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On the Stability of Multilinear Dynamical Systems ∗

Can Chen†

Abstract. In this paper, we investigate the stability properties of discrete-time multilinear dynamical systems.
We establish theoretical results on the criteria for determining the internal stability of multilinear
dynamical systems via tensor spectral theory. In particular, we show that tensor Z-eigenvalues play
a significant role in the stability analysis offering necessary and sufficient conditions if the dynamic
tensor is orthogonal decomposable (odeco). Moreover, we build an upper bound for the Z-spectral
radii of even-order supersymmetric tensors by tensor unfolding, and apply it to determine the stability
efficiently with help of tensor train decomposition. We also discuss the internal stability of multilinear
dynamical systems with non-odeco dynamic tensors by exploiting the tensor Frobenius norm and
tensor singular values. Furthermore, we explore the Lyapunov stability of multilinear dynamical
systems. Finally, we demonstrate our results with numerical examples.
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polynomials, orthogonal decomposition, tensor train decomposition
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1. Introduction. The role of tensor algebra has been explored for modeling and simulation
of linear and nonlinear dynamics [8, 9, 10, 14, 21, 24]. The key idea is to tensorize the vector-
based dynamical system representation into an equivalent tensor representation, and to exploit
tensor algebra. Tensor decomposition techniques such that CANDECOMP/PARAFAC de-
composition, higher-order singular value decomposition, and tensor train decomposition, are
applied for reducing memory usages and enabling efficient computations in multilinear dynam-
ical systems theory [10, 14]. Gelß [14] applied tensor decompositions for computing numerical
solutions of master equations associated with Markov processes on extremely large state spa-
ces, developing tensor representations for operators based on nearest-neighbor interactions,
construction of pseudoinverses for dimensionality reduction methods, and the approximation
of transfer operators of dynamical systems. In addition, Chen et al. [8, 10] developed the
tensor algebraic conditions for stability, reachability, and observability for input/output multi-
linear time-invariant systems, and expressed them in terms of more standard notions of tensor
ranks/decompositions to facilitate efficient computations.

Many complex systems such as those arising in biology and engineering can be studied
using a network prospective [4, 9, 20, 28, 34, 35, 42]. Most real world data representa-
tions are multidimensional, and using graph models to characterize them may cause a loss of
higher-order information [7, 9, 43]. Recently, a new tensor-based continuous-time multilinear
dynamical system representation with linear control inputs (different from the ones proposed
in [8, 10] which can be unfolded to linear dynamical systems via tensor unfolding, an operation
that transforms a tensor into a matrix) was proposed by Chen et al. [9] for characterizing the
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multidimensional state dynamics of hypergraphs, a generalization of graphs in which edges
can contain more than one nodes. The authors derived a Kalman-rank-like condition to deter-
mine the minimum number of control nodes needed to achieve controllability/accessibility of
uniform hypergraphs. They also proposed minimum number of control nodes as a measure of
hypergraph robustness, and found that it is related to the hypergraph degree distribution. The
mulitlinear dynamical system evolution, inspired by hypergraphs, is described by the action
of tensor vector multiplications between a dynamic tensor and the state vector. As a matter
of fact, the multilinear dynamical system belongs to the family of homogeneous polynomial
dynamical systems if one expands the tensor vector multiplications.

The stability of homogeneous polynomial dynamical systems is one of the most chal-
lenging problems in control theory due to its nature of nonlinearity [1, 2, 18, 37, 39]. In
1983, Samardzija [37] established a necessary and sufficient condition for asymptotic stability
in 2-dimensional homogeneous polynomial dynamical systems by formulating a generalized
characteristic value problem. In 2019, Ali and Khadir [1] showed that existence of a ratio-
nal Lyapunov function is necessary and sufficient for asymptotic stability of a homogeneous
continuously polynomial dynamical system, and the Lyapunov function can be solved using
semidefinite programming. However, the semidefinite programming problem depends on the
two degree parameters, and one has to try all possible combinations of the parameters in
order to obtain the Lyapunov function. On the other hand, when a homogeneous polynomial
dynamical system has degree one, the stability properties can be obtained simply from the
locations of the eigenvalues of the dynamic matrix, known as the linear stability. It is there-
fore conceived that tensor eigenvalues may have the potential to be used for determining the
stability properties of homogeneous polynomial dynamical systems.

Tensor eigenvalue problems of real supersymmetric tensors were first explored by Qi
[32, 33] and Lim [25] independently in 2005. There are many different notions of tensor ei-
genvalues such as H-eigenvalues, Z-eigenvalues, M-eigenvalues, and U-eigenvalues [10, 32, 33],
which are similar to matrix eigenvalues in different senses. Chen et al. [12] showed that the
Z-eigenvector associated with the second smallest Z-eigenvalue of a normalized Laplacian ten-
sor can be used for hypergraph partition. In addition, Huang and Qi [17] used M-eigenvalues
to prove the strong ellipticity of elasticity tensors in solid mechanics. Furthermore, Chen et
al. [10] utilized U-eigenvalues to determine the stability of multilinear time-invariant systems
(first type of multilienar dynamical systems discussed above). Of particular interest of this
paper are Z-eigenvalues. We explore the stability properties of the discrete-time version of the
multilinear dynamical system proposed in [9] via tensor spectral theory. The multilinear dy-
namical systems can be used to capture the discrete-time dynamics of higher-order networks
or hypergraphs such as coauthorship networks, film actor/actress networks, brain neural net-
works, and protein-protein interaction networks [7, 29, 40, 43]. The key contributions of the
paper are as follows:

• We establish theoretical results on the criteria for determining the internal stability of
multilinear dynamical systems with orthogonal decomposable (odeco) dynamic tensors
by exploiting its Z-eigenvalues. Based on the stability conditions, we can obtain the
regions of attraction of multilinear dynamical systems.

• We build an upper bound for the Z-spectral radii of even-order supersymmetric tensors
by tensor unfolding, and apply it to determine the internal stability of multilinear
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dynamical systems without computing orthogonal decomposition. We exploit tensor
train decomposition to accelerate the computation of the upper bound.

• We extend the stability analysis to multilinear dynamical systems with general dy-
namic tensors by using the tensor Frobenius norm and tensor singular values. Simi-
larly, we apply tensor train decomposition to gain computational efficiency.

• We perform preliminary explorations of the Lyapunov stability of multilinear dynam-
ical systems, analogous to the construction of quadratic Lyapunov functions for linear
dynamical systems.

• We verify our results on four numerical examples.
Note that all the results are applicable to homogeneous polynomial dynamical systems if one
can find the corresponding multilinear dynamical systems.

The paper is organized into eight sections. In section 2, we review tensor preliminaries
including tensor products, tensor decompositions, and tensor eigenvalues. Section 3 introduces
the notion of odeco tensors and a discrete-time multilinear dynamical system representation
with explicit solution. We establish the internal stability criteria for multilinear dynamical
systems with odeco and non-odeco dynamic tensors in section 4, and explore the Lyapunov
stability conditions in section 5. We verify our results with numerical examples in section 6.
We discuss the stabilizability and reachability of multilinear dynamical systems with control
in section 7, and conclude in section 8 with future research directions.

2. Tensor preliminaries. A tensor is a multidimensional array [7, 8, 10, 14, 22, 23]. The
order of a tensor is the number of its dimensions, and each dimension is called a mode. A kth
order tensor usually is denoted by T ∈ R

n1×n2×···×nk . It is therefore reasonable to consider
scalars x ∈ R as zero-order tensors, vectors v ∈ R

n as first-order tensors, and matrices
M ∈ R

m×n as second-order tensors. A tensor is called cubical if every mode is the same size,
i.e., T ∈ R

n×n×···×n. A cubical tensor T is called supersymmetric if Tj1j2...jk is invariant under
any permutation of the indices, and is called diagonal if Tj1j2...jk = 0 except j1 = j2 = · · · = jk.

2.1. Tensor products. The inner product of two tensors T,S ∈ R
n1×n2×···×nk is defined

as

(2.1) 〈T,S〉 =
n1
∑

j1=1

· · ·
nk
∑

jk=1

Tj1j2...jkSj1j2...jk ,

leading to the tensor Frobenius norm ‖T‖2 = 〈T,T〉. The matrix tensor multiplication T×pM
along mode p for a matrix M ∈ R

m×np is defined by

(2.2) (T×p A)j1j2...jp−1ijp+1...jk =

np
∑

jp=1

Tj1j2...jp...jkMijp .

This product can be generalized to what is known as the Tucker product, for Mp ∈ R
mp×np ,

(2.3) T×1 M1 ×2 M2 ×3 · · · ×k Mk ∈ R
m1×m2×···×mk .

The tensor vector multiplication T×p v along mode p for a vector v ∈ R
np is defined by

(2.4) (T×p v)j1j2...jp−1jp+1...jk =

np
∑

jp=1

Tj1j2...jp...jkvjp ,
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which also can be extended to

T×1 v1 ×2 v2 ×3 · · · ×k vk = Tv1v2 . . . vk ∈ R(2.5)

for vp ∈ R
np . If T is supersymmetric and vp = v for all p, the product (2.5) is also known as

the homogeneous polynomial associated with T, and we write it as Tvk for simplicity.

2.2. Tensor decompositions. There are several definitions of tensor ranks [10, 22, 23],
which are related to different notions of tensor decompositions. The multilinear ranks are
related to the so-called higher-order singular value decomposition (HOSVD), a multilinear
generalization of the matrix singular value decomposition (SVD) [5, 13].

Theorem 2.1 (HOSVD). A tensor T ∈ R
n1×n2×···×nk can be written as

(2.6) T = S×1 U1 ×2 U2 ×3 · · · ×k Uk,

where Up ∈ R
np×np are orthogonal matrices, and S ∈ R

n1×n2×···×nk is a tensor of which the
subtensors Sjp=α, obtained by fixing the pth index to α, have the properties of:

1. all-orthogonality: two subtensors Sjp=α and Sjp=β are orthogonal for all possible values
of p, α and β subject to α 6= β;

2. ordering: ‖Sjp=1‖ ≥ · · · ≥ ‖Sjp=np‖ ≥ 0 for all possible values of p.

The Frobenius norms ‖Sjp=j‖, denoted by γ
(p)
j , are the p-mode singular values of T.

Analogous to rank-one matrices, a tensor T ∈ R
n1×n2×···×nk is rank-one if it can be written

as the outer product of k vectors, i.e., T = a(1)◦a(2)◦· · ·◦a(k). The CANDECOMP/PARAFAC
decomposition (CPD) decomposes a tensor T ∈ R

n1×n2×···×nk into a sum of rank-one tensors
as form of outer products. It is often useful to normalize all the vectors and have weights λr
in descending order in front:

(2.7) T =
m
∑

r=1

λra
(1)
r ◦ a(2)r ◦ · · · ◦ a(k)r ,

where a
(p)
r ∈ R

np have unit length, and m is called the CP rank of T if it is the minimum
integer that achieves (2.7).

The tensor train decomposition (TTD) of a tensor T ∈ R
n1×n2×···×nk is given by

(2.8) T =

r0
∑

j0=1

· · ·
rk
∑

jk=1

T
(1)
j0:j1

◦ T(2)
j1:j2

◦ · · · ◦ T(k)
jk−1:jk

,

where {r0, r1, . . . , rk} is the set of TT-ranks with r0 = rk = 1, and T(p) ∈ R
rp−1×np×rp are the

core tensors [31]. Here “:” denotes the colon operation in MATLAB, see details in Appendix C.
There exist optimal TT-ranks for the TTD such that

rp = rank

(

reshape

(

T,

p
∏

j=1

nj,

k
∏

j=p+1

nj

))

,
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for p = 1, 2, . . . , k−1. A core tensor T(p) is called left-orthonormal if (T̄
(p)

)⊤T̄
(p)

= I ∈ R
rp×rp ,

and is called right-orthonormal if T(p)(T(p))⊤ = I ∈ R
rp−1×rp−1 where

T̄
(p)

= reshape(T(p), rp−1np, rp) and T(p) = reshape(T(p), rp−1, nprp)

are the left- and right-unfoldings of the core tensor, respectively [21]. Here I denotes the iden-
tity matrix, and rank and reshape refer to the rank and reshape operations in MATLAB,
respectively, see details in Appendix C. TTD is advantageous in that it provides better com-
pression, and is computationally more robust [31]. Detailed algorithms of computing TTD
and left- and right-orthonormalization can be found in Appendix B.

2.3. Tensor eigenvalues. Homogeneous polynomials are closely related to eigenvalue
problems. The tensor eigenvalues of real supersymmetric tensors were first explored by Qi
[32, 33] and Lim [25] independently. There are many different notions of tensor eigenval-
ues such as H-eigenvalues, Z-eigenvalues, M-eigenvalues, and U-eigenvalues [10, 32, 33]. Of
particular interest of this paper are Z-eigenvalues. Given a kth order supersymmetric tensor
T ∈ R

n×n×···×n, the E-eigenvalues λ ∈ C and E-eigenvectors v ∈ C
n of T are defined as

(2.9)

{

Tvk−1 = λv

v⊤v = 1
.

The E-eigenvalues λ could be complex. If λ are real, we call them Z-eigenvalues. Computing
the E-eigenvalues and the Z-eigenvalues of a tensor is NP-hard [16]. In 2016, Chen et al. [11]
proposed numerical methods for computing E-eigenvalues and Z-eigenvalues via homotopy
continuation approach, but the methods only work well for small size tensors.

3. Multilinear dynamical systems. Before introducing the multilinear dynamical system
representation, we first discuss the notion of orthogonal decomposability for supersymmetric
tensors, which will play a significant role in the stability analysis.

Definition 3.1. A suppersymmetric tensor A ∈ R
n×n×···×n is called orthogonal decomposable

(odeco) if it can be written as a sum of vector outer products

(3.1) A =

n
∑

r=1

λrvr ◦ vr ◦ · · · ◦ vr,

where λr ∈ R in the descending order, and vr ∈ R
n are orthonormal.

Clearly, orthogonal decomposition is a very special case of CPD. Reobeva [36] proved that
λr are the Z-eigenvalues of A with the corresponding Z-eigenvectors vr. However, λr do not
include all the Z-eigenvalues of A. Moreover, the author showed that odeco tensors satisfy a
set of polynomial equations that vanish on the odeco variety, which is the Zariski closure of
the set of odeco tensors inside the space of kth order n-dimensional complex supersymmetric
tensors. Note that the author only proved for the case when n = 2, but provided with strong
evidence for its overall correctness [36]. A tensor power method was also reported in [36] in
order to find the orthogonal decomposition of an odeco tensor.
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In this paper, we consider the discrete-time version of the multilinear dynamical system
proposed in [9], which is given by

(3.2) xt+1 = A×1 x×2 x×3 · · · ×k−1 x = Axk−1
t ,

where A ∈ R
n×n×···×n is a supersymmetric odeco/non-odeco dynamic tensor, and xt ∈ R

n is
the state variable (multilinear in the sense of multilinear algebra). In fact, the multilinear
dynamical system (3.2) belongs to the family of homogeneous polynomial dynamical systems
of degree k − 1 if one expands the tensor vector multiplications.

For example, suppose that the dynamic tensor A ∈ R
3×3×3 with A123 = A132 = A213 =

A231 = A312 = A321 = 1
2 and zero elsewhere. Let

xt =
[

x
(1)
t x

(2)
t x

(3)
t

]⊤

.

Then the multilinear dynamical system xt+1 = Ax2
t can be equivalently represented by the

following homogeneous polynomial dynamical system











x
(1)
t+1 = x

(2)
t x

(3)
t

x
(2)
t+1 = x

(1)
t x

(3)
t

x
(3)
t+1 = x

(1)
t x

(2)
t

.

3.1. Explicit solutions. We find that if the dynamic tensor A is odeco, we can write down
the solution of (3.2) explicitly in a simple fashion.

Proposition 3.2. Suppose that k ≥ 3 and A ∈ R
n×n×···×n is odeco with orthogonal decom-

position (3.1). Let the initial condition x0 =
∑n

r=1 crvr. Then the solution of the multilinear
dynamical system (3.2) at time q, given initial condition x0, is given by

(3.3) xq =
n
∑

r=1

λαr c
β
r vr,

where α =
∑q−1

j=0(k − 1)j = (k−1)q−1
k−2 and β = (k − 1)q.

Proof. Based on the property of tensor vector multiplications, we can write down the
solution x1 as follows:

x1 = A×1

(

n
∑

i=1

civi

)

×2

(

n
∑

i=1

civi

)

×3 · · · ×k−1

(

n
∑

i=1

civi

)

=
(

n
∑

r=1

λrvr ◦ vr ◦ · · · ◦ vr
)

×1

(

n
∑

i=1

civi

)

×2

(

n
∑

i=1

civi

)

×3 · · · ×k−1

(

n
∑

i=1

civi

)

=

n
∑

r=1

λr

〈

vr,

n
∑

i=1

civi

〉k−1
vr.
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Since all the vectors vr are orthonormal, we have

x1 =

n
∑

r=1

λr

〈

vr,

n
∑

i=1

civi

〉k−1
vr =

n
∑

r=1

λrc
k−1
r vr.

Similarly, the solution x2 can be written as

x2 = A×1

(

n
∑

i=1

λic
k−1
i vi

)

×2

(

n
∑

i=1

λic
k−1
i vi

)

×3 · · · ×k−1

(

n
∑

i=1

λic
k−1
i vi

)

=
n
∑

r=1

λr

〈

vr,
n
∑

i=1

λic
k−1
i vi

〉k−1
vr =

n
∑

r=1

λkrc
(k−1)2

r vr.

One can continue to compute x3,x4, . . . ,xq in the similar manner. Therefore, the result follows
immediately.

Clearly, if A is not odeco, the solution of the system will be extremely complicated. CPD
does not possess the orthonormal property, so we cannot write the initial condition in the
form of x0 =

∑n
r=1 crvr. In the following section, we will establish stability results on the

multilinear dynamical system (3.2) with odeco/non-odeco dynamic tensor A. In particular,
when the dynamic tensor A is odeco, we can obtain necessary and sufficient conditions for
determining the internal stability of a multilinear dynamical system.

4. Internal stability. In linear control theory, it is conventional to investigate so-called
internal stability. The stability of a linear dynamical system solely depends on the locations of
the eigenvalues of the dynamic matrix. Similarly to linear dynamical systems, the equilibrium
point x = 0 of the multilinear dynamical system (3.2) is called stable if ‖xt‖ ≤ γ‖x0‖ for
some initial condition x0 and γ > 0, asymptotically stable if xt → 0 as t → ∞, and unstable
if it is not stable.

4.1. Odeco case. The stability properties of the multilinear dynamical system (3.2) with
odeco dynamic tensor are similar to these of linear dynamical systems, but it depends on both
the Z-eigenvalues of the dynamic tensor A and initial conditions.

Proposition 4.1. Suppose that k ≥ 3 and A ∈ R
n×n×···×n is odeco with orthogonal decompo-

sition (3.1). Let the initial condition x0 =
∑n

r=1 crvr. For the multilinear dynamical system
(3.2), the equilibrium point x = 0 is:

1. stable if and only if |crλ
1

k−2
r | ≤ 1 for all r = 1, 2, . . . , n;

2. asymptotically stable if and only if |crλ
1

k−2
r | < 1 for all r = 1, 2, . . . , n;

3. unstable if and only if |crλ
1

k−2
r | > 1 for some r = 1, 2, . . . , n.

Proof. Based on the result from Proposition 3.2, the solution at time q, given initial
condition x0, is xq =

∑n
r=1 λ

α
r c
β
rvr where α =

∑q−1
j=0(k − 1)j = (k−1)q−1

k−2 and β = (k − 1)q.
Therefore, it can be shown that

λαr c
β
r = λ

(k−1)q−1
k−2

r c(k−1)q

r = λ
− 1

k−2
r (λ

1
k−2
r cr)

(k−1)q .
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Hence, the results follow immediately.

When k = 2, Proposition 4.1 reduces to the famous linear stability conditions, i.e.,

lim
k→2

λ
(k−1)q−1

k−2
r c(k−1)q

r = lim
k→2

λq(k−1)q−1

r c(k−1)q
r = crλ

q
r.

Moreover, the coefficient cr can be found from the inner product between x0 and vr, and thus

one may write |crλ
1

k−2
r | as |〈x0, λ

1
k−2
r vr〉|. Additionally, the inequalities obtained from the

asymptotic stability condition can provide us with the region of attraction of the multilinear
dynamical system (3.2), i.e.,

(4.1) R = {x : |cr| < |λr|−
1

k−2 where x =
n
∑

r=1

crvr}.

If the product between maxr |cr| and maxr |λr|
1

k−2 is less than one, the multilinear dynamical
system (3.2) will be asymptotically stable.

Definition 4.2. The Z-spectral radius of a supersymmetric tensor is the maximum of the
absolute values of all its Z-eigenvalues.

Corollary 4.3. Suppose that k ≥ 3 and A ∈ Rn×n×···×n is odeco. Let x0 be some initial
conditions. For the multilinear dynamical system (3.2), the equilibrium point x = 0 is asymp-

totically stable if λ
1

k−2‖x0‖ < 1 where λ is the Z-spectral radius of A.

Proof. By the Cauchy-Schwarz inequality, |cr| ≤ ‖x0‖ for all r. In addition, maxr |λr| ≤ λ.
Therefore, the result follows immediately from Proposition 4.1.

Based on our numerical experiments, we find that the Z-spectral radius

λ = max {|λ1|, |λn|},

where λ1 and λn are the largest and the smallest coefficients in the orthogonal decomposition,
respectively. This implies that λ1 is the largest Z-eigenvalue of A, or λn is the smallest
Z-eigenvalue of A. However, the correctness of this conjecture needs further investigation.

4.2. Upper bounds for Z-spectral radii. Computing the orthogonal decomposition or
Z-eigenvalues of a supersymmetric tensor is NP-hard even if we know the tensor is odeco
beforehand (e.g., the tensor satisfies a set of polynomial equations that vanish on the odeco
variety) [16, 36]. If we can come up with some upper bounds for the Z-spectral radii of the
dynamic tensors, it will save a great amount of computations for determining the internal
stability of multilinear dynamical systems.

Lemma 4.4. Suppose that A ∈ R
n×n×···×n×n is an even-order supersymmetric tensor. The

Z-spectral radius of A is upper bounded by the spectral radius of the unfolded matrix defined
by the following

(4.2) A = ψ(A) s.t. Aj1i1...jkik
ψ−→ Aji,

where j = j1 +
∑k

p=2(jp − 1)np−1, and i = i1 +
∑k

p=2(ip − 1)np−1.
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Proof. Based on the results in [8, 10], it can be shown that the tensor unfolding ψ is
bijective, and the restriction of ψ−1 on the general linear group produces a group isomorphism.
Thus, the largest eigenvalue of the unfolded matrix A can be equivalently solved from the
following tensor-based optimization problem

max{X⊤ ∗ A ∗ X : ‖X‖ = 1},

where X ∈ R
n×n×···×n is a kth order tensor, ∗ denotes the Einstein product, and ⊤ denotes

the U-tranpose of a tensor. See Appendix A for the detailed definitions of these notions. On
the other hand, it can be shown that the largest Z-eigenvalue of A can be solved from the
following tensor-based optimization problem

max{X⊤ ∗ A ∗ X : ‖X‖ = 1, and X = v ◦ v ◦ · · · ◦ v}.

Therefore, the largest Z-eigenvalue of A is always less than or equal to the largest eigenvalue
of the unfolded matrix A. Similarly, we can show that the smallest Z-eigenvalue of A is
always greater than or equal to the smallest eigenvalue of the unfolded matrix A by replacing
maximization with minimization. Therefore, the result follows immediately.

The eigenvalues of the unfoled matrix A are also called the U-eigenvalues of A [8, 10]. The
computational cost for computing spectral radii from the matrix eigenvalue decomposition is
much less than that for Z-spectral radii. Once we have an upper bound for the Z-spectral
radii of the dynamic tensors, we can determine the internal stability of multilinear dynamical
systems without computing orthogonal decomposition or Z-eigenvalues.

Corollary 4.5. Suppose that k ≥ 4 is even and A ∈ R
n×n×···×n×n is odeco. Let x0 be some

initial conditions. For the multilinear dynamical system (3.2), the equilibrium point x = 0 is

asymptotically stable if µ
1

k−2‖x0‖ < 1 where µ is the spectral radius of ψ(A).

Proof. The result follows immediately from Lemma 4.4 and Corollary 4.3.

The condition offers a conservative region of attraction for the multilinear dynamical
system (3.2) without knowing the orthogonal decomposition of A, i.e.,

R = {x : ‖x‖ < µ
− 1

k−2}.

However, if a tensor has large dimension n or higher order k, computing the spectral radius
of the unfolded matrix is still computationally demanding. Thus, we exploit TTD for finding
the spectral radius of the unfolded matrix. In particular, if the dynamic tensor A naturally
possesses low TT-ranks structure, the computational time will be significantly reduced.

Corollary 4.6. Suppose that k ≥ 4 is even and A ∈ R
n×n×···×n×n is odeco in the tensor train

format with first k−1 core tensors left-orthonormal, and last k core tensors right-orthonormal.
For the multilinear dynamical system (3.2), the equilibrium point x = 0 is asymptotically stable

if µ
1

k−2 ‖x0‖ < 1 where µ is the largest singular value of the left-unfolding of the kth core tensor

Ā
(k)

.
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Proof. Based on the results of [21], the singular values of Ā
(k)

are the singular values of
ψ(A). Since ψ(A) is symmetric, the largest singular value of ψ(A) is equal to its spectral
radius. Therefore, the result follows immediately from Corollary 4.5.

Computing the spectral radius of ψ(A) directly from the eigenvalue decomposition requires
an order of O(n3k) number of operations. 1 To the contrary, if the TTD of A is provided, the
time complexity of left- and right-orthonormalization is only about O(knr3) where r can be
viewed as the average of the TT-ranks.

In addition, there are many other upper bounds for Z-spectral radii of supersymmetric
tensors [6, 15, 26, 44]. For example, He et al. [15] proposed that given a positive kth order
supersymmetric tensor A, its Z-spectral radius is upper bounded by

(4.3) λ ≤ R− l
(

1− (
r

R
)
1
k

)

,

where l is the minimum entry of A,

r = min
j

(

n
∑

j2=1

· · ·
n
∑

jk=1

Ajj2...jk

)

, and R = max
j

(

n
∑

j2=1

· · ·
n
∑

jk=1

Ajj2...jk

)

.

Hence, one can also use this upper bound to determine the internal stability of a multilin-
ear dynamical system if the dynamic tensor contains all positive entries. Note that given a
dynamic tensor, the better upper bound of the Z-spectral radius, the more strong stability con-
ditions we can obtain. In section 6, we will present an example to show that our upper bound
gives more accurate approximation to the Z-spectral radius of an even-order supersymmetric
tensor, compared to (4.3).

4.3. Non-odeco case. As mentioned in [36], not all supersymmetric tensors are odeco.
Therefore, we offer a more general but relatively weaker stability result for the multilinear
dynamical system (3.2) in the following proposition.

Proposition 4.7. Suppose that k ≥ 3. Let x0 be some initial conditions. For the multilinear
dynamical system (3.2), the equilibrium point x = 0 is asymptotically stable if

‖A‖
1

k−2 ‖x0‖ < 1.

Proof. Based on Theorem 6 in [19], we have

‖xt+1‖ ≤ ‖A‖‖xt‖k−1.

Thus, it can be shown similarly as Proposition 4.1 that at the qth step, we have

‖xq‖ ≤ ‖A‖α‖x0‖β,

where α and β are the same quantities as defined in Proposition 4.1. Therefore, the result
follows immediately.

1Big O notation: f(x) = O(g(x)) as x → ∞ if and only if there exists a positive real number M and a real
number x0 such that |f(x)| ≤ Mg(x) for all x ≥ x0.
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Proposition 4.7 also holds for non-supersymmetric dynamic tensors A. Similarly, we can
obtain a conservative region of attraction, i.e.,

R = {x : ‖x‖ < ‖A‖−
1

k−2 }.

Moreover, the tensor Frobenius norm is closely related to HOSVD.

Corollary 4.8. Suppose that k ≥ 3. Let x0 be some initial conditions. For the multilinear
dynamical system (3.2), the equilibrium point x = 0 is asymptotically stable if for any p,

(

n
∑

j=1

(γ
(p)
j )2

)
1

k−2 ‖x0‖ < 1,

where γ
(p)
j are the p-mode singular values of A.

Proof. The result follows immediately from Proposition 4.7 and the fact that the Frobenius
norm of a tensor is equal to the sum of its p-mode singular values’ square for any p.

De Lathauwer et al. [13] showed that the p-mode singular values from the HOSVD of a
tensor are the singular values of its p-mode unfoldings, see details in [13]. However, computing
the tensor Frobenius norm or p-mode singular values is computationally expensive. Similarly,
we apply TTD to gain computational efficiency.

Corollary 4.9. Suppose that k ≥ 3 and A ∈ R
n×n×···×n in the tensor train format with first

k − 1 core tensors left-orthonormal. Let x0 be some initial conditions. For the multilinear
dynamical system (3.2), the equilibrium point x = 0 is asymptotically stable if

‖A(k)‖
1

k−2‖x0‖ < 1.

where A
(k) is the kth core tensor.

Proof. Since the first k − 1 core tensors are left-orthonormal, contracting them would
result in an identify matrix. Therefore, the Frobenius norm of A is equal to the Frobenius
norm of its kth core tensor. Hence, the result follows immediately from Proposition 4.7.

A similar result can be obtained if the last k − 1 core tensors are right-orthonormal.
Significantly, computing the Frobenius norm of its kth core tensor which contains only nrk−1

entries is much simpler than computing the Frobenius norm of the whole tensor which contains
nk entries. Furthermore, it will be interesting to explore more strong stability conditions as
Proposition 4.1 for multilinear dynamical systems with non-odeco dynamic tensors (even non-
supersymmetric tensors) in the future.

5. Lyapunov stability. Aside from internal stability, Lyapunov stability also plays an
significant role in control systems, particularly in nonlinear polynomial dynamical systems
[1, 2, 18, 37, 39]. We here extend the Lyapunov stability conditions to multilinear dynamical
systems, analogous to the construction of quadratic Lyapunov functions in linear dynamical
systems. First, we introduce the notion of positive definiteness for supersymmetric tensors
and the p-mode tensor tensor multiplication.
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Definition 5.1. A kth order n-dimensional supersymmetric tensor T ∈ R
n×n×···×n is called

positive definite if for any nonzero vector x ∈ R
n, its corresponding homogeneous polynomial

Txk > 0.

Definition 5.2. Given kth order n-dimensioanl supersymmetric tensors P,A ∈ R
n×n×···×n,

the p-mode tensor tensor multiplication with respect to P is defined by

(P •p A)i1i2...ip−1ip+1...ikj2j3...jk =

n
∑

ip=1

Pi1i2...ip...ikAipj2...jk ,

which can be extended to

P •1 A •2 A •3 · · · •k A = P • {A,A, . . . ,A}.

We propose a Lyapunov function candidate for the multilinear dynamical system (3.2) of
a form V (x) = Pxk. When k = 2, it reduces to the famous quadratic Lyapunov functions for
linear dynamical systems, i.e., V (x) = x⊤Px.

Proposition 5.3. Suppose that V (x) = Pxk is a Lyapunov function candidate where P is a
kth order n-dimensional supersymmetric positive definite tensor. For the multilinear dynami-
cal system (3.2), the equilibrium point x = 0 is asymptotically stable in the sense of Lyapunov
if the following polynomial

(5.1) p(x) = Bx
k(k−1) − Px

k < 0,

where B = P • {A,A, . . . ,A} is a k(k − 1)th order n-dimensional tensor.

Proof. First, since P is positive definite, V (x) > 0 for any nonzero x. Second, based on
the property of tensor tensor multiplications, it can be shown that

V (xt+1)− V (xt) = P(Axk−1
t )k − Pxkt = (P • {A,A, . . . ,A})xk(k−1)

t − Pxkt .

Therefore, the result follows immediately.

When k = 2, the polynomial p(x) reduces to the classical Lyapunov equations for linear
dynamical systems, i.e.,

p(x) = (P • {A,A})x2 −Px2 = x⊤(A⊤PA−P)x ⇒ A⊤PA−P = −Q.

However, for k ≥ 3, determining the negative definiteness of p(x), formed by the difference
between two homogeneous polynomials, usually is hard. It will be an important direction
for future research. Nevertheless, we will try to demonstrate Proposition 5.3 using a simple
example in section 6.

6. Numerical examples. All the numerical examples presented were performed on a Mac-
intosh machine with 16 GB RAM and a 2 GHz Quad-Core Intel Core i5 processor in MATLAB
R2020b, and used the MATLAB tensor toolbox [3, 38] and MATLAB TT toolbox [30, 31].
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Table 1

Stability results for different initial conditions.

IC max {|crλr|} ‖A‖‖x0‖ Stability

a 0.9735 28.7712 Asym. Stable

b 0.6032 0.9413 Asym. Stable

c 1 53.9410 Stable

d 1.0053 1.5688 Unstable
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Figure 1. Stability results for different initial conditions corresponding to Table 1. When the norm of xt

is less than 10−5, we omit the point.

6.1. Stability with odeco dynamic tensors. In this example, we try to verify the internal
stability results discussed in section 4. Given an odeco tensor A ∈ R

3×3×3 with orthogonal
decomposition (columns of V are vr in (3.1))

V =





−0.8482 −0.5212 0.0947
−0.4840 0.6899 −0.5382
0.2152 −0.5024 −0.8374



 and λ =





0.9
0.1
0.02



 ,

we compute the trajectories xt for four initial conditions, which are given by

xa =





3
10
30



 , xb =





0.6
0.6
0.6



 , xc =





−2.2720
−15.1148
−38.3064



 , xd =





1
1
1



 .

The results are shown in Table 1 and Figure 1. For each initial condition, we calculate the
quantities max {|crλr|} and ‖A‖‖x0‖, and compare them to one. Clearly, the locations of crλr
determine the stability of the multilinear dynamical system. The region of attraction R of the



14 CAN CHEN

multilinear dynamical system can be obtained by

R =







x :
| − 0.8482x1 − 0.4840x2 + 0.2152x3| < 10

9
| − 0.5212x1 + 0.6899x2 − 0.5024x3| < 10
|0.0947x1 − 0.5382x2 − 0.8374x3| < 50







,

where x =
[

x1 x2 x3
]⊤

. In addition, the stability condition stated in Proposition 4.7 is
weaker than that in Proposition 4.1 as seen in Figure 1 IC a and b .

6.2. Stability using upper bounds of Z-spectral radii. In this example, we try to apply
the upper bound of the Z-spectral radii defined in (4.2) to obtain a conservative region of
attraction for a multilinear dynamical system. Suppose that the dynamic tensor A ∈ R

2×2×2×2

is odeco and is given by

A::11 =

[

0.2285 0.0376
0.0376 0.2243

]

, A::12 =

[

0.0376 0.2243
0.2243 0.0124

]

,

A::21 =

[

0.0376 0.2243
0.2243 0.0124

]

, A::22 =

[

0.2243 0.0124
0.0124 0.2229

]

.

The unfolded matrix ψ(A) therefore is given by

ψ(A) =









0.2285 0.0376 0.0376 0.2243
0.0376 0.2243 0.2243 0.0124
0.0376 0.2243 0.2243 0.0124
0.2243 0.0124 0.0124 0.2229









.

The spectral radius of ψ(A) is µ = 1
2 , and thus the conservative region of attraction of the

multilinear dynamical system is an open disk with radius
√
2 centered at the origin (note that

the second upper bound (4.3) produces λ ≤ 1.0263, which will give an even more conservative
region of attraction). We test four initial conditions to verify the region of attraction, which
are given by

xa =

[

−1.4
0

]

, xb =

[

0.9
−0.9

]

, xc =

[

1
1

]

, xd =

[

1.2
1.2

]

.

The results are shown in Figure 2. It is clear to see that the trajectories of the multilinear
dynamical system with initial conditions started within the open disk converge to the origin,
see IC a and b. Moreover, since the region of attraction is conservative, we see a trajectory
started on the circle also converge to the origin, see IC c.

6.3. Lyapunov stability. In this example, we try to establish the Lyapunov stability of
a simple multilinear dynamical system. Suppose that the dynamic tensor A ∈ R

2×2×2×2 is a
diagonal tensor with diagonal entries A1111 = 0.5 and A2222 = 0.1. Clearly, A is odeco. Let
V (x) = Px4 where P ∈ R

2×2×2×2 is the identity tensor (i.e., all diagonal entries are equal to

one). Let x =
[

x1 x2
]⊤

. According to Proposition 5.3, we have

p(x) = 0.0625x121 + 0.0001x122 − (x41 + x42) = x41(0.0625x
8
1 − 1) + x42(0.0001x

8
2 − 1).
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Figure 2. A conservative region of attraction (red dashed line) of the multilinear dynamical system, and
four initial conditions with their trajectories.

Table 2

Run time comparison between the TTD-based and direct methods in finding conservative regions attraction
of the multilinear dynamical systems. When k = 32, the computer does not have enough memory to execute
the operation for the direct method.

k TTD(s) Direct(s) ‖A‖−
1

k−2 Relative error

15 5.40 × 10−4 6.77 × 10−4 0.72 5.62 × 10−16

20 6.20 × 10−4 7.00 × 10−3 0.73 3.50 × 10−16

25 9.83 × 10−4 0.20 0.74 5.79 × 10−16

30 6.65 × 10−4 34.29 0.74 3.84 × 10−16

31 5.80 × 10−3 201.30 0.69 1.75 × 10−15

32 1.20 × 10−3 - 0.78 -

Therefore, p(x) < 0 if |x1| <
√
2 and |x2| <

√
10, which offers a region of attraction for the

multilinear dynamical system in the sense of Lyapunov. Significantly, this region of attraction
is exactly same as the one identified using the results from Proposition 4.7.

6.4. Computation time comparison. In this example, we consider multilinear dynamical
systems with random kth order tensors A ∈ R

2×2×···×2 in the tensor train format with low
TT-ranks structure. We compare the run time of Corollary 4.9 with Proposition 5.3 for
finding conservative regions of attraction of the multilinear dynamical systems. The results
are shown in Table 2. When k ≥ 25, the TTD-based method for obtaining the regions of
attraction exhibits a significant time advantage compared to the direct method for which the
time increases exponentially.
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7. Discussion. The first two numerical examples reported here highlight that tensor spec-
tral theory plays a significant role in the stability analysis of the discrete-time multilinear
dynamical system (3.2). In particular, when the dynamic tensor A is odeco, its Z-eigenvalues
together with initial conditions can provide necessary and sufficient criteria for determining
the internal stability of a multilinear dynamical system. However, more theoretical and nu-
merical investigations are required to evaluate the stability properties of multilinear dynamical
systems with non-odeco dynamic tensors. Moreover, stabilizability of the multilinear dynam-
ical system (3.2) needs to be considered for control/feedback designs. Stabilizability is also
associated to another important concept called reachability in systems theory.

We are interested in exploring the reachability of the multilinear dynamical system (3.2)
with linear control inputs, i.e.,

(7.1) xk+1 = Axk−1
k +Buk,

where B ∈ R
n×m is the control matrix, and uk ∈ R

m is a control input. Chen et al. [9] proved
that for the continuous-time case, the multilinear dynamical system is controllable if and only
if k is even, and the span of the smallest Lie algebra of vector fields {A,b1,b2, . . . ,bm} is Rn

at the origin where B =
[

b1 b2 . . . bm
]

. We believe that a similar result should hold for
the discrete-time case, analogous to that in linear systems theory.

Definition 7.1. Suppose that B =
[

b1 b2 . . . bm

]

. Let R0 be the linear span of the
vectors {b1, b2, . . . , bm} and A ∈ R

n×n×···×n be a supersymmetric tensor. For each integer
q ≥ 1, define Rq inductively as the linear span of

(7.2) Rq−1 ∪ {Av1v2 . . . vk−1|vl ∈ Rq−1}.

Denote the subspace R = ∪q≥0Rq.

Conjecture 7.2. Suppose that k is even. The multilinear dynamical system (7.1) is reach-
able if and only if the subspace R spans R

n, or equivalently, the matrix R, including all the
column vectors from R, has rank n.

Although we are not able to fully prove Conjecture 7.2, one can validate its correctness
with help of Gröbner basis for specific values of n and k. In addition, the reason that k has
to be even is because the roots of polynomial systems of even degree might all be complex.

8. Conclusion. In this paper, we investigated the stability properties of discrete-time mul-
tilinear dynamical systems, inspired by hypergraphs. In contrast to linear dynamical systems,
the internal stability of the multilinear dynamical system (3.2) depends on both the spectrum
of the dynamic tensor A and initial conditions. In particular, when the dynamic tensor A is
odeco, we can obtain necessary and sufficient conditions by exploiting tensor Z-eigenvalues.
We also provided an upper bound for the Z-spectral radii of even-order supersymmetric ten-
sors, which can be used to determine the internal stability of multilinear dynamical systems
efficiently with help of tensor train decomposition. In addition, we discussed the internal sta-
bility of multilinear dynamical systems with non-odeco dynamic tensors by using the tensor
Frobenius norm and p-mode singular values. Finally, we performed preliminary explorations
of the Lyapunov stability of multilinear dynamical systems. All the results are applicable
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to homogeneous polynomial dynamical systems if one can find the corresponding multilinear
dynamical systems.

It will be worthwhile to explore more strong stability conditions regarding multilinear dy-
namical systems with non-odeco dynamic tensors, and more work is required to fully realize
the Lyapunov theory in multilinear dynamical systems. For example, how does one derive
the Lyapunov equations for the multilinear dynamical systems (3.2)? It will also be inter-
esting to explore the stability properties of continuous-time multilinear dynamical systems.
As mentioned in section 7, we also intend to analyze the stabilizability and reachability of
multilinear control systems in future work. One particular application we plan to investigate
is that of higher-order genomic networks. Recent advances in genomics technology, such as
multiway chromosomal conformation capture (Pore-C), have inspired us to consider the hu-
man genome as a hypergraph [41]. Stability or stabilizability will be important in analyzing
such higher-order networked systems.

Appendix A. Definitions for Lemma 4.4.

Definition A.1. Given two 2kth order tensors A,B ∈ R
n×n×···×n×n, the Einstein product

between A and B is defined by

(A ∗ B)j1i1...jkik =

n
∑

l1=1

· · ·
n
∑

lk=1

Aj1l1...jklkBl1i1...lkik .

Definition A.2. Given a 2kth order tensor A ∈ R
n×n×···×n×n, the U-transpose of A, denoted

by A
⊤, is defined by

Aj1i1...jkik = (A⊤)i1j1...ikjk .

Note that the kth order tensor X ∈ R
n×n×···×n shown in the optimization problem in the

proof of Lemma 4.4 can be viewed as a 2kth order tensor, i.e., X ∈ R
n×1×n×1×···×n×1 in order

to fit in the Einstein product.

Appendix B. Tensor train decomposition algorithms.

Algorithm B.1 Computing the TTD of a tensor [31]

1: Input: Given a kth order tensor T ∈ R
n1×n2×···×nk in the full format, a truncation

threshold ǫ
2: for j = 1, 2, . . . , k − 1 do
3: Set T = reshape(T, rj−1nj, nj+1nj+2 . . . nk) with r0 = rk = 1
4: Compute the economy-size matrix SVD of T, i.e., T = USV⊤ with truncation threshold

ǫ where S ∈ R
s×s

5: Set rj = s, and T(j) = reshape(U, rj−1, nj , rj)
6: Define the remainder T = reshape(SV⊤, rj , nj+1, nj+1, . . . , nk)
7: end for
8: Set T(k) = T
9: Return: The core tensors T(p) with TT-ranks {r0, r1, . . . , rk}.
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Algorithm B.2 Left-orthonormalization [21]

1: Input: Given core tensors T(1),T(1), . . . ,T(k) with TT-ranks {r0, r1, . . . , rk}, a parameter
d with 1 ≤ d ≤ k − 1

2: for j = 1, 2, . . . , d do
3: Set T(j) = reshape(T(j), rj−1nj, rj)
4: Compute the QR factorization of T(j), i.e., T(j) = QR with Q ∈ R

rj−1nj×s

5: Set rj = s and T(j) = reshape(Q, rj−1, nj , rj)

6: Compute T(j+1) = RT(j+1) where T(j+1) = reshape(T(j+1), rjnj+1, rj+1)

7: Set T(j+1) = reshape(T(j+1), rj , nj+1, rj+1)
8: end for
9: Return: The first d core tensors that are left-orthonormal.

Algorithm B.3 Right-orthonormalization [21]

1: Input: Given core tensors T(1),T(1), . . . ,T(k) with TT-ranks {r0, r1, . . . , rk}, a parameter
d with 2 ≤ d ≤ k

2: for j = k, k − 1, . . . , d do
3: Set T(j) = reshape(T(j), rj−1, njrj)
4: Compute the QR factorization of (T(j))⊤, i.e., T(j) = R⊤Q⊤ with Q⊤ ∈ R

s×njrj

5: Set rj−1 = s and T(j) = reshape(Q⊤, rj−1, nj , rj)

6: Compute T(j−1) = T(j−1)R⊤ where T(j−1) = reshape(T(j−1), rj−2, nj−1rj−1)

7: Set T(j−1) = reshape(T(j−1), rj−2, nj−1, rj−1)
8: end for
9: Return: The last d core tensors that are right-orthonormal.

Appendix C. MATLAB functions.

C.1. The colon operator. The colon : is one of the most useful operators in MATLAB,
which can create vectors, subscript arrays and specify for iterations. For our purpose, it acts
as shorthand to include all subscripts in a particular array dimension [27]. For example, A:i

is equivalent to Aji for all j.

C.2. The reshape operator. The command B = reshape(A, n1, n2, . . . , nk) reshapes a
tensor A into a n1×n2×· · ·×nk order tensor such that the number of elements in B matches
the number of elements in A [27].

C.3. The rank operator. The command r = rank(A) computes the rank of A [27].
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