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Hypergraph Dissimilarity Measures

Amit Surana, Can Chen and Indika Rajapakse

Abstract—In this paper, we propose two novel approaches
for hypergraph comparison. The first approach transforms the
hypergraph into a graph representation for use of standard
graph dissimilarity measures. The second approach exploits
the mathematics of tensors to intrinsically capture multi-way
relations. For each approach, we present measures that assess
hypergraph dissimilarity at a specific scale or provide a more
holistic multi-scale comparison. We test these measures on
synthetic hypergraphs and apply them to biological datasets.

Index Terms—Hypergraphs, dissimilarity measures, tensors,
biological systems.

I. INTRODUCTION

OMPLEX systems in sociology, biology, cyber-security,

telecommunications, and physical infrastructure are often
represented as a set of entities, i.e. “vertices” with binary
relationships or “edges,” and hence are analyzed via graph
theoretic methods. Graph models, while simple and to some
degree universal, are limited to representing pairwise relation-
ships between entities. However, real-world phenomena can be
rich in multi-way relationships, dependencies between more
than two variables, or properties of collections of more than
two objects. Examples include computer networks where the
dynamic relations are defined by packets exchanged over time
between computers, co-authorship networks where relations
are articles written by two or more authors, historical docu-
ments where multiple persons can be mentioned together, brain
activity where multiple regions can be highly active at the
same time, film actor networks, and protein-protein interaction
networks, [1[]-[4].

A hypergraph is a generalization of a graph in which
its hyperedges can join any number of vertices [5]. Thus,
hypergraphs can capture multi-way relationships unambigu-
ously [6]], and are the natural representation of a broad range
of systems mentioned above. Although an expanding body
of research attests to the increased utility of hypergraph-
based analyses, many network science methods have been
historically developed explicitly (and often, exclusively) for
graph-based analyses and do not directly translate to hyper-
graphs. Consequently, new framework are being developed for
representation, learning and analysis of hypergraphs, see [2],
[3]] for a recent survey. These include techniques for converting
hypergraphs into graphs and defining hypergraph Laplacian
[7], higher-order random walks-based hypergraph analysis [J]],
and defining dynamics on hypergraphs [9].
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As tensors [[10] provide a natural framework to represent
multi-dimensional patterns and capture higher-order interac-
tions, they are finding increasing role in context of hyper-
graphs. For example, the spectral theory of graphs has been
extended to hypergraphs using tensor eigenvalues [11]], and
authors in [12] define notion of tensor entropy for uniform
hypergraphs generalizing von Neumann entropy of a graph
to hypergraphs. The problem of controllability of dynamics
on hypergraphs is studied via tensor-based representation and
nonlinear control theory in [13]. Similar to above mentioned
work, the goal of this paper is to extend the graph comparison
framework to hypergraphs.

Comparison of structures such as modular communities,
hubs, and trees yield insight into the generative mechanisms
and functional properties of the graph. Graph comparison
can be used for comparing brain or metabolic networks for
different subjects, or the same subject before and after a treat-
ment, and for characterizing the temporal network evolution
during treatment [14]. Classification of graphs, for example
in context of protein-protein interaction networks and online
social networks can be facilitated via use of graph comparison
measures [[15]. Combined with a clustering algorithm, a graph
comparison measure can be used to aggregate networks in a
meaningful way and reveal redundancy in the data/networks
[16]. Graph comparison can be used for evaluating the ac-
curacy of statistical or generative network models [17], and
can be further utilized as an objective function to drive the
optimization procedure to fit graph models to data.

In order to compare graphs, a variety of dissimilarity mea-
sures (DM) or distances have been proposed in the literature
which either assess similarity at a specific scale e.g. local
or global, or provide a more holistic multi-scale comparison.
See references [[14]], [18]], [19] for a comprehensive review.
While there is a rich body of literature for graph dissimilarity
measures (GDM), analogous notions for hypergraph are lack-
ing in literature. To address this gap, we propose two new
approaches for hypergraph comparison. Just like for GDMs
within each of these HDM approaches we present a collection
of DMs which either assess hypergraph similarity at a specific
scale or provide a multi-scale comparison. Specifically, key
contributions of this paper are as follows:

e We develop an indirect approach for comparing hyper-
graphs by first transforming the hypergraph into a graph
and then invoking standard GDMs. In particular we
explore clique and star expansion for this transformation.
While information about hypergraph structure may be lost
during such transformations/projections, the assumption
is that relevant salient features may still be preserved
which are sufficient to capture key differences between
underlying hypergraphs. We refer to these DMs as indi-
rect HDMs.



o We introduce another direct approach which relies on ten-
sor based representation of hypergraph which intrinsically
captures the multi-way relations encoded by hyperedges.
In particular we use adjacency tensor and Laplacian
tensor associated with hypergraphs, and tensor algebraic
notions of tensor eigenvalues/eigenvectors and higher
order singular values to develop new notions of DMs for
hypergraphs. We refer to these DMs as direct HDMs.

o« We test the proposed HDMs on synthetic hypergraphs
to assess their usability in discerning between common
hypergraph topologies. We also apply the methods to real-
world hypergraphs arising in biological datasets.

The paper is organized into seven sections. We introduce
basic notation and mathematical preliminaries related to hy-
pergraphs, and discuss some desirable characteristics of HDMs
in Section In Section we provide a short survey of
different GDMs. We then use these GDMs in Section [V] to
define indirect HDMs based on conversion of hypergraphs into
graphs. In Section [V] we develop notions of direct HDMs
using tensor based representation of hypergraphs. Applications
to synthetic and real-world hypergraph datasets are presented
in Section We discuss pros/cons of indirect and direct
HDMs and directions for future research in Section and
conclude in Section

II. PRELIMINARIES

Hypergraph: Let V' be a finite set. A hypergraph G is a
pair (V, E) where E C P(V) \ {0}, the power set of V. The
elements of V' are called the vertices, and the elements of F
are called the hyperedges. We note that in this definition of
hypergraph we do not allow for repeated vertices within an
hyperedge (often called hyperloops). For a weighted hyper-
graph, there is positive weight function w : E — (0,00)
which defines a weight w(e) > 0 associated with each
hyperedge e € E. The degree d(v) of a vertex v € V is
d(v) = > ceppee w(e). The degree of an hyperedge e is
denoted by d(e) = |e|, where | - | denotes set cardinality. For
k-uniform hypergraphs, the degree of each hyperedge is the
same, i.e. d(e) = k. The vertex-hyperedge incidence matrix
H is a |V| x | E| matrix where the entry h(v,e) is 1 if v € e
and 0O otherwise. By these definitions, we have,

d(v) = Z w(e)h(v, e), d(e) = Z h(v,e).

ecE veV

Let D, and D, be the diagonal matrices consisting of hy-
peredge and vertex degrees as diagonal entries, respectively.
Similarly we will denote by W the diagonal matrix formed
by hyperedge weights w(-) as its diagonal entries.

Note that a standard graph is a 2-uniform hypergraph. We
will denote a standard graph by G, and by A as its adjacency
matrix which is |V'| x |V| matrix with entry (u,v) equal to the
edge weight w(e) (where e is such that (u,v) € e) if they are
connected, and O otherwise. The incidence matrix H, and the
diagonal matrices D, and W are similar to as defined above.

Hypergraph Dissimilarity Measure (HDM): Let G be
the space of hypegraphs with finite number of vertices. A
hypergraph dissimilarity measure (HDM) D is a symmetric

non-negative function D : G x G — [0,00), i.e. D(G,G) =
D(G,g) for any G,G € G. D quantifies distance between
two hypergraphs with larger values indicating higher degree
of dissimilarity.

Note that in general D is not required to satisfy D(G,G) = 0
even when G and G are isomorphic, or the triangular inequality,
and thus may not be a valid metric. But depending on the
application, such requirements may be further imposed on D.
Approaches to graph comparison can be roughly divided into
two groups, those that consider or require two graphs to be
defined on the same set of vertices, and those that do not.

To distinguish DMs which have been defined specifically
for graphs in the literature, we will refer to them as graph
dissimilarity measures (GDMs), and denote them by D.

A. Characteristic of Dissimilarity Measures

In this section we summarize some desirable properties of
graph dissimilarity measures which have been noted in the
literature, and can also be applied in context of hypergraphs.
These properties can serve as guidelines for selecting appro-
priate DM, and can further be modified and enriched by the
data analyst depending on the application at hand. Examples
of some desirable properties for the DMs include [20]:

o Edge-importance: modifications of the graph structure
yielding disconnected components should be penalized
more.

o Edge-submodularity: a specific change is more important
in a graph with a few edges than in a denser graph on
the same vertices.

o Weight awareness: the impact on the similarity measure
increases with the weight of the modified edge.

o Focus awareness: random changes in graphs are less
important than targeted changes of the same extent.
Depending on the application, additional invariance properties

may be imposed on the DMs, such as [21]:

o Permutation-invariance: implies that if two graphs’ struc-
ture are the same (i.e., if the two graphs are isomorphic)
the DM between them is zero.

o Scale-adaptivity: implies that the DM accounts for dif-
ferences in both local (edge and node) and global (com-
munity) features. Using local features only, a DM would
deem two graphs sharing local patterns to have near-zero
distance although their global properties (such a page-
rank features) may differ, and, in reverse, relying on
global features only would miss the differences in local
structure (such as edge distributions).

o Size-invariance: is the capacity of DM to discern that
two graphs represent the same phenomenon at a different
magnitudes (e.g., two criminal circles of similar structures
but different sizes should have near-zero DM). Size-
invariance postulates that if two graphs originate from
the sampling of the same domain, they should be deemed
similar.

III. REVIEW OF GRAPH DISSIMILARITY MEASURES

We review some key GDMs, the material is taken from
the survey articles [14], [18], [19]. Approaches to graph
comparison can be categorized from different perspectives.



One categorization is based on whether the graph compar-
ison method requires the two graphs to be defined on the
same set of vertices or not. The former eliminates the need
to discover a mapping between node sets, making comparison
relatively easier. A common approach for comparison without
assuming node correspondence is to build the DM using graph
invariants. Graph invariants are properties of a graph that hold
for all isomorphs of the graph. Using an invariant mitigates
any concerns with the encoding of the graphs, and the DM is
instead focused completely on the graph topology.

Another categorization of graph comparison methods is
based on scale at which they compare structures [[14f]. Local
DM:s are only sensitive to differences in direct neighbourhood
of each node, while global DMs may ignore node identities
and perceive differences only in global structures in the graph
such as hubs, communities, number of spanning trees, etc.
On the other hand, mesoscopic DMs work at intermediate
scale such that they not only preserve vertex identities but
also incorporate information characterising vertices by their
relationship to the whole graph, rather than uniquely with
respect to their neighbours . Finally, multi-scale DMs attempt
to capture aspects from multiple scales i.e. local, global and/or
mesoscopic in quantifying differences between graphs.

Let G and G be two graphs under comparison with ad-
jacency matrices A and A, respectively, and let their graph
Laplacians be L and L, respectively. The graph Laplacian
L (and similarly L) could be the standard combinatorial
Laplacian

Lun = Dv - A; (1)

or its normalized version,
L=1-D;'2AD;"2 )

We shall denote Laplacian eigenvalues as 0 = A\; < A\ <
- < \,. The literature remains divided on which version
of the Laplacian to pick for defining the DM. Since the
eigenvalues of the normalized Laplacian are bounded between
0 and 2, it makes it a more stable and preferable represen-
tation. Therefore, if otherwise stated, we will always use the
normalized Laplacian L in definition of the GDMs.
o Structural DMs: The simplest GDMs are obtained by
directly computing the difference of the adjacency matri-
ces of the two graphs and then using a suitable norm e.g.,
Euclidean, Manhattan, Canberra, or Jaccard. Examples of
such GDMs include, the Hamming distance,

- A—-A
DH(GvG) = |’I’L(TL— 1)|17

and, the Jaccard distance,
~ A.minAi»,Ai‘
DJ(G,G):I_ (%] ( J ~J).
maX(Ai]‘, Aij)

ij

Structural DMs focus on differences in the direct local

neighborhood of each node, and are agnostic to other
more global structures in the graph.

« Feature-based DMs: Another possible method for com-

paring graphs is to look at specific “features” of the graph,

such as the degree distribution, betweenness centrality

distribution, diameter, number of triangles, number of
k-cliques, etc. For graph features that are vector-valued
(such as degree distribution) one might also consider the
vector as an empirical distribution and take as graph
features the sample moments (or quantiles, or other sta-
tistical properties). A feature-based distance is a distance
that uses comparison of such features to compare graphs.
If we are using node dependent features, the method
aggregates a feature-vertex matrix of size k£ x n, where k
is number of features selected. This feature-vertex matrix
for the two graphs can then be directly compared, or can
be further reduced to a “signature vector” that consists
of the mean, median, standard deviation, skewness, and
kurtosis of each feature across vertices. These signature
vectors are then compared in order to obtain a DM
between graphs. NETSIMILE [22] is an example of
feature based distance which uses local and egonet-based
features (e.g., degree, volume of egonet as fraction of
maximum possible volume, etc.). In the neuroscience
literature, in particular, feature-based methods are fairly
popular.

In this paper, we will utilize node centrality vector ¢ =
(c1, ,cn)T as the feature for graph comparison. Let
ci,t=1,---,nand ¢,i =1, --- ,n be normalized (i.e.
|c1] = |c2] = 1) node centralities for the graphs G and
G, respectively, then centrality based DM is given by:

- 1 & ~
Deo(G,G) = EZM — &l 3)
i=1

Note that one could use any notion of centrality, e.g.
betweeness centrality, closeness centrality, eigenvector
centrality etc. as relevant for the application [23]]. Since,
centrality measures typically characterize vertices as ei-
ther belonging to the core or to the periphery of the
graph, and thus encode global topological information
on the status of vertices within the graph, DMs based on
centrality capture mesoscopic differences between graphs
[14].

Spectral DMs: Spectral DMs on the other hand are
more suitable for analyses where the critical information
in the graph structure is contained at a global scale,
rather than locally. Spectral DMs are global measures
defined using the eigenvalues of either the adjacency
matrix A or of some version of the Laplacian L [14].
Both the eigenvalues of the Laplacian and those of the
adjacency matrix can be related to physical properties of
a graph, and can thus be considered as characteristics of
its states. The adjacency matrix does not downweight any
changes and treats all vertices equivalently. On the other
hand, the eigenspectrum of the Laplacian accounts for the
degree of the vertices and is known to be robust to most
perturbations. Specific example of spectral DMs include
l,, distance on space of Laplacian eigenvalues,

- 1 & -
Dy(G,G) = EZM" -\, 4)
i=1



and, spanning tree DM,
Dsr(G,G) = |log(Tg) —log(Tg), (5)

where, T is number of spanning trees in the graph, given
by

Other DMs include distances based on the eigenspectrum
distributions,

D,(6.6) = [ loa(o) - pel@ldz,  ©)
where,
(@) 1 (22?2
xTr) = — e 20
pe n = V2mo?

Another related DM is the Ipsen—Mikhailov distance
which characterizes the difference between two graphs
by comparing their spectral densities, rather than the raw
eigenvalues themselves.

DELTACON: This DM is based on the fast belief prop-
agation method of measuring node affinities [20]. It uses
the fast belief propagation matrix

S=[I+éeD—eA] Y

and compares the two representations S and S via the
Matusita difference, leading to

DA(G.C) = Z(m@)z 1/2. )

Fast belief propagation is designed to model the diffusion
of information throughout a graph, and so in theory
should be able to perceive differences in both global and
local structures in the graph.

Heat Spectral Wavelets: An alternative is to derive
characterizations of each node’s topological properties
through a signal processing approach. A specific example
for this type of DM include the heat spectral wavelets
in which the eigenvalues are modulated and combined
with their respective eigenvectors to yield a “filtered”
representation of the graph’s signal. For a given scale
factor 7 > 0 is a scale, structural signature &, for each
node u is defined to be a vector of coefficients,

T __ T T T T
Eu - (‘Ill,u’ \112,u7 Ty \Ijn,u) )
where,
n—1
Uy, = e TNV,
v, ur Yoy
1=0

with, L = VAVT being the Laplacian’s eigenvec-

tor decomposition. Let &, = ((&1)7T, -+, (&))"
be the combined vector for a set of selected scales
T, T2, - ,Tm. By choosing these scales appropriately,

one can capture information on the connectedness and
centrality of each node within the network, thereby pro-
viding a way to encompass in a single Euclidean vector

all the necessary information to characterize vertices’
topological status within the graph. Then the heat kernel
DM between the graphs amounts to the average [, dis-
tance between corresponding node’s structural embedding
fi, i.e.,

- 1 & -
Duk(G,G) = — D lI& = &illa- (8)
i=1

NetLSD: Similar to heat spectral wavelet, in network
Laplacian spectral descriptor (NetLSD) [21]] a heat kernel
is defined as,

H, = e*TL _ \/'efAT‘/vT7

along with its heat trace,
h: =Tr(H;) = Ze*)‘ﬂ.

Then the NetLSD condenses the graph representation
in form of a heat trace signature h(G) = {h;}r>0
which comprises of a collection of heat traces at different
time scales. The continuous-time function A, is finally
transformed into a finite-dimensional vector by sampling
over a suitable time interval. The DM between G and
G is then taken to be the lso norm of vector difference
between h(G) and h(G).

Note, that the heat kernel can be seen as continuous-
time random walk propagation (where, (H;);; is the
heat transferred from node ¢ to node j at time 7), and
its diagonal (sometimes referred to as the autodiffusivity
function or the heat kernel signature) can be seen as a
continuous-time PageRank. As 7 approaches zero, the
Taylor expansion yields H; = 1 — L7 meaning the heat
kernel depicts local connectivity. On the other hand for
large 7, H, =1 — e‘”2V2vg where vs is the Fielder
vector used in spectral graph clustering, it encodes global
connectivity. Thus, the heat kernel localizes around its
diagonal, and the degree of localization (as captured by
the heat trace) depends on the scale 7, it can thereby be
tuned to capture both local and global graph structures.
Graph Embedding based DMs: Given the diversity
of structural features in graphs, and the difficulty of
designing by hand the set of features that optimizes
the graph embedding, several researchers have proposed
recently to learn the embedding from massive datasets of
existing networks. Such algorithms learn an embedding
from a set of graphs into Euclidean space, and then
compute a notion of similarity between the embedded
graphs [24]. All these approaches rely on the extension
of convolutional neural networks to non Euclidean struc-
tures, such as manifolds and graphs.

Graph Kernels based DMs: A popular approach to
learning with graph-structured data is to make use of
graph kernels—functions which measure the similarity
between graphs [25]]. These kernels can be used for
comparing graphs. Many different graph kernels have
been defined, which focus on different types of sub-
structures in graphs, such as random walks, shortest



paths, subtrees, and cycles. One particular approach is
based on graphlets which are small, connected, non-
isomorphic, induced subgraph of a larger graph. There
are 30 graphlets with 2- to 5- vertices. Each graphlet con-
tains “symmetrical vertices” which are said to belong to
the same automorphism orbit. The automorphism orbits
represent topologically different ways in which a graphlet
can touch a node. The Graphlet Degree Vector (GDV) of
a node generalises the notion of a node’s degree into a
73-dimensional vector where each of the 73 components
of that vector captures the number of times node n is
touched by a graphlet at orbit ¢. Using GDV one can
then define several different GDMs including: relative
graphlet frequency distance, graphlet degree distribution
agreement, and graphlet correlation matrix / distance.

IV. APPROACH I: INDIRECT HDMS BASED ON GRAPH
REPRESENTATION

The first approach we a propose for defining HDMs is based
on transforming the hypergraph into a graph representation and
then invoking the standard GDMs.

A. Graph-based Hypergraph Representation

There are two main ways to transform a hypergraph in
form of a standard graph: clique expansion and star expansion
[7], see Figure [l Once hypergraph is represented in form
of a standard graph, one can define appropriate adjacency
matrix and graph Laplacian. Rather than first transforming
hypergraph into a graph, some authors define hypergraph
Laplacian directly using analogies from the graph Laplacian.
However, it was shown in [7], that several of these direct
definitions are special cases of clique or star expansion which
follows from different ways of deriving edge weights for the
transformed graph from hyperedge weights of the hypergraph.
Thus, we focus on clique expansion and star expansion.

a) Clique expansion: The clique expansion algorithm
constructs a graph G¢ = (V,E¢ C V?) from the original
hypergraph G = (V, E) by replacing each hyperedge e =
(u1,--- ,uqe)) € E with an edge for each pair of vertices in
the hyperedge: E° = {(u,v) : u,v € e,e € E}. Note that the
vertices in hyperedge e form a clique in the graph G°. The
edge weight w*(u,v) can be defined in different ways leading
to different clique expansions. Thus, the normalized Laplacian
of the constructed graph G¢ becomes

L =1 (D5)~/2A%(Dg) "2,
where, A€ is the adjacency matrix
[Ac]uv = w(u, v),

and, D¢ is the vertex degree matrix with diagonal entries
d°(u),u e V.

The standard clique approach minimizes the difference
between the edge weight of G¢ and the weight of each
hyperedge e that contains both v and v leading to,

> hu,e)h(v, e)w(e),
> hlu,e)(d(e) = Lw(e),

ecE

w®(u,v) =

d*(u) =

and thus,

ACS —
LCS —

HWH", ©)
I— (ch;s)—l/QACS(Dzs)—l/Q' (10)

Choosing weight matrix [26]],
WCO — HD;1HT7

and using combinatorial Laplacian for G°, leads to Bolla’s
Laplacian,

L =D, - HD_'H”. (11)

For an unweighted hypergraph G i.e. w(e) = 1,Ve € E, other
choices of weight matrix have been considered, see [7] for
details.

b) Star expansion: The star expansion algorithm con-
structs a graph G* = (V*, E*) from hypergraph G = (V, E)
by introducing a new vertex for every hyperedge e € E, thus
V* = VUE. It connects the new graph vertex e to each vertex
in the hyperedge to it, i.e. E* = {(u,e) : u € e,e € E}. Note
that each hyperedge in F corresponds to a star in the graph G*,
and G* is a bi-partite graph. As in clique expansion, different
choices can be made for edge weights w*(u,e) of G*. In
general, the adjacency matrix A* of G* can be expressed as,

0 W
A= wh )
< (W9 0jg

and, the normalized Laplacian can be shown to be,

vy 1)

where, B* is the |V| x |E| matrix
B* = (D;)~'/*W*(D;) /2,

where, D} and D} are degree matrices with diagonal entries
d*(u), and d*(e), respectively, where,

d*(u) = Zw*(u,e), uev,
eceE

d*(e) = Zw*(u,e), ecE.
ueV

Note that since number of hyperedges i.e. |E| can be large,
the star expansion would result in a graph G* which can have
very large number of vertices making the application of GDM
challenging. Furthermore, even if two hypergraphs G and G are
defined on same node set V' to begin with, the star expansions,
G* and G*, respectively will in general have a different set
of vertices.

To alleviate these issues, we propose to use the notion of
projected Laplacian as defined in [7]]. Note that any for a |V|+
|E| eigenvector vI' = [vI' vI] of L* that satisfies L*v = \v,
then,

B*(B*) v, = (A — 1)%v,,.

Thus, the |V| elements of the eigenvectors of L* correspond-
ing to vertices V' C V* are eigenvector of the |V| x |V| matrix
B* ( B* )T ,

B(B)" = (D;) /W (D)~ (W) (D}) "2,
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Figure 1. Illustration of hypergraph transformation into a graph by clique and star expansion.

Given this relationship between B*(B*)T and L*,
* * *\T __ *\—1/2 A * *\—1/2
Lp =1-B (B ) *Ii(Dv) / Ap(Dv) / )

can be considered a projected normalized Laplacian on node
set of original graph G, with A%,
* * *\—1 *\T
Ap - W (De) (W ) )
being the projected adjacency matrix. Note that the eigenvalues
of Ly lie in [0,1], ie. 0= Agp < -++ , App < 1.
We next discuss different choices for weights w*(u,e).
The standard star expansion approach assigns the scaled
hyperedge weight i.e. w**(u, e) = 2% to each corresponding

d(e)
graph edge, so that the weight matrix becomes,

W* =HWD, .,

leading to
d*(u) = Y h(u,e)w(e)/d(e), ueV,
d*(e) = w(e), e€E,

expressed in terms of original hypergraph’s G properties.
Another choice is w*(u, e) = w(e), i.e.,

W** = HW,

which leads to D} = D,, and D} = WD, and thus resulting
in,

A’* =HWD_'WH", (12)

and

L:* =1-D;'?HWD_'H"D /2, (13)

which is the same hypergraph Laplacian as the one proposed
by Zhuo et. al. [27]]. This definition of hypergraph Laplacian
originates from relaxation of normalized hypergraph cut prob-
lem analogous to the standard normalized graph cut problem.
Infact, the eigenvector of L** corresponding to its second
smallest eigenvalue encodes the information about subsets of
vertices in the hypergraph which are weakly connected to each
other.

In whatever follows, we will use the standard clique expan-
sion (Eqns. 0] and [T0), and projected star expansion based on
Zhuo et. al. construction (Equn.s 12| and for transforming
hypergraph into graph for dissimilarity comparison using
GDMs.

B. Indirect HDMs

Let G be a hypergraph, and let Gy be the graph obtained
by one of approaches discussed in the previous section. We
will denote this transformation as Gy = T(G). Given a
transformation 7 and a GDM D, an indirect HDMs D induced
by the pair (7, D) is given by,

Dr.p(G,G) = D(T(G), T(G)) = D(Gy,Gr).

Note that depending on whether G and G have known or
unknown node correspondence, appropriate DD can be chosen
from the GDMs discussed in Section [[II] or any other available
in literature. Furthermore, depending on application one can
pick D to capture local, global, mesoscopic or multi-scale
differences.

(14)

V. APPROACH II: DIRECT HDMS BASED ON TENSOR
BASED HYPERGRAPH REPRESENTATION

In this section we propose a second approach for defining
HDMs which is based on hypergraph representations that
intrinsically capture multi-way relations using tensors.

A. Tensor Preliminaries

A tensor is a multidimensional array [10], [28]—[30]. The
order of a tensor is the number of its dimensions, and each
dimension is called a mode. An m-th order real valued tensor
will be denoted by X € R/1x/2XXJm where Jj, is the size
of its k—th mode.

The inner product of two tensors X,Y € R/1xJ2xxJm g
defined as,

Jy Im
(X,Y) = Z Z Xj1j2~~ijj1j2---jm7

Jji=1 Jm=1

leading to the tensor Frobenius norm |[|X|[? = (X,X). We
say two tensors X and Y are orthogonal if the inner prod-
uct (X,Y) = 0. The matrix tensor multiplication X xj; A
along mode k for a matrix A € R/*’r is defined by,
(X Xk A) o sidissoim = Sy —1 Xivja o Aijy - This
product can be generalized to what is known as the Tucker
product,

X X1 A1 XoAg X3+ Xom Ay € RIV2XXTm (75



Higher-Order Singular Value Decomposition (HOSVD) is
a multilinear generalization of matrix SVD to tensors [31].
HOSVD of a tensor X € R/1X/2XXJm ig given by:

X:S><1U1><2-~-><mUm7 (16)

where, U, € R7=XFx are orthogonal matrices, and S €
RELXR2xXBm g called the core tensor. The quantity Ry, <
J}. is referred to as the k-mode multilinear rank of X, and equal
to rank of k— mode matrix unfolding of X. The subtensors
S,.—a of S obtained by fixing the k-th mode to «, have the
properties:

1) all-orthogonality: two subtensors Sj, — and S;,—g are
orthogonal for all possible values of k, a and /3 subject
to a# fB;

2) ordering: ||S;,=1|| > --- > |[IS;,=s,|| > 0 for all
possible values of k.

The Frobenius norms ||S;, —;||, denoted by fyj(-k), are known
as the k-mode singular values of X. De Lathauwer et al.
[31] showed that the number of nonvanishing k-mode singular
values of a tensor is equal to its k-mode multilinear rank, i.e.
Rj. HOSVD can be computed using a sequence of matrix
SVDs, and by introducing SVD truncations yields a quasi-

optimal solution to the low mutilinear rank approximation

problem.
Consider a m—th order n dimensional cubical (i.e. with
equal size J; = n,i = 1,---,m in all modes) tensor

A € Rvmxxn A is called supersymmetric if A;, ... ;.
Ay, .. i) forall o € 3, the symmetric group of mn indices.
To a n— vector X = (x1,--- ,x,)7, real or complex, define a
n-vector via Tucker product as:

AX™ T = A XgX X3 X X.

There are many different notions of tensor eigenval-
ues/eigenvectors [32]], [33]. A pair (A\,x) € R x {R"\ {0}}
is called

o H-eigenvalue/eigenvector (or H-eigenpair) of A if they

satisfy,
Axm—l — )\X[WL—l]7

a7

where, (x[m~1); = z/"~!

o Z-eigenvalue/eigenvector (or Z-eigenpair) of A if they
satisfy,
Ax™l = )x,
24422 = 1 (18)

o [P-eigenvalue/eigenvector (or [P-eigenpair) of A for any
p > 0 if they satisfy,

AXm—l — )\X[p_l],
42l = 1. (19)
Note that [P-eigenvalue/eigenvector reduce to H-

eigenvalue/eigenvector and Z-eigenvalue/eigenvector for
p = m and p = 2, respectively, where note the constraint in
(T9) is superfluous for p = m.

It was proved in [32] that H-eigenvalues and Z-eigenvalues
exist for an even order real supersymmetric tensor. A numer-
ical procedure for computing H eigenvalues is provided in

[34] with an associated MATLAB toolbox [35]]. The procedure
involves homotopy continuation type method which can be
computationally intensive, thus making it challenging to scale
to large order/size tensors.

B. Tensor Based Hypergraph Representation

We follow tensor based formulation proposed in [11] to
define hypergraph adjacency tensor and Laplacian tensor. Let
G = (V,E,w(-)) be a weighted hypergraph with n vertices,
and k be the maximum cardinality of the hyperedges, i.e. k =
max{le| : e € E}.

The adjacency tensor A € R™*"* X" of G which is a k-th
order n-dimensional supersymmetric tensor, is defined as,

w(e)s

[

ife:(il,ig,...,is) ek

A (20)

J1j2---Jk T s
0, otherwise

where, j1j2...,Jr are chosen in all possible ways from
{i1,142,...,is} with atleast once for each element of the set,

and
Z k!
I k!

ki, ks 21,3770 1 ki=k

o=

Using the adjacency tensor, the degree d(v;), of a vertex v; €
V, can be expressed as,

dw) = Y A

J1j2ik—1=1

21

The choice of the nonzero coefficients % preserves the

degree of each node, i.e., the degree of node j computed using
(21) with weights as defined above is equal to number of
hyperedges containing the node in the original non-uniform
hypergraph. Note that for a k-uniform hypergraph, above
definition simplifies to,

T ifez(ihig,...,’ik) S

A (22)

J1g2---Jk
0, otherwise

Let D be a kth-order n-dimension super-diagonal tensor
with nonzero elements d;;...; = d(v;). The hypergraph Lapla-
cian tensor is defined as,

L=D-A, (23)

which is also a kth-order n-dimension super-symmetric tensor.
Similarly, normalized hypergraph Laplacian tensor can also
be defined. We recall a result from [11], which establishes
following properties (which are analogous to case of graph
Laplacian) of L ,

o« L has an H-eigenvalue 0 with eigenvector v =
(1,1,-,1)T € R™. Moreoever, 0 is the unique H* -
eigenvalue of L,

o A is the largest Ht-eigenvalue of L, where A is maxi-
mum node degree of Gy,

o (d(v;),e;) is an H-eigenpair, where e; € R™ are the
standard basis vectors.



H-eigenvalues of L, thus encode global structural properties
of a hypergraph, and we propose to use them in generalizing
spectral GDM for hypergraphs.

We next discuss HOSVD of L and associated properties.
Since L is supersymmetric, any mode unfolding of L would
yield the same unfolding matrix with the same singular values
which we denote by 7;,7 = 1,---,n (note that we have
removed dependence of ’yj’-“ on mode k). It was shown in
[12] that the singular values of L encode structural properties
of the hypergraph, such as vertex degrees, path lengths,
clustering coefficients and nontrivial symmetricity for uniform
hypergraphs, and thus can be used to quantify differences in
hypergraph structure. Moreover, a fast and memory efficient
tensor train decomposition (TTD)-based computational frame-
work was developed in [12] to compute the singular values for
uniform hypergraphs. Given these two desirable features, we
also propose to use singular values of L as an alternative to
H-eigenvalues in defining spectral HDM.

The notion of centrality has been generalized for hyper-
graphs. H/Z eigenvectors of the adjacency tensor A are used
to define hypergraph eigenvector-centrality [36]. In particular,
the H/Z-eigenvector centrality c € R is defined to be an H/Z-
eigenvector of the adjacency tensor A such that it is positive
ie. ¢ > 0 with a positive H/Z-eigenvalue, i.e. A > 0. By
Perron-Frobenious theorem for non-negative tensors [37]], such
positive H/Z-eigenvectors exist under certain irreducibility
conditions on A. While such a positive Z-eigenpair may not
be unique, the H-eigenpair is always unique upto scaling.
Along similar lines, authors in [38]] define node and hyperedge
centralities as vectors ¢ € R™ and e € R™, respectively, that
satisfy,

cA = g(HWf(e)), (24)
ep = P(H" ¢(c)), (25)
s.t. c,e >0, pu>0. (26)

In above system of equations, H is the incidence matrix and
W is the hyperedge weight matrix for G (and we have assumed
that all vertices have unit weight consistent with setting in
this paper), and g, f,¢,% : RT™ — R* are appropriately
chosen non-negative functions on non-negative real domain.
Furthermore note that these scalar functions are extended on
vectors by defining them as mappings that act in a com-
ponentwise fashion. By invoking Perron-Frobenious theorem
for multi-homogeneous mappings [39], it was proved that
under certain conditions on the scalar functions, the solution
of above system exists and is unique. A nonlinear power
method with convergence guarantees is proposed to solve the
above system. Furthermore, it is shown that with choices
(%) = x,g(x) = x/®*+D) 4(x) = = and ¥(x) = In(x)
, the node centrality vector c is also a [P-tensor eigenvector,
and thus further generalizing the notion of H/Z-eigenvector
centrality.

C. Direct HDMs

For tensor based representation we define a set of DMs
along similar lines as discussed in Section Let G and G be

two hypergraphs with same node set and same maximum hy-
peredge cardinality, and let (A, L) and (A, L) be corresponding
adjacency and Laplacian tensor, respectively.
o Structural HMDs: It is straightforward to generalize the
Hamming and Jaccard distance for graphs to tensor based
representation as follows:

s [[A-A
Dy (0.6) = IAZAlL N”l,

where,

AL =" > A,

i1=114=1 ip=1

k

is tensor 1-norm and N = n* — n is a normalization

constant, and

b~

5 _ Zjle...jk min(Aj1j2-~~jkv jljZ---jk)

Zjljg...jk maX(Athmjw Aj1j2~~~jk)

)

respectively.

o Feature Based HMDs: As in feature based GDM, we
can use specific “features” of the hypergraph, such as the
node degree distribution, different notions of centrality,
diameter, etc for use in comparing hypergraphs. If we are
using node dependent features, the method aggregates a
feature-vertex matrix of size k x n, where k is number of
features selected. This feature-vertex matrix for the two
hypergraphs can then be directly compared, or can be
further reduced to a “signature vector” as in the graph
case, and used to obtain a DM between hypergraphs. As
in graph case (see Section [[Tl) we propose to use tensor
based hypergraph centrality as the feature for comparison.
Let ¢;,2 =1,--- ,n and ¢;,7 = 1,--- ,n be normalized
(.e. |c|1 = |€]1 = 1) node centralities for G and G,
respectively, then centrality based HDM is given by,

~ 1 & _

Dc(6.9) = - ; e = &l 27)
While in above definition one could use any notion
of hypergraph centrality, we propose to use the node
centrality defined by ([24)-(26) in our application.

o Spectral HMDs: Let the ordered set of H-eigenvalues of
Lbe A, -+, Apie. Ay < Ag--- < Ay, and similarly let
AL, , Ag be the ordered set for L. Note that in general
q # . Without loss of generality, assume ¢ > ¢ and
define an extended set of H-eigenvalues Ay, - -+, A; for
G, where \; = 0,i < §—q, and \; = N\j_(4_q),0 =

G—q+1,---,q. The I, distance on space of H-eigenvalues

can then be defined as,

-1
A — AP
1

Q

Di(9,9) = (28)

SN

i
As discussed above, we similarly propose to use higher
order singular values, leading to,

n—1

~ 1 B
D,(G,9) = n Z e — il
i=1

(29)



where, v;,4 = 1,--- ,n and 7;,7 = 1,--- ,n are higher
order singular values of L and L, respectively. We will
refer to Dy and D,, as spectral-H and spectral-S HDMs,
respectively.

o Hypergraph Embedding based HDMs: Recently, graph
convolutional neural networks have been extended to
hypergraphs [40], [41]. Thus, as for graphs, one can
learn an embedding from a set of hypergraphs into
Euclidean space, and then compute a distance between
the embedded hypergraphs.

o Hypergraph Kernel based HDMs: The notion of graph
kernels has been generalized to hypergraphs, see for
example [42]], [43]]. These kernels can be used for com-
paring hypergraphs as in the graph case.

VI. NUMERICAL STUDIES

In this section we assess the performance of indirect
and direct HDMs on synthetic hypergraphs and real world
biological datasets. For these studies we have chosen one
representative example of a local, global, mesoscopic and mul-
tiscale HDMs, namely, Hamming HDM (local), spectral HDM
(global), centrality based HDM (mesoscopic) and deltaCon
HDM (multiscale).

A. Synthetic Hypergraphs

To generate synthetic hypergraphs, we consider three fami-
lies of generative models: Erdos-Rényi (ER), Barabdsi-Albert
(BA) and Watts-Strogats (WS). These three models are widely
used as test-beds in a variety of network science problems and
have varying structural complexity. ER model [44] leads to
“structureless” graph in the sense that the statistical properties
of each edge and vertex in the graph is exactly same. In BA
model [45], on the other hand, the node degree distribution
behaves as a power-law due to preferential attachment, and that
impacts both its global and local structure. On the local scale,
vertices in graph tend to connect exclusively to highest-degree
vertices in the graph, rather than to one another, generating
a tree-like topology. The high-degree vertices acts like hub
which are by definition are global structures as they touch a
significant portion of rest of the graph, thereby increasing the
connectivity throughout the graph. WS model [46]] on a global
scale looks like an uncorrelated random graph in which it
exhibits no communities or high-degree vertices but has small
average shortest path length between vertices, while at local
scale it shows high clustering compared to the BA model.

The three models, originally developed for graphs, have
been generalized to the hypergraph case. We will restrict
to procedure of construction of k— uniform hypergraphs in
each family. The user specifies the desired number of vertices
n, desired number of hyperedges m and some additional
parameters depending on the model as discussed below.

a) Erdos—Renyi (ERH): There are (}) possible hyper-
edges in a k-uniform hypergraph. To construct a random k—
uniform hypergraph, we uniformly sample m hyperedges from
this set without repetition.

b) Scale Free Hypergraph (SFH(y)): To construct an k-
uniform SFH, we follow the generative model from [47]]:

i. Assign each node a probablity p; as:
iH
bi =
Zj:l J "
where, 0 < p < 1 is a user chosen parameter.

ii. Select k— distinct vertices with probabilities p;,, - - , Ds, .
If the hypergraph does not already contain a hyperedge
of those chosen k vertices, then add the hyperedge to the
hypergraph

iii. Repeat step ii) m times.

=1,---,n,

Similar to BA graph, this procedure produces a hypergraph
with vertices with average degrees < d > having a power-law
distribution, Py(< d >) ~< d >~ with A\ =1+

¢) Warts-Strogats Hypergraph (WSH(p)): Using a proce-
dure similar for WS graphs, WSH is constructed as follows,
[12]:

i. Construct a d-regular k-uniform hypergraph with n ver-
tices, and add extra hyperedges in every k + 1 vertices.
We refer to hyperedges in this hypergraph as the initial
hyperedges.

ii. Select an initial hyperedge and generate a new hyperedge
with k vertices chosen uniformly at random. If the new
hyperedge does not exist, with probability p, replace the
selected hyperedge with the new hyperedge. Here 0 <
p < 1 1is a rewiring probability as specified by the user.

iii. Repeat step ii), till all initial hyperedges have been
iterated on.

Figure 2] show a realization of each of these three hyper-
graph models with £ =4, n = 100 and m = 125. To asses if
these hypergraph models posses similar structural properties
as their graph counterparts, we compare their node degree
distribution, average path length, and clustering coefficient.
For computing average path length, we use:

1
L, = m Zd(vjvvz‘);
J#i
where, d(v;,v;) denotes the shortest distance between vertices
v; and v;. Note in computing shortest distance, two vertices
are considered adjacent if they share a common hyperedge.
For clustering coefficient we use definition from [12]],

(30)

‘{eiliQ'“ik PV Vig, Vg € ‘/j’eiliQ"‘ik € E}|

(%) |

C; =

€29

where, V; is the set of vertices that are immediately connected
to v; i.e. share a hyperedge with node v;, and (/')
% returns the binomial coefficients. If |V;| < k, we
set C; =0

As can be seen from Fig. 2] the ERH and WSH construction
results in a hypergraph with almost homogenous degree distri-
bution. The SFH, on the other hand, shows power-law degree
distribution for node degrees, as discussed above. The WSH



model shows high clustering coefficient compared to ERH and
SFH as expected.

ERH,L_=1.96,C_=0.0001

WSH,L_=2.19,C_=0.0433

Node Degree Distribution

ERH
02 WSH
0.15 SFH
0.1
0.05
PANT AN A

5 10 15 20 25 30
Node degree

Figure 2. Examples of 4-uniform ERH, WSH and SFH with n = 80 and
m = 100. Also shown are node degree distribution, average path length and
clustering coefficients for each case. The red polygons represent a selected
hyperedge.

B. Performance on Synthetic Hypergraphs

We next assess and compare the effectiveness of different
HDMs in differentiating hypergraphs with distinct structural
features, i.e., originating from the different models. In other
words, to yield a good performance, a HDM should be able
to assign small distance to hypergraph pairs coming from
the same model but large HDM values to pairs coming from
different models.

A systematic approach for quantification of the performance
can be accomplished via the receiver operating characteristic
(ROC) curve [48]]. The ROC curve is created by plotting the
true positive rate (TPR) against the false positive rate (FPR)
at various threshold settings. For a given HDM, one defines a
threshold € > 0 and classifies two hypergraphs as belonging
to the same model class if their HDM value is less than e.
Given that the correct classes are known, TPR and FPR values
can be computed to quantify the accuracy of classifying all
the hypergraphs. The procedure is then repeated by varying
€, obtaining the ROC curve which, ideally, should have TPR
equal to 1 for any FPR value. Furthermore, one can compute
the area under curve (AUC) which is equal to the probability
that a classifier will rank a randomly chosen positive instance
higher than a randomly chosen negative one. Thus, for a
perfect classifier, AUC = 1, while for a classifier that randomly
assigns observations to classes, AUC= 0.5.

For testing purposes, we consider hypergraph size n = 40,
m = 50 and generate 25 networks for each of the three
types, resulting in a total population of N, = 75 hypergraphs.

We then compute all the pairwise HDM using each method,
ending up with N, x N, distance matrix for each case. We
then generate ROC curves for each HDM considered using
procedure discussed above. In addition, to create a visual aid,
we also generate a 2d embedding for each hypergraph in
the population by applying t-distributed stochastic neighbor
embedding (tSNE) to the distance matrix corresponding
to each HDM. Figure [3] shows the ROC curves, while the 2d
embedding is shown in Figure @ where we have labeled each
point corresponding to different instances of hypergraph using
distinct colors based on its known model condition. Note that
for an unweighted uniform hypergraph, the adjacency matrices
for clique (Eqn. (9)) and star expansion (Eqn. (I2))) become
same upto a scale factor. Hence, we find that the ROC curves
for Hamming and centrality based indirect HDMs are similar.

Clique Star
l 1 /
x x
o 05 o 05
0 0
0 0.5 1 0 0.5 1
FPR FPR
Tensor AUC
1 1
x
o 0.5 0.5
=
0
0 0.5 1 Clique Star Tensor
FPR
Figure 3. ROC curves and AUC for different HMDs: Hamming (blue),

Spectral (red) and Centrality (orange).
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Figure 4. Embedding for different hypergraphs in 2d using tSNE applied to
HDMs: ERH (red), WSH (green) and SFH (blue).



C. Test on Real Datasets

In this section we assess the performance of HDMs in
grouping sets of real-world networks. In order to assess
statistical significance while comparing two hypergraphs, we
propose to use the permutation test.

1) Permutation Test for HDM: Consider a hypothesis test-
ing problem:

e Null (Hp): G; and G5 are similar,

o Alternative (H): G; and Gs are dissimilar.

Since the null distribution for Hy is unknown, we use a
permutation test [S0] to empirically estimate it. Let D be any
of the HDMs, and let ps be the desired significance level of
the test. The steps in the permutation test involve:

e Step 1: Randomly generate a family of hypergraphs
{Gr }i\]:l which are similar to Gi, and compute D; =
D(G,,G7),i=1,---,N.

o Step 2: Compute D12 = D(G1,Go).

« Step 3: Compute p-value as p = & SN Tp,(D;),
where Z, is indicator function, i.e. Z,(x) = 1 if x > 2
and Z,(z) = 0 otherwise.

o Step 4: Reject Hy if p < ps.

In Step 1 one could use Erdos-Reyni (ER) or Chung-Lu
(CL) procedure [8] to randomly generate hypergraphs with
similar characteristics as G;. Let d’ = (d(v1),- -+ ,d(vy,)) and
dl = (d(e1),--- ,d(em)) be vertex degree and hyperedge size
distribution vectors of G1. Let ¢ = > | d(v;) = Y., d(e;),
and vertex-hyperedge membership probability in G; be p,

where
c

p=—.
mn
ER procedure selects vertices uniformly at random for each
hyperedge with probability p. Thus, for each of the nm vertex-
hyperedge pairs, the probability of membership is the same,
ie.
P(u€e)=p.

On the other hand, the CL procedure generates G” with
similar vertex degree and hyperedge size distribution as of
G1. The probability a vertex belongs to a hyperedge in G is
proportional to the product of the desired vertex degree and
hyperedge size, i.e.
d(u)d(e)

R

To ensure this probability is always less than 1, one may fur-
ther require the input sequences satisfy max; ; d(u;)d(e;) < c.
Note that this procedure will in general produce a non-uniform
hypergraph depending on distribution of d_. For a k— uniform
hypergraph, d(e;) = k,i = 1,--- ,m. To sample a k— uniform
hypergraph with given node degree distribution d’, we modify
the CL process as follows:

i. Assign each node a probability p; as:

d(v;)
1T c )
ii. Select k— distinct vertices with probabilities p;,, - - , Ds, .
If the hypergraph does not already contain a hyperedge
of the chosen k vertices, then add the hyperedge to the
hypergraph.
iii. Repeat step ii) m times.
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Figure 5. Mouse neuron endomicroscopy features. (A), (B) and (C) Neuronal
activity networks of the three phases - fed, fast and re-fed, which depicts the
spatial location and size of individual neurons. Each 2-simplex (i.e., a triangle)
represents a hyperedge. The cutoff threshold is 0.93 for the hypergraph model.

2) Mouse Neuron Endomicroscopy: The mouse endomi-
croscopy dataset is an imaging video created under 10-minute
periods of feeding, fasting and re-feeding using fluorescence
across space and time in a mouse hypothalamus [4], [12], [13].
Twenty neurons are recorded with individual levels of “firing”.
Similar to [12], we want to quantitatively differentiate the three
phases. First, we compute the multi-correlation among every
three neurons, which is defined by

p= (1 - det (R))?,

where, R € R3*3 ig the correlation matrix of three neuron
activity levels [51]. When the multi-correlation p is greater
than a prescribed threshold, we build a hyperedge among the
three neurons and assign it an hyperedge weight equal to p.
We use a threshold of 0.93 as used in [[12]] for the purpose.

Figure[6|shows the comparison of hypergraph corresponding
to different phases using various HDMs. We find similar
trends using both indirect and direct HDMs. The spectral and
centrality HDMs between fed and refed phases have smaller
values revealing more similarity at global and mesoscopic
scales compared to corresponding HDM values between fed
and fast, and refed and fast phases. On the other hand,
Hamming HDM reveals that fed and fast phase are more
similar at local scale compared to fed and refed phases. The
* on the bars implies that there is statistically significant
difference between the hypergraphs in the corresponding two
phases based on p-values from the permutation test.

3) Genomic Dataset: We next apply HDM framework to
compare genomic structure of two cell types. Genomic DNA
must be folded to fit inside a nucleus, but must remain acces-
sible for gene transcription, replication and repair [52], [53]].
Consequently, higher-order chromatin structure arises from
such combinatorial physical interactions of many genomic
loci. Recently, authors in [54]] proposed to represent such
higher-order chromatin structure by a hypergraph, where the
different loci in the genome are the vertices, and each multi-
way contact between a set of loci represent a hyperedge. Fur-
thermore, they used Pore-C [55], a recent method developed
by Oxford Nanopore Technologies to measure these multi-way
contacts directly and construct the hypergraph experimentally.
Note that, while Pore-C gives contact information at the

(32)
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Figure 6. Comparison of different phases of mouse feeding activity using
different HDMs: blue (fed-fast), red (fed-refed), and orange (refed-fast). The
* on the bars implies that there is statistically significant difference between
the hypergraphs in the corresponding two phases based on p-values from the
permutation test.

finest level of base-pair position in the genome, it is often
convenient to aggregate this information at a coarser resolution
by aggregating linear continuous segments in the genome, see
[54] for details.

Figure [7] shows the visualization of the incidence matrix
of the hypergraph derived for human fibroblasts (FB) and B
lymphocytes (GM) cell lines at 25Mb resolution after noise
reduction. The entire genome at this resolution consists of
n = 3, 102 vertices for both cells, with number of hyperedges
m = 836,571 for FM and m = 1,028,694 for GM. The
maximum hyperedge set cardinality is 40 for FB and 90 for
GM. To compare chromosomes individually, we also construct
separate hypegraphs for each chromosome comprising of intra-
chromosomal contacts only. Chromosome 1 has maximum
number of vertices n = 249 and chromosome 22 has smallest
number of vertices n = 51 at the chosen 25Mb scale.
The number of hyperedges differ by chromosomes taking
values in range [1,000 35,000] for FM, and in the range
[6,000 75,000] for GM, respectively. Moreover maximum
hyperedge set cardinality also differs between corresponding
chromosomes in the GM and FB. As a result we cannot use
the tensor based direct HDMs, and restrict to indirect HDM
for comparison.

In Figure [§] we show chromosome level comparison using
indirect HDM based on the clique and star expansion. We
find that the trends between two expansions are similar for
Hamming, deltaCon, and centrality HDMs, while they differ
for spectral HDM. Furthermore, we can see that at local scale
chromosome 16 differs most between FB and GM, while
chromosome 19 and 21 differ the most at the mesoscale. The
clique-spectral HMD reveals that chromosome 23 differs most
at global scale, while star-spectral HMD indicates chromo-
somes 19,20, 21, 22 are the most different.

Table [l shows the values of different indirect HDM between
FB and GM for the entire genome. The p-values which suggest

Clique Star
Hamming | 2.3 x 1072(%) | 2 x 1073(%)
Spectral | 6.2 x 10~ %(%) | 1.6 x 10~ 3(%)
deltaCon | 4.7 x 10~ (%) | 1.6 x 10~ 7 (%)
Centrality | 2.5 x 107 6(x) | 2.9 x 1075(x)
Table T

INDIRECT HDMS VALUES BETWEEN FULL GENOME OF THE FB AND GM.
THE * IN BRACKET IMPLIES THAT DIFFERENCE BETWEEN FB AND GM 1S
STATISTICALLY SIGNIFICANT BASED ON p— VALUES FROM THE
PERMUTATION TEST.

that FB and GM are dissimilar at all scales based on clique
expansion. On the other hand, using star expansion, FB and
GM are different at local and global scales, and look similar
at mesoscopic scale.

D. Discussion

We first discuss pros/cons of indirect and direct HDMs.
While indirect HDMs allow one to leverage large variety of
GDMs for hypergraph comparison, the hypergraph conversion
into clique/star representation is lossy and thus may result
in inability to discern certain aspects of structural differences
or similarities between two hypergraphs. Direct HDMs being
based on tensor representation should not suffer from such
limitation. However, tensor computations (e.g., tensor eigen-
value/singular values) can be challenging for hypergraphs with
large number of vertices and/or with high maximum hyperedge
cardinality. Moreover, direct HDMs can only be applied to
cases where the underlying hypergraph has same number of
vertices and same maximum hyperedge cardinality. Indirect
HDMs however are computationally less demanding, and can
be employed even if hypergraphs have different maximum hy-
peredge cardinality. Moreover, by restricting to GDMs which
are applicable for comparing graphs with different number
of vertices or unknown node correspondence, indirect HDMs
can also be applied for comparing hypergraphs with different
number of vertices and/or unknown node correspondence. In
terms of performance of indirect and direct HDMs to assess
structural differences or similarities between two hypergraphs,
the numerical studies show that both approaches could be
effective depending on the application.

We are currently exploring the application of line expansion
[56] which has been recently proposed as an alternative ap-
proach to transforming hypergraph into a graph. Compared to
clique or star expansion, line expansion does not result in any
information loss during the transformation, thus, potentially
providing more effective means for developing indirect HDMs.
Addressing the computational challenges associated with ten-
sor based HDM will be important to address to scale the
approach to larger problems. In addition approaches alternative
to using tensor based representation, such as higher order
random walks based hypergraph analysis [8]] provide another
potential avenue for developing new HDMs. While notions of
graph kernels and graph embedding have been extended to
hypergraphs [40]—[43]l, further investigation is warranted for
their application in hypergraph comparison. Applications of
the proposed HDMs in other domains e.g. cyber security and
social networks is another direction of future research.
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VII. CONCLUSION

In this paper we presented two approaches for hypergraph
comparison. The first approach transforms the hypergraph into
a graph representation, and then uses standard graph dissimi-
larity measures. The second approach uses tensors to represent
hypergraphs and then invokes various tensor algebraic notions
to develop hypergraph dissimilarity measures. Within each
approach we presented a collection of measures which assess
hypergraph dissimilarity at different scales. We evaluated these
measures on synthetic hypergraphs, and real world biological
datasets with promising results. Finally, we discussed various
pros/cons in using the two approaches, and outlined some
avenues of future research.
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