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Abstract

Chromatin architecture, a key regulator of gene expression, is inferred through chromatin contacts. However, classical
analyses of chromosome conformation data do not preserve multi-way relationships. Here we use long sequencing reads
to map genome-wide multi-way contacts and investigate higher order chromatin organization of the human genome. We
use the theory of hypergraphs for data representation and analysis, and quantify higher order structures in primary
human fibroblasts and B lymphocytes. Through integration of multi-way contact data with chromatin accessibility, gene
expression, and transcription factor binding data, we introduce a data-driven method to extract transcriptional clusters.
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1 Introduction

Structural features of the genome are integral to regulation of gene expression and corresponding outcomes in cellular
phenotype [1, 2, 3]. The biochemical technique of genome wide chromosome conformation capture (Hi-C) enables large scale
investigation of genome architecture through capture of all adjacent loci. Through analysis of pairwise interactions, multi-
way interactions may be inferred, but not captured directly [4]. Recently, an extension of Hi-C enabled preservation and
sequencing of long reads (e.g. Pore-C) [5], which can be used to unambiguously identify multiple adjacent loci. These data will
undoubtedly clarify higher order structures in the genome, but new frameworks are required for analysis and representation
of the multidimensional data captured in this assay.

Here we collected Pore-C data from two cell types and constructed hypergraphs to represent the multidimensional relationships
of multi-way contacts among loci. Hypergraphs are similar to graphs, but have hyperedges instead of edges, with each
hyperedge connecting any number of nodes instead of two nodes [6, 7, 8]. In our hypergraph framework, nodes are genomic
loci, and hyperedges are multi-way contacts among loci. We used incidence matrices to represent hypergraphs, where matrix
rows represent genomic loci and columns are individual hyperedges. This representation enables quantitative measurements
of genome organization through hypergraph entropy, comparison of different cell types through hypergraph distance, and
identification of functionally important multi-way contacts in multiple cell types. In addition, we integrate Pore-C data with
multiple other data modalities to identify biologically relevant multi-way interactions.

We use the following definitions. Entropy: a measure of structural order in the genome. Hyperedge: an extension of edges
where each edge can contain any number of nodes. Hypergraph: an extension of graphs containing multiple hyperedges.
Incidence matrix: a representation for hypergraphs where rows are nodes and columns are hyperedges. Transcription
cluster: a group of genomic loci that colocalize for efficient gene transcription.

2 Results

2.1 Capturing Multi-way Contacts

We conducted Pore-C experiments using adult human dermal fibroblasts and obtained additional publicly available Pore-C
data from B lymphocytes [5].) The experimental protocol for Pore-C is similar to Hi-C, where DNA is cross-linked to histones,
restriction digested, and adjacent ends are ligated together followed by sequencing (Figure 1A). Alignment of Pore-C long
reads to the genome enables fragment identification and construction of multi-way contacts (Figure 1B).

We use hypergraphs to represent multi-way contacts, where individual hyperedges contain at least two loci (Figure 1C,
left). Hypergraphs provide a simple and concise way to depict multi-way contacts and allow for abstract representations
of genome structure. Computationally, we represent multi-way contacts as incidence matrices (Figure 1C, right). For Hi-C
data, adjacency matrices are useful for assembly of pairwise genomic contacts. However, since rows and columns represent
individual loci, adjacency matrices cannot be used for multi-way contacts in Pore-C data. In contrast, incidence matrices
permit more than two loci per contact and provide a clear visualization of multi-way contacts. Multi-way contacts can also
be decomposed into pairwise contacts, similar to Hi-C, by extracting all combinations of loci (Figure 1D).
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Figure 1: Pore-C experimental and data workflow. (A) The Pore-C experimental protocol, which captures pairwise and
multiway contacts (Materials and Methods). (B) Representation of multi-way contacts at different resolutions (top). Incidence
matrix visualizations of a representative example from Chromosome 8 in human fibroblasts at each resolution (bottom). The
numbers in the left columns represent the location of each genomic locus present in a multi-way contact, where values are
either the chromosome base-pair position (read-level) or the bin into which the locus was placed (binning at 100 kb, 1 Mb,
or 25 Mb). (C) Hypergraph representation of Pore-C contacts (left) and an incidence matrix (right) of four sets of multi-way
contacts within (yellow-to-yellow) and between (yellow-to-purple) chromosomes. Contacts correspond to examples from part
A. The numbers in the left column represent a bin in which a locus resides. Each vertical line represents a multi-way contact,
with nodes at participating genomic loci. (D) Multi-way contacts can be decomposed into pairwise contacts. Decomposed
multi-way contacts can be represented using graphs (left) or incidence matrices (right). Contacts correspond to examples
from parts A and C. (E) Flowchart overview of the computational framework. File type format descriptions are in Table S1.

2.2 Decomposing Multi-way Contacts

From our Pore-C experiments using adult human dermal fibroblasts and additional publicly available Pore-C data from B
lymphocytes, we constructed hypergraphs as multiple resolutions (read level, 100 kb, 1 Mb, and 25 Mb) [5]. We first analyzed
individual chromosomes at 100 kb resolution, and decomposed the multi-way contacts into their pairwise counterparts to
identify topologically associated domains (TADs, Materials and Methods). Examples of TADs from Chromosome 22 for
fibroblasts and B lymphocytes can be seen in Figures 2 and S1, respectively.
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Figure 2: Local organization of the genome. (A) Incidence matrix visualization of a region in Chromosome 22 from fibroblasts
(V1-V4). The numbers in the left column represent genomic loci in 100 kb resolution, vertical lines represent multi-way
contacts, where nodes indicate the corresponding locus’ participation in this contact. The blue and yellow regions represent
two TADs, T1 and T2. The six contacts, denoted by the labels i-vi, are used as examples to show intra- and inter-TAD
contacts in B, C, and D. (B) Hyperedge and read-level visualizations of the multi-way contacts i-vi from A. Blue and yellow
rectangles (bottom) indicate which TAD each loci corresponds to. (C) A hypergraph is constructed using the hyperedges
from B (multiway contacts i-vi from A). The hypergraph is decomposed into its pairwise contacts in order to be represented
as a graph. (D) Contact frequency matrices were constructed by separating all multi-way contacts within this region of
Chromosome 22 into their pairwise combinations. TADs were computed from the pairwise contacts using the methods from
[9]. Example multi-way contacts i-vi are superimposed onto the contact frequency matrices. Multi-way contacts in this figure
were determined in 100 kb resolution after noise reduction, originally derived from read-level multi-way contacts (Materials
and Methods).
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2.3 Chromosomes as Hypergraphs

To gain a better understanding of genome structure with multi-way contacts, we constructed hypergraphs for entire chromo-
somes in 1 Mb resolution. We show the incidence matrix of Chromosome 22 as an example in Figure 3A. In Figure 3B, we
show Chromosomes 22’s distribution of 1 Mb contacts at multiple orders (2-way contacts, 3-way contacts, etc). Figure 3C
highlights the most common intra-chromosome contacts within Chromosome 22 using multi-way contact “motifs”, which we
use as a simplified way to show hyperedges. Figure 3D shows a zoom-in of a 3-way contact to highlight how a low resolution
multi-way contact can contain many contacts at higher resolutions. Figure 3E visualizes the multi-way contacts contained in
Figure 3D as a hypergraph.

We also identified multi-way contacts that contain loci from multiple chromosomes. These inter-chromosomal multi-way
contacts can be seen in 1 Mb resolution in Figure 3F and in 25 Mb resolution for both fibroblasts and B lymphocytes
in Figure 4A and 4B, respectively. Figure 4 gives a summary of the entire genome’s multi-way contacts, by showing the
most common intra- and inter-chromosomal multi-way contacts across all chromosomes. We highlight examples of multi-way
contacts with loci that are contained within a single chromosome (“intra only”), spread across unique chromosomes (“inter
only”), and a mix of both within and between chromosomes (“intra and inter”). Finally, we found the most common inter-
chromosomal multi-way contacts across all chromosomes, which we summarize with five example chromosomes in Figure 5
using multi-way contact motifs.

Figure 3: Patterning of intra- and inter-chromosomal contacts. (A) Incidence matrix visualization of Chromosome 22 in
fibroblasts. The numbers in the left column represent genomic loci in 1 Mb resolution. Each vertical line represents a multi-
way contact, in which the nodes indicate the corresponding locus’ participation in this contact. (B) Frequencies of Pore-C
contacts in Chromosome 22. Bars are colored according to the order of contact. Blue, green, orange, and red correspond to
2-way, 3-way, 4-way, and 5-way contacts. (C) The most common 2-way, 3-way, 4-way, and 5-way intra-chromosome contacts
within Chromosome 22 are represented as motifs, color-coded similarly to B. (D) Zoomed in incidence matrix visualization
in 100 kb resolution shows the multi-way contacts between three 1 Mb loci L19 (blue), L21 (yellow), and L22 (red). An
example 100 kb resolution multi-way contact is zoomed to read-level resolution. (E) Hypergraph representation of the 100
kb multi-way contacts from D. Blue, yellow, and red labels correspond to loci L19, L21, and L22, respectively. (F) Incidence
matrix visualization of the inter-chromosomal multi-way contacts between Chromosome 20 (orange) and Chromosome 22
(green) in 1 Mb resolution. Within this figure, all data are from one fibroblast sequencing run (V2) and multi-way contacts
were determined after noise reduction at 1 Mb or 100 kb resolution accordingly (Materials and Methods).
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Figure 4: Genome-wide patterning of multi-way contacts. Incidence matrix visualization of the top 10 most common multi-
way contacts per chromosome. Matrices are constructed at 25 Mb resolution for both fibroblasts (top, V1-V4) and B
lymphocytes (bottom). Specifically, 5 intra-chromosomal and 5 inter-chromosomal multi-way contacts were identified for each
chromosome with no repeated contacts. If 5 unique intra-chromosomal multi-way contacts are not possible in a chromosome,
they are supplemented with additional inter-chromosomal contacts. Vertical lines represent multi-way contacts, nodes indicate
the corresponding locus’ participation in a multi-way contact, and color-coded rows delineate chromosomes. Highlighted boxes
indicate example intra-chromosomal contacts (red), inter-chromosomal contacts (magenta), and combinations of intra- and
inter-chromosomal contacts (blue). Examples for each type of contact are shown in the top right corner. Multi-way contacts
of specific regions are compared between cell types by connecting highlighted boxes with black dashed lines, emphasizing
similarities and differences between fibroblasts and B lymphocytes. Normalized degree of loci participating in the top 10
most common multi-way contacts for each chromosome in fibroblast and B-lymphocytes are shown on the left. Red dashed
lines indicate the mean degree for fibroblasts and B lymphocytes (top and bottom, respectively). Genomic loci that do not
participate in the top 10 most common multi-way contacts for fibroblasts or B lymphocytes were removed from their respective
incidence and degree plots. Multi-way contacts were determined in 25 Mb resolution after noise reduction (Materials and
Methods).

6

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted August 17, 2021. ; https://doi.org/10.1101/2021.08.15.456363doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.15.456363


Figure 5: Inter-chromosomal interactions. The most common 2-way, 3-way, 4-way, and 5-way inter-chromosome combinations
for each chromosome are represented using motifs from fibroblasts (top, V1-V4) and B lymphocytes (bottom). Rows represent
the combinations of 2-way, 3-way, 4-way, and 5-way inter-chromosome interactions, and columns are the chromosomes. Inter-
chromosomal combinations are determined using 25 Mb resolution multi-way contacts after noise reduction (Materials and
Methods) and are normalized by chromosome length. Here we only consider unique chromosome instances (i.e. multiple loci
in a single chromosome are ignored).

2.4 Transcription Clusters

Genes are transcribed in short sporadic bursts and transcription occurs in localized areas with high concentrations of tran-
scriptional machinery [10, 11, 12]. This includes transcriptionally engaged polymerase and the accumulation of necessary
proteins, called transcription factors. Multiple genomic loci can colocalize at these areas for more efficient transcription.
In fact, it has been shown using fluorescence in situ hybridization (FISH) that genes frequently colocalize during transcrip-
tion [13]. Simulations have also provided evidence that genomic loci which are bound by common transcription factors can
self-assemble into clusters, forming structural patterns commonly observed in Hi-C data [12]. We refer to these instances
of highly concentrated areas of transcription machinery and genomic loci as transcription clusters. The colocalization of
multiple genomic loci in transcription clusters naturally leads to multi-way contacts, but these interactions cannot be fully
captured from the pairwise contacts of Hi-C. Multi-way contacts derived from Pore-C reads can detect interactions between
many genomic loci, and are well suited for identifying potential transcription clusters (Figure 6).

Using the initial criteria of chromatin accessibility and RNA Pol II binding, we identified 16,080 and 16,527 potential tran-
scription clusters from fibroblasts and B lymphocytes, respectively (Table 1, Materials and Methods). The majority of these
clusters involved at least one expressed gene (72.2% in fibroblasts, 90.5% in B lymphocytes) and many involved at least two
expressed genes (31.2% in fibroblasts, 58.7% in B lymphocytes). While investigating the colocalization of expressed genes in
transcription clusters, we found that over 30% of clusters containing multiple expressed genes had common transcription fac-
tors based on binding motifs (31.0% in fibroblasts, 33.1% in B lymphocytes) and that over half of these common transcription
factors were master regulators (56.6% in fibroblasts, 74.7% in B lymphocytes). Two example transcription clusters derived
from 3-way, 4-way, and 5-way contacts from both fibroblasts and B lymphocytes are shown in Figure 7. These example
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clusters contain at least two genes which have at least one common transcription factor.

We tested the criteria for potential transcription clusters for statistical significance (Materials and Methods). That is, we
tested whether the identified transcription clusters are more likely to include genes, and if these genes more likely to share
common transcription factors, than arbitrary multi-way contacts in both fibroblasts and B lymphocytes. We found that
the transcription clusters were significantly more likely to include ≥ 1 gene and ≥ 2 genes than random multi-way contacts
(p < 0.01). In addition, transcription clusters containing≥ 2 genes were significantly more likely to have common transcription
factors and common master regulators (p < 0.01). After testing all order multi-way transcription clusters, we also tested the
3-way, 4-way, 5-way, and 6-way (or more) cases individually. We found that all cases were statistically significant (p < 0.01)
except for clusters for common transcription factors or master regulators in the 6-way (or more) case for both fibroblasts and
B lymphocytes. We hypothesize that these cases were not statistically significant due to the fact that the large number of
loci involved in these multi-way contacts will naturally lead to an increase of overlap with genes. This increases the likelihood
that at least two genes will have common transcription factors or master regulators. Approximately half of transcription
clusters with at least two genes with common transcription factors also contained at least one enhancer locus (∼51% and
∼44% in fibroblasts and B lymphocytes, respectively) [14]. This offers even further support that these multi-way contacts
represented real transcription clusters.

Figure 6: Data-driven identification of transcription clusters. (A) A 5 kb region before and after each locus in a Pore-C
read (between red dashed lines) is queried for chromatin accessibility and RNA Pol II binding (ATAC-seq and ChIP-seq,
respectively). Multi-way contacts between accessible loci that have ≥ 1 instance of Pol II binding are indicative of potential
transcription clusters. Gene expression (RNA-seq, E1 for gene 1 and E2 for gene 2, respectively) and transcription factor
binding sites (TF1 and TF2) are integrated to determine potential coexpression and coregulation within multi-way contacts
with multiple genes. Transcription factor binding sites are queried ± 5 kb from the gene’s transcription start site (Materials
and Methods). (B) Pipeline for extracting transcription clusters (Supplementary Materials X). Genes are colored based
on the overlapping Pore-C locus, and the extended line from each gene represents the 5 kb flanking region used to query
transcription factor binding sites. (C) Schematic representation of a transcription cluster.
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Figure 7: Example transcription clusters. Six examples of potential transcription clusters are shown for fibroblasts (left)
and B lymphocytes (right) as multi-way contact motifs. Black labels indicate genes and chromosomes (bold). Red labels
correspond to transcription factors shared between ≥ 2 genes within a transcription cluster. Blue arrows indicate a gene’s
position on its respective chromosome. Multi-way contacts used for fibroblasts include all experiments (V1-V4). Examples
were selected from the set of multi-way contacts summarized in the “Clusters with Common TFs” column of Table 1.
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Order
Multi-way

Contacts

Transcription

Clusters

Clusters with

≥ 1 Gene

Clusters with

≥ 2 Genes

Clusters with

Common TFs

Clusters with

Common MRs

3
379,165 11,261 7,782 2,986 1,191 679

240,477 8,384 7,384 4,157 2,006 1,536

4
181,554 3,254 2,519 1,214 276 153

227,352 4,345 3,972 2,686 822 606

5
98,272 1,021 831 473 63 35

196,423 1,996 1,881 1,434 277 193

6+
142,575 544 477 341 24 13

1,000,231 1,802 1,727 1,419 109 67

Table 1: Summary of multi-way contacts. Multi-way contacts from fibroblasts (gray rows, V1-V4) and B lymphocytes (white
rows) are listed after different filtering criteria. Multi-way contacts are considered to be potential transcription clusters if
all loci within the multi-way contact are accessible and at least one locus has binding from RNA Pol II. These multi-way
contacts are then queried for nearby expressed genes. If a transcription cluster candidate has at least two expressed genes, we
determine whether the genes have common transcription factors (TFs) through binding motifs. From the set of transcription
clusters with common transcription factors, we calculate how many clusters are regulated by at least one master regulator
(MR).

Algorithm 1: Multi-way Contact Analysis

1: Input: Aligned Pore-C data (A), RNA-seq (R: gene expression), RNA Pol II (P: ChIP-seq), ATAC-seq (C: chromatin
accessibility), transcription factor binding motifs (B)

2: for each set of Pore-C data Al ∈ A do

3: Construct incidence matrix Hl using Algorithm 2
4: Identify transcription clusters Tlp, Tlc, and Tls using Algorithm 3
5: Calculate entropy Sl using Algorithm 4

6: end for

7: Compute hypergraph distance dij between pairs Hi and Hj with p ≥ 1 using Algorithm 5
8: Calculate the statistical significance αij for hypergraph distance dij using the permutation test in Algorithm 6.

9: Return: Hypergraph incidence matrices Hl ∈ Rn×m, hypergraph entropy Sl, potential transcription clusters Tlp,
transcription clusters Tlc, specialized transcription clusters Tls, and hypergraph distance matrix [dij ] with statistical
significance [αij ].

3 Discussion

In this work, we introduce a hypergraph framework to study higher-order chromatin structure from long-read sequence data.
We demonstrate that multidimensional genomic architecture can be precisely represented and analyzed using hypergraph the-
ory. Hypergraph representations strengthen and extend existing chromatin analysis techniques for study of TADs and intra-
and inter-chromosomal interactions. The combination of long-read technology and accurate mathematical representations
enable higher fidelity capture of the experimental system and deepen our understanding of genome architecture. Further,
using direct capture of multi-way contacts, we identified transcriptional clusters with physical proximity and coordinated
gene expression. Our framework thus enables study of explicit structure-function relationships that are observed directly
from data, eliminating the need for inference of multi-way contacts. The increased precision of hypergraph representation has
the potential to reveal patterns of higher-order differential chromatin organization between multiple cell-types, and further
presents the exciting possibility of application at the single cell-level [6, 7, 8, 15].

4 Materials and Methods

Cell culture. Primary human adult dermal fibroblasts were obtained from a donor and were maintained in Dulbecco’s
Modified Eagle Medium (DMEM) supplemented with 10% fetal bovine serum (FBS), 1X Glutamax (Thermo Fisher Scientific
cat no. 35050061) and 1X non-essential amino acid (Thermo Fisher Scientific cat no. 11140050).

Cross-linking. 2.5 million cells were washed three times in chilled 1X phosphate buffered saline (PBS) in a 50 mL centrifuge
tube, pelleted by centrifugation at 500 x g for 5 min at 4◦C between each wash. Cells were resuspended in 10 mL room

10

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted August 17, 2021. ; https://doi.org/10.1101/2021.08.15.456363doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.15.456363


temperature 1X PBS 1% formaldehyde (Fisher Scientific cat no. BP531-500) by gently pipetting with a wide bore tip, then
incubated at room temperature for 10 min. To quench the cross-linking reaction 527 µL of 2.5 M glycine was added to achieve
a final concentration of 1% w/v or 125 mM in 10.5 mL. Cells were incubated for 5 min at room temperature followed by 10
min on ice. The cross-linked cells were pelleted by centrifugation at 500 x g for 5 min at 4◦C.

Restriction enzyme digest. The cell pellet was resuspended in 500 µL of cold permeabilization buffer (10 mM Tris-HCl
pH 8.0, 10 mM NaCl, 0.2% IGEPAL CA-630, 100 µL of protease inhibitor cock-tail Roche cat no. 11836170001) and placed
on ice for 15 min. One tablet of protease inhibitor cocktail was dissolved in 1 ml nuclease free water and 100 µL from that was
added to a 500 µL permeabilization buffer. Cells were centrifuged at 500 x g for 10 min at 4◦C after which the supernatant
was aspirated and replaced with 200 µL of chilled 1.5X New England Biolabs (NEB) cutsmart buffer. Cells were centrifuged
again at 500 x g for 10 min at 4◦C, then aspirated and re-suspended in 300 µL of chilled 1.5X NEB cutsmart buffer. To
denature the chromatin, 33.5 µL of 1% w/v sodium dodecyl sulfate (SDS, Invitrogen cat no. 15553-035) was added to the
cell suspension and incubated for exactly 10 min at 65◦C with gentle agitation then placed on ice immediately afterwards.
To quench the SDS, 37.5 µL of 10% v/v Triton X-100 (Sigma Aldrich cat no. T8787-250) was added for a final concentration
of 1%, followed by incubation for 10 min on ice. Permeabilized cells were then digested with a final concentration of 1 U/µL
of NlaIII (NEB-R0125L) and brought to volume with nuclease-free water to achieve a final 1X digestion reaction buffer in
450 µL. Cells were then mixed by gentle inversion. Cell suspensions were incubated in a thermomixer at 37◦C for 18 hours
with periodic rotation.

Proximity ligation and reverse cross-linking. NlaIII restriction digestion was heat inactivated at 65◦C for 20 min.
Proximity ligation was set up at room temperature with the addition of the following reagents: 100 µL of 10X T4 DNA ligase
buffer (NEB), 10 µL of 10 mg/mL BSA and 50 µL of T4 Ligase (NEB M0202L) in a total volume of 1000 µL with nuclease-free
water. The ligation was cooled to 16◦C and incubated for 6 hours with gentle rotation.

Protein degradation and DNA purification. To reverse cross-link, proximity ligated sample was treated with 100 µL
Proteinase K (NEB P8107S-800U/ml), 100 µL 10% SDS (Invitrogen cat no. 15553-035) and 500 µL 20% v/v Tween-20 (Sigma
Aldrich cat no. P1379) in a total volume of 2000 µL with nuclease-free water. The mixture was incubated in a thermal block
at 56◦C for 18 hours. In order to purify DNA, the sample was transferred to a 15 mL centrifuge tube, rinsing the original
tube with a further 200 µL of nuclease-free water to collect any residual sample, bringing the total sample volume to 2.2 mL.
DNA was then purified from the sample using a standard phenol chloroform extraction and ethanol precipitation.

Nanopore sequencing. Purified DNA was Solid Phase Reversible Immobilization (SPRI) size selected before library
preparation with a bead ratio of 0.48X for fragments > 1.5 kb. The > 1.5 kb products were prepared for sequencing using the
protocol provided by Oxford Nanopore Technologies. In brief, 1 µg of genomic DNA input was used to generate asequencing
library according to the protocol provided for the SQK-LSK109 kit. (Oxford Nanopore Technologies, Oxford Science Park,
UK). After the DNA repair, end prep, and adapter ligation steps, SPRI select bead suspension (Cat No. B23318, Beckman
Coulter Life Sciences, Indianapolis, IN, USA) was used to remove short fragments and free adapters. A bead ratio of 1X was
used for DNA repair and end prep while a bead ratio of 0.4X was used for the adapter ligation step. Qubit dsDNA assay
(ThermoFisher Scientific, Waltham, MA, USA) was used to quantify DNA and ∼300-400 ng of DNA library was loaded
onto a GridION flow cell (version R9, Flo-MIN 106D). In total, 4 sequencing runs were conducted generating a total of 6.25
million reads (referred to as V1-V4).

Sequence processing. Reads which passed Q-score filtering (--min qscore 7, 4.56 million reads) from basecalling on the
Oxford Nanopore GridION were used as input for the Pore-C-Snakemake pipeline (https://github.com/nanoporetech/
Pore-C-Snakemake, commit 6b2f762). The pipeline maps multi-way contacts to a reference genome and stores the hyperedges
data in a variety of formats. The reference genome used for mapping was GRCh38.p13 (https://www.ncbi.nlm.nih.gov/
assembly/GCF_000001405.39/). The pairs and parquet files output from the pipeline were converted into MATLAB tables
to construct hyperedges and the cooler files were used to create the pairwise adjacency matrices (Figures 2 and Supplementary
Figure S1). The individual tables from the four sequencing runs were assigned a sequencing run label and then concatenated.
The combined tables were used as standard inputs for all downstream software processes.

Hypergraphs. A hypergraph is a generalization of a graph in which its hyperedges can join any number of nodes [16].
Hypergraphs can capture higher-order connectivity patterns and represent multidimensional relationships unambiguously
[6, 17]. In our hypergraph representation of genome architecture from Pore-C data, nodes are genomic loci, where a locus
can be a gene or a genomic region at a particular resolution (i.e. read level, 100 kb, 1 Mb, or 25 Mb bins). Contacts among
loci are represented by hyperedges, where each hyperedge can be one or many contacts. Most higher-order contacts are
unique in Pore-C data at high resolution, so for these data we considered unweighted hypergraphs (i.e. ignore the frequency
of contacts). For lower resolution (1 Mb or 25 Mb), we considered edge weights (frequency of contacts) to find the most
common intra- and inter-chromosomal contacts.
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Hypergraph filtering. When binning loci to construct hypergraphs, we performed an additional filtering step based on the
frequency of pairwise contacts within multi-way contact data. We first decomposed each multi-way contact into its pairwise
combinations at a particular resolution (bin size). From these pairwise contacts, we counted the number of times contact
was detected for a pair of loci, and identified the highest frequency locus pairs. Pairwise contacts were kept if detected above
a certain threshold number, which was set empirically at the 85th percentile of the most frequently occurring locus pairs.
For example, in fibroblast data binned at 1 Mb resolution, a locus pair with six detected contacts corresponded to the 85th

percentile. Thus all pairs of loci with fewer than six detected contacts were not considered, which increases confidence in the
validity of identified multi-way contacts.

Incidence matrices. An incidence matrix of the genomic hypergraph is an n ×m matrix, where n is the total number of
genomic loci, and m is the total number of unique Pore-C contacts (including self-contacts, pairwise contacts, and higher-
order contacts). For each column of the incidence matrix, if the genomic locus i is involved in the corresponding Pore-C
contact, the ith element of the column is equal to one. If not, it is equal to zero. Thus, nonzero elements in a column show
adjacent genomic loci, and the value of nonzero elements is the order of the Pore-C contact. The incidence matrix of the
genomic hypergraph can be visualized via PAOHvis [18]. In PAOHvis, genomic loci are parallel horizontal bars, while Pore-C
contacts are vertical lines that connects multiple loci (see Figures 1, 2, 3, and 4). Beyond visualization, incidence matrices
play a significant role in the mathematical analysis of hypergraphs.

Data-driven identification of transcription clusters. We use Pore-C data in conjunction with multiple other data
sources to identify potential transcription clusters (Figure 6). Each locus in a Pore-C read, or multi-way contact, is queried
for chromatin accessibility and RNA Pol II binding (ATAC-seq and ChIP-seq peaks, respectively). Multi-way contacts are
considered to be potential transcription clusters if all loci within the multi-way contact are accessible and at least one locus
has binding from RNA Pol II. These multi-way contacts are then queried for nearby expressed genes. A 5 kb flanking region
is added before and after each locus when querying for chromatin accessibility, RNA Pol II binding, and nearby genes [19].
Gene expression (RNA-seq) and transcription factor binding sites are integrated to determine coexpression and coregulation
of genes in multi-way contacts. If a transcription cluster candidate has at least two genes present, we determine whether
the genes have common transcription factors through binding motifs. From the set of transcription clusters with common
transcription factors, we calculate how many clusters are regulated by at least one master regulator, a transcription factor
that also regulates its own gene (Figure 6).

Transcription factor binding motifs. Transcription factor binding site motifs were obtained from “The Human Tran-
scription Factors” database [20]. FIMO (https://meme-suite.org/meme/tools/fimo) was used to scan for motifs within ±
5kb of the transcription start sites for protein-coding and microRNA genes. The results were converted to a 22, 083× 1, 007
MATLAB table, where rows are genes, columns are transcription factors, and entries are the number of binding sites for
a particular transcription factor and gene. The table was then filtered to only include entries with three or more binding
sites in downstream computations. This threshold was determined empirically and can be adjusted by simple changes to the
provided MATLAB code.

Public data sources. Pore-C data for B lymphocytes were downloaded from Ulahannan et al. [5]. ATAC-seq and ChIP-seq
data were obtained from ENCODE to assess chromatin accessibility and RNA Pol II binding, respectively. These data were
compared to read-level Pore-C contacts to determine whether colocalizing loci belong to accessible regions of chromatin and
had RNA Pol II binding for both fibroblasts and B lymphocytes. RNA-seq data were also obtained from ENCODE to ensure
that genes within potential transcription factories were expressed in their respective cell types. A summary of these data
sources can be found in Table 2.

Data Type Cell Type Data Description and Source

Pore-C Fibroblasts Human primary dermal fibroblasts were derived from a donor skin biopsy

Pore-C GM12878 B-lymphocyte Pore-C data obtained from Ulahannan et al. [5]

ATAC-seq IMR-90 Fibroblast chromatin accessibility (ENCFF310UDS)

ATAC-seq GM12878 B-lymphocyte chromatin accessibility data (ENCFF410XEP)

ChIP-seq IMR-90 Fibroblast RNA Polymerase II binding data (ENCFF676DGR)

ChIP-seq GM12878 B-lymphocyte RNA Polymerase II binding data (ENCFF912DZY)

RNA-seq IMR-90 Fibroblast gene expression data averaged over two replicates (ENCFF353SBP, ENCFF496RIW)

RNA-seq GM12878 B-lymphocyte gene expression data averaged over two replicates (ENCFF306TLL, ENCFF418FIT)

Enhancers IMR-90 Fibroblast enhancer location data from EnhancerAtlas 2.0 [14]

Enhancers GM12878 B-lymphocyte enhancer location data from EnhancerAtlas 2.0 [14]

Table 2: Data sources. Data obtained from ENCODE unless otherwise specified [21].
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Hypergraph Entropy. Network entropy often is used to measure the connectivity and regularity of a network [22, 23].
We use hypergraph entropy to quantify the organization of chromatin structure from Pore-C data, where higher entropy
corresponds to less organized folding patterns (e.g. every genomic locus is highly connected). There are different definitions
of hypergraph entropy [8, 24, 25]. In our analysis, we exploit the eigenvalues of the hypergraph Laplacian matrix and fit
them into the Shannon entropy formula [25]. In mathematics, eigenvalues can quantitatively represent different features of a
matrix [26]. Denote the incidence matrix of the genomic hypergraph by H. The Laplacian matrix then is an n-by-n matrix
(n is the total number of genomic loci in the hypergraph), which can be computed by L = HH> ∈ Rn×n, where > denotes
matrix transpose. Therefore, the hypergraph entropy is defined by

Hypergraph Entropy = −
n∑
i=1

λi lnλi, (1)

where λi are the normalized eigenvalues of L such that
∑n
i=1 λi = 1, and the convention 0 ln 0 = 0 is used. Biologically,

genomic regions with high entropy are likely associated with high proportions of euchromatin, as euchromatin is more
structurally permissive than heterochromatin [27, 28].

We computed the entropy of intra-chromosomal genomic hypergraphs for both fibroblasts and B lymphocytes as shown in
Figure S2. It is expected that larger chromosomes have larger hypergraph entropy because more potential genomic interac-
tions occur in the large chromosomes. However, there are still subtle differences between the fibroblasts and B lymphocytes
chromosomes, indicating differences in their genome structure. In order to better quantify the structure properties of chro-
mosomes and compare between cell types, it may be useful to introduce normalizations to hypergraph entropy in the future.

Hypergraph Distance. Comparing graphs is a ubiquitous task in data analysis and machine learning [29]. There is a
rich body of literature for graph distance with examples such as Hamming distance, Jaccard distance, and other spectral-
based distances [29, 30, 31]. Here we propose a spectral-based hypergraph distance measure which can be used to quantify
global difference between two genomic hypergraphs G1 and G2 from two cell lines. Denote the incidence matrices of two
genomic hypergraphs by H1 ∈ Rn×m1 and H2 ∈ Rn×m2 , respectively. For i = 1, 2, construct the normalized Lapalacian
matrices:

L̃i = I−D
− 1

2
i HiE

−1
i H>i D

− 1
2

i ∈ Rn×n, (2)

where I ∈ Rn×n is the identity matrix, Ei ∈ Rmi×mi is a diagonal matrix containing the orders of hyperedges along its
diagonal, and Di ∈ Rn×n is a diagonal matrix containing the degrees of nodes along its diagonal [32]. The degree of a node is
equal to the number of hyperedges that contain that node. Therefore, the hypergraph distance between G1 and G2 is defined
by

Hypergraph Distance(G1,G2) =
1

n
(

n∑
i=1

|λ1j − λ2j |p)
1
p , (3)

where λij is the jth eigenvalue of L̃i for i = 1, 2, and p ≥ 1. In our analysis, we choose p = 2. The hypergraph distance (3)
can be used to compare two genomic hypergraphs in a global scale since the eigenvalues of the normalized Laplacian are able
to capture global connectivity patterns within the hypergraph.

We computed the distance between the two genome-wide hypergraphs derived from fibroblasts and B lymphocytes, and
examined the distance statistically through a permutation test. Figure S3A demonstrates that the two genomic hypergraphs
are significantly different, with a p-value < 0.01. Additionally, we computed the distance between intra-chromosomal genomic
hypergraphs between fibroblasts and B lymphocytes. We found that Chromosome 19 and 21 have the largest distances between
cell types, as seen in Figure S3B.

Statistical Significance via Permutation Test. In order to assess the statistical significance of the transcription cluster
candidates we determined using our criteria (Figure 6), we use a permutation test which builds the shape of the null hypothesis
(i.e. the random background distribution) by resampling the observed data over N trials. We randomly select n 3rd, 4th,
and 5th order multi-way contacts from our Pore-C data, where n is based on the number of transcription cluster candidates
we determined for each order using our criteria. For example, we randomly selected n = 11, 261 multi-way contacts from
the set of 3rd order multi-way contacts in fibroblasts (Table 1). For each trial, we determine how many of these randomly
sampled “transcription clusters” match our remaining criteria: transcription clusters with ≥ 1 gene, ≥ 2 genes, common
TFs, and common MRs. The background distribution for each of the criteria can then be constructed from these values.
The proportion of values in these background distributions that are greater than their counterparts from the data-derived
transcription cluster candidates yields the p-value. For this analysis, we chose N = 1, 000 trials. This analysis is based on
the assumption that transcription clusters will be more likely to contain genes and that those genes are more likely to have
common transcription factors than arbitrary multi-way contacts.

Similarly, we use a permutation test to determine the significance of the measured distances between two hypergraphs.
Suppose that we are comparing two hypergraphs G1 and G2. We first randomly generate N number of hypergraph {Ri}Ni=1
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that are similar to G1 (“similar” means similar number of node degree and hyperedge size distribution). The background
distribution therefore can be constructed by measuring the hypergraph distances between G1 and Ri for i = 1, 2, . . . , N . The
proportion of distances that are greater than the distance between G1 and G2 in this background distribution yields the
p-value. For this analysis, we again chose N = 1, 000 trials.

5 Code and Data Availability

All data generated within this manuscript and MATLAB code in our computational framework can be provided upon
request.
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8 Supplementary Materials

Algorithm 2: Hypergraph incidence matrix construction

1: Input: Aligned Pore-C data
2: for each multi-way contact j do
3: if multi-way contact contains locus i then
4: H(i, j) = 1
5: else
6: H(i, j) = 0
7: end if
8: end for
9: Return: Hypergraph incidence matrix H ∈ Rn×m where n is the total number of loci, and m is the total number of

multi-way contacts.

Algorithm 3: Identification of Transcription Clusters

1: Input: Hypergraph incidence matrix H, gene expression R (RNA-seq), RNA Pol II P (ChIP-seq), chromatin
accessibility C (ATAC-seq), transcription factor binding motifs B

2: for each multi-way contact j in H do
3: if all loci are accessible from C and ≥ 1 locus has Pol II binding from P then
4: multi-way contact j from H is added to the set of potential transcription clusters Tp

5: end if
6: end for
7: for each potential transcription cluster k in Tp do
8: if loci contain ≥ 2 expressed genes from R which have ≥ 1 common TFs from B then
9: multi-way contact k from Tp is added to the set of transcription clusters Tc

10: end if
11: if loci contain ≥ 2 expressed genes from R which have ≥ 1 common MRs from B then
12: multi-way contact k from Tp is added to the set of transcription clusters Ts

13: end if
14: end for
15: Return: Potential transcription clusters Tp, transcription clusters Tc, and specialized transcription clusters Ts

Algorithm 4: Hypergraph Entropy [25]

1: Input: Hypergraph incidence matrix H ∈ Rn×m
2: Construct the hypergraph Laplacian matrix L = HH> ∈ Rn×n
3: Compute the eigenvalues λi of L using eigendecomposition
4: Normalize the eigenvalues λ̄j =

λj∑n
i=1 λi

5: Compute the hypergraph entropy

S = −
∑
j

λ̄j ln λ̄j

6: Return: Hypergraph entropy S.
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Algorithm 5: Comparing Hypergraphs

1: Input: Two hypergraph G1 and G2 with incidence matrices H1 ∈ Rn×m1 and H2 ∈ Rn×m2

2: Construct the normalized hypergraph Laplacian matrices

L̃i = I−D
− 1

2
i HiE

−1
i H>i D

− 1
2

i ∈ Rn×n,

where I ∈ Rn×n is the identity matrix, Ei ∈ Rmi×mi is a diagonal matrix containing the orders of hyperedges along its
diagonal, and Di ∈ Rn×n is a diagonal matrix containing the degrees of nodes along its diagonal, for i = 1, 2 [32].

3: Compute the hypergraph distance

d =
1

n

(
n∑
i=1

|λ1j − λ2j |p
) 1

p

,

where λij is the jth eigenvalue of L̃i for i = 1, 2, and p ≥ 1.
4: Return: Hypergraph distance d between G1 and G2.

Algorithm 6: Permutation Test for Hypergraph Distance

1: Input: Two hypergraph G1 and G2, a prescribed significant level α
2: Null hypothesis H0: G1 and G2 are similar, and alternative hypothesis H1: G1 and G2 are dissimilar
3: Randomly generate N number of hypergraph {Ri}Ni=1 that are similar to G1 (“similar” means similar number of node

degree and hyperedge size distribution)
4: Construct the the background distribution by measuring the hypergraph distances between G1 and Ri for i = 1, 2, . . . , N
5: Compute the actual hypergraph distance between G1 and G2

6: Obtain the p-value by calculating the proportion of distances that are greater than the actual distance in the
background distribution

7: if p-value ≤ α then
8: Reject the null hypothesis H0

9: end if
10: Return: Permutation test result of whether G1 and G2 are similar or dissimilar.

Algorithm 7: Identification of Transcription Clusters with Enhancers

1: Input: Hypergraph incidence matrix H, gene expression R (RNA-seq), RNA Pol II P (ChIP-seq), chromatin
accessibility C (ATAC-seq), enhancer locations E, transcription factor binding motifs B

2: for each multi-way contact j in H do
3: if all loci are accessible from C and ≥ 1 locus has Pol II binding from P then
4: multi-way contact j from H is added to the set of potential transcription clusters Tp

5: end if
6: end for
7: for each potential transcription cluster k in Tp do
8: if loci contain ≥ 2 expressed genes from R which have ≥ 1 common TFs from B and ≥ 1 enhancer from E then
9: multi-way contact k from Tp is added to the set of transcription clusters Tc

10: end if
11: if loci contain ≥ 2 expressed genes from R which have ≥ 1 common MRs from B and ≥ 1 enhancer from E then
12: multi-way contact k from Tp is added to the set of transcription clusters Ts

13: end if
14: end for
15: Return: Potential transcription clusters Tp, transcription clusters Tc, and specialized transcription clusters Ts
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9 Supplementary Figures

Figure S1: Local organization of the genome. (A) Incidence matrix visualization of a region in Chromosome 22 from B
lymphocytes. The numbers in the left column represent genomic loci, vertical lines represent multi-way contacts, where
nodes indicate the corresponding locus’ participation in this contact. The blue and yellow regions represent two TADs, T1
and T2. The six contacts, denoted by the labels i-vi, are used as examples for hypergraph and genomic folding pattern
visualizations. (B) Hypergraph visualization of the multi-way contacts i-vi from A. Blue and yellow labels indicate which
TADs these loci participate in. (C) Contact frequency matrices were constructed by separating all multi-way contacts within
and between the two TADs into their pairwise combinations. Example multi-way contacts are superimposed onto contact
frequency matrices. All multi-way contacts in this figure were determined in 100 kb resolution after noise reduction (Materials
and Methods).
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Figure S2: Entropy of intra-chromosomal genomic hypergraph for fibroblast and B lymphocytes.

Figure S3: Hypergraph distance between two genome-wide hypergraphs derived from fibroblast and B lymphocytes. (A)
Background distribution formed by measuring the hypergraph distances between the hypergraph derived from fibroblast and
random hypergraphs. The actual distance between two genome-wide hypergraphs is also highlighted in red with a p-value ¡
0.01. (B) Hypergraph distances between intra-chromosomal genomic hypergraphs between fibroblasts and B lymphocytes.
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10 Supplementary Tables

File Type Description

.fastq
Text file which contains unique identifiers for Pore-C reads and the raw sequences
contained within each read

.pairs
Text file which contains pairs of aligned genomic loci at base-pair resolution, which
can be grouped together using unique identifiers to construct multi-way contacts

.parquet
Text file which contains aligned multi-way contacts at base-pair resolution, restric-
tion fragment assignments, and indicators for the quality of read alignment

.mcool
Binary storage file which contains pair-wise interactions from Pore-C data at mul-
tiple resolutions

Table S1: Descriptions of file types used within the computational framework (Figure 1).

Order
Multi-way

Contacts

Transcription

Clusters

Clusters with

≥ 2 Genes

Clusters with

≥ 1 Enhancer

Clusters with

Common TFs

Clusters with

Common MRs

3
379,165 11,261 2,986 2,914 715 336

240,477 8,384 4,157 3,487 1,092 739

4
181,554 3,254 1,214 1,208 80 34

227,352 4,345 2,686 2,387 270 168

5
98,272 1,021 473 467 8 6

196,423 1,996 1,434 1,315 53 32

6+
142,575 544 341 341 1 0

1,000,231 1,802 1,419 1,343 7 2

Table S2: Summary of multi-way contacts with enhancers. Multi-way contacts from fibroblasts (gray rows, V1-V4) and
B lymphocytes (white rows) are listed after different filtering criteria. Multi-way contacts are considered to be potential
transcription clusters if all loci within the multi-way contact are accessible and at least one locus has binding from RNA Pol
II. These multi-way contacts are then queried for nearby expressed genes. If a transcription cluster candidate has at least
two expressed genes and at least one enhancer locus, we determine whether the genes have common transcription factors
(TFs) through binding motifs. From the set of transcription clusters with common transcription factors, we calculate how
many clusters are regulated by at least one master regulator (MR).
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Chr 1 2 3 4 5 6 7 8 9 10+
1 230 8,333 14,492 5,501 2,093 872 353 133 54 57
2 241 9,183 15,548 6,180 2,373 873 437 197 71 95
3 198 7,113 13,631 5,113 1,909 750 302 132 57 50
4 190 6,342 11,147 4,360 1,642 598 284 113 56 28
5 179 5,785 10,059 3,897 1,457 640 249 106 39 31
6 167 5,361 9,368 3,551 1,364 511 207 75 39 27
7 159 4,851 8,365 3,258 1,274 453 180 72 35 26
8 143 4,321 7,596 2,864 1,069 393 154 71 32 16
9 122 2,722 4,899 1,831 614 209 76 31 8 6
10 134 4,010 7,185 2,695 912 337 144 63 23 14
11 133 3,698 6,613 2,533 890 330 101 62 14 14
12 132 3,815 6,630 2,497 878 324 114 47 17 12
13 97 2,627 4,767 1,751 588 247 82 37 11 8
14 87 2,209 3,932 1,366 509 140 51 19 10 2
15 82 1,623 2,812 991 298 98 29 16 2 1
16 80 1,650 3,126 1,181 363 127 39 11 5 2
17 82 1,345 2,374 732 201 66 20 4 3 2
18 77 1,828 3,230 1,128 368 149 51 16 10 4
19 56 873 1,455 462 118 41 7 3 0 0
20 64 1,247 2,238 783 222 69 27 6 3 0
21 39 453 809 264 79 18 6 1 0 0
22 39 438 728 206 43 13 3 0 1 0
X 151 1,078 1,852 882 350 119 43 17 10 0
Y 23 70 93 25 6 4 0 0 0 0

Table S3: Fibroblast intra-chromosome contact orders (1 Mb resolution).

Chr 1 2 3 4 5 6 7 8 9 10+
1 232 4,725 17,254 16,396 10,752 6,836 4,248 2,663 1,652 3,130
2 243 4,964 16,695 16,702 11,787 7,891 5,172 3,432 2,288 4,631
3 199 4,055 16,351 14,795 9,846 6,376 4,023 2,691 1,759 3,293
4 191 3,725 13,399 13,309 9,192 6,218 4,081 2,632 1,698 3,301
5 180 3,449 12,352 12,458 8,799 5,810 3,672 2,358 1,548 2,728
6 171 3,300 11,249 11,640 7,862 5,307 3,235 2,139 1,376 2,486
7 160 3,086 11,350 11,272 7,758 5,101 3,223 2,213 1,391 2,613
8 145 2,895 10,755 10,608 7,333 4,778 3,141 2,068 1,289 2,477
9 124 2,399 9,360 8,535 5,847 3,802 2,393 1,572 931 1,753
10 134 2,580 9,429 9,273 6,203 4,113 2,576 1,632 1,020 1,856
11 134 2,505 8,979 8,661 5,795 3,629 2,250 1,408 852 1,530
12 134 2,376 8,329 8,200 5,465 3,449 2,192 1,344 833 1,304
13 99 1,763 6,665 6,527 4,585 2,935 1,834 1,078 635 1,159
14 89 1,531 5,909 5,884 3,863 2,236 1,430 858 514 843
15 85 1,349 5,064 5,130 3,354 1,964 1,164 706 372 582
16 83 1,444 5,993 5,722 3,769 2,437 1,419 808 494 813
17 84 1,355 4,278 4,294 2,612 1,514 882 475 271 366
18 80 1,478 6,015 5,569 3,616 2,359 1,380 861 549 840
19 57 884 3,335 3,251 1,998 1,141 664 383 224 252
20 65 1,053 4,344 4,149 2,684 1,656 902 547 315 441
21 40 481 2,285 2,245 1,392 747 402 235 96 127
22 39 445 1,739 1,795 1,098 512 255 127 59 72
X 156 3,681 12,552 11,686 8,206 5,915 3,941 2,738 1,950 4,414

Table S4: GM12878 intra-chromosome contact orders (1 Mb resolution).
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