.

Acknowledgements. We would like to thank Dr. Anthony M. Bloch for care-
fully reading the manuscript.
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