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We report on the first systematic ground-based validation of DMSP-OLS night 
lights imagery to detect rural electrification in the developing world. Drawing 
upon a unique survey of villages in Senegal and Mali, this study compares 
nighttime light output from the U.S. Air Force Defense Meteorological Satellite 
Program’s Operational Linescan System (DMSP-OLS) against ground-based 
survey data on electricity use in 232 electrified villages and additional 
administrative data on 899 unelectrified villages. The analysis reveals that 
electrified villages are consistently brighter than unelectrified villages across 
annual composites, monthly composites, and a time series of nightly imagery. 
Electrified villages appear brighter because of the presence of streetlights and 
brighter villages tend to have more streetlights. By contrast, the correlation with 
household electricity use and access is low. Villages with more streetlights are 
brighter than those with fewer streetlights. We further demonstrate that a 
detection algorithm using data on nighttime light output and the geographic 
location of settlements can accurately classify electrified villages.  This research 
highlights the potential to use night lights imagery for the planning and 
monitoring of ongoing efforts to connect the 1.4 billion people who lack 
electricity around the world.  
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1. Introduction 
Satellite imagery of nighttime lights provide a unique perspective on the distribution 
and location of the world’s electrified settlements. Earlier studies have reported on the 
ability of the U.S. Air Force Defense Meteorological Satellite Program’s Operational 
Linescan System (DMSP-OLS) to detect bright lights from cities, fires, gas flares, and 
heavily lit fishing boats (Croft 1978, Elvidge et al. 1997b). Several studies have now 
shown that nighttime light output strongly correlates with electricity generating capacity 
and economic activity at the regional and national levels (Elvidge et al. 1997b,  De 
Souza Filho 2004, Doll et al. 2006, Sutton et al. 2007, Kiran Chand et al. 2009, Ghosh 
et al. 2010, Henderson et al. 2012). To date, most studies have been conducted either in 
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the industrialized world or in urban environments (Elvidge et al. 1997a, Imhoff et al. 
1997, Small et al. 2005, Sutton et al. 2010, Small et al. 2011) where nighttime light 
output is generally high and consistent over time.  However, there is little systematic 
knowledge about the properties of DMSP-OLS in detecting electrification in rural 
settings in the developing world. This is a significant gap since these are areas in which 
ground-based data collection is most sparse and difficult to collect.  Moreover, the vast 
majority of the 1.4 billion people who lack access to electricity are assumed to be 
concentrated in rural areas (International Energy Agency 2012), though their precise 
distribution is not well known in many countries (for a related approach, see Elvidge et 
al. 2010 and Min 2012). This research provides the first systematic evaluation of 
DMSP-OLS nighttime imagery to detect rural electrification in the developing world 
where electricity use is characterized by low power loads, small numbers of dispersed 
users, limited infrastructure, and erratic service provision.   

This study presents results from a systematic comparison of ground-based 
survey data collected in May and June 2011 across 202 electrified villages in Senegal 
and 30 electrified villages in Mali.  Additional administrative data were also collected 
for 800 unelectrified villages in Senegal and 99 more in Mali.  Senegal is located on the 
western coast of Africa with a population of 13 million citizens and a per capita income 
estimated to be $1,070. Its household electrification rate in 2008 was 42%, with 75% in 
urban areas and 18% in rural areas (Sarr 2011). Neighboring Senegal to the east, Mali is 
home to about 15 million people spread across a vast territory nearly twice the size of 
France. Its per capita income is $610 and the rural electrification rate in 2009 is 
estimated at 13%, up from 1% in 2006 (Agalassou 2011). The study therefore provides 
data in low income settings with limited rural access to electricity, typical conditions in 
much of the developing world.   By comparing ground-based data against annual and 
monthly nighttime satellite imagery composites and a time series of nightly imagery, we 
evaluate the reliability of satellite imagery in detecting access to electricity across a 
diverse range of rural settings.   

The analysis reveals that electrified villages are consistently brighter than 
unelectrified villages across various nighttime image products. The survey results show 
that electrified villages appear brighter because of the presence of streetlights but that 
the correlation of light output with household electricity use and access is low. Villages 
with more streetlights are brighter than those with fewer streetlights. We further 
demonstrate that a detection algorithm using data on nighttime light output and the 
geographic location of settlements can accurately classify electrified villages. Overall, 
while acknowledging some limitations, the findings support the viability of monitoring 
electrification projects from satellite imagery.    

Section 2 of this paper describes the DMSP-OLS sensor and data processing that 
creates imagery of the earth at night. Section 3 summarizes our research methodology, 
in which we conducted parallel data collection by ground teams and by satellite across 
hundreds of villages.  Section 4 describes our key results before concluding. 

2. Description of DMSP-OLS Nighttime Satellite Imagery  
Since the 1970s, satellites from the U.S. Air Force Defense Meteorological Satellite 
Program's Operational Linescan System (DMSP-OLS) have flown in polar orbit 
capturing high-resolution images of the entire earth every day and night. From an 
altitude of 830 km above the earth, these images reveal concentrations of outdoor lights, 
fires, and gas flares at a fine resolution of 0.56 km. On-board averaging of 5 by 5 blocks 
of fine data produces “smoothed” data with a nominal spatial resolution of 2.7 km. 



Technically, the low-light sensing capabilities of the OLS permit the detection of 
radiances down to 10-9 W/cm2/sr/μm (Elvidge et al. 2007).  

The subset of nighttime imagery captured in the late evening hours provide an 
unusually rich perspective on human activity, as it reveals the use of electricity for 
outdoor lighting. To date, the most widely analyzed data products are a series of annual 
composite images, currently available from 1992 to 2010 (Elvidge et al. 1997a, Imhoff 
et al. 1997, Elvidge et al. 2001). These are created by overlaying all images captured 
between 20:00 and 21:30 local time during a calendar year, dropping images where 
lights are shrouded by cloud cover or overpowered by the aurora or solar glare, and 
removing ephemeral lights like fires and other visual noise.1 The time stable annual 
composites generated by NGDC’s image processing algorithms are useful for many 
purposes. However, the screening process to remove pixels with ephemeral light output 
may be a constraint on efforts to detect electricity provision in rural areas of the 
developing world where electricity access is known to be subject to erratic power 
outages and planned load shedding.  

  Figure 1 shows an annual composite image of stable night lights in Africa for 
2009. The brightness of each pixel is encoded with a digital number on a relative 6-bit 
scale from 0 to 63. These are relative values and are affected by the gain settings on the 
image capture device. The gain levels are set automatically on-board the satellite and 
are not recorded in the data stream. As a result, variations in pixel brightness values 
over a series of nightly images can result from changes in gain settings as well as 
changes in light-generating activities on the ground.  

Some prior research has documented that the DMSP sensors can capture 
concentrated light output from very small areas. For example, individual large fishing 
boats used for squid-fishing are visible off the Japanese coast. These boats, weighing 
between 60 and 100 tons, can be equipped with as many as 50 incandescent lamps with 
an average power of 3,500 watts per lamp in order to attract squids in the dark. A single 
well-lit boat can be seen in DMSP imagery (Croft 1978).  Other research has found that 
lights from U.S. towns with populations as low as 130 can be seen in the DMSP 
imagery (Elvidge et al. 2001).   

In the developing world, however, little research exists to document whether 
night-time satellite imagery can reliably detect electrification. While cities and large 
towns are easy to detect because of the overall intensity and concentration of outdoor 
lighting, it is not known whether satellite imagery can reliably detect electricity 
availability and use in smaller village settings.  

The challenge is complicated by the satellite’s technical limitations which do not 
enable it to detect light output if it is below the threshold of detection. Especially in the 
developing world, rural electrification is characterized by low power loads distributed 
across small numbers of users, and often dispersed widely across space. An electrified 
village might not be detectable simply because it does not generate enough light output 
at night to be detectable by the sensor.  But it is also complicated by the realities of rural 
electrification in much of the developing world. Electrified villages may or may not 
have outdoor street lighting, and when they do, streetlights are often dim using low 
wattage designs.  
 

                                                 

1 The geographic extent of usable DMSP data is -65 to +65 latitude. This results in missing data 
for portions of the world within the Arctic and Antarctic circles. These regions are estimated 
to be home to only about 0.0005% of the global population. 
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Classifying a village as electrified or not is rarely straightforward. In the 
developing world, villages vary widely in the intensity, concentration, and levels of 
electricity use. In India, for example, villages were once considered “electrified” so long 
as there was any use of electricity, including a single electrified pumpset or irrigation 
system. Thus it was possible for a village to be classified as electrified even without a 
single lightbulb working in any given home. That definition changed in 2005 and now 
requires at least 10% of households to be connected and the provision of electricity to 
public places like schools and the village administrative office. One result of the change 
in definitions was a substantial drop in the official number of electrified villages in 
India.2  

Assuming a consistent definition, conventional statistics imply that once a 
village is electrified, it stays electrified. Yet the benefits of electricity depend on 
whether power is flowing through the lines. Power outages are common across much of 
the developing world, especially in rural areas. In 2007, power outages occurred every 
other day in the Democratic Republic of Congo, 50 days a year in Senegal, and 20 days 
a year in Mali.3  Even within the same country, the frequency and length of outages can 
vary substantially (see Min 2012 for a study of India). In some cases, load shedding 
follows predictable schedules in order to manage excess demand. Unplanned outages 
can also occur during spikes in demand or as a result of short circuits and equipment 
failures.  

As people adapt and incorporate electricity into their daily lives, the effects of 
power outages can feel harsh. As one respondent in a recently electrified village 
lamented, “Now when there is a blackout, the village seems even darker than before!” 
The severity of power outages means that even in electrified areas, those who can afford 
it continue to rely on private diesel generators, car batteries, and other solutions to meet 
their energy needs (Eberhard et al. 2011, p. 7). 

Accurately tracking access to electricity in rural areas is thus a challenging 
enterprise.  Typically, that task falls to rural electrification agencies and national 
regulators with limited resources. Given the high cost and logistical difficulty of 
regularly sending teams to dispersed villages, satellite imagery may provide a powerful 
and cost-effective tool to monitor power availability. 

Figure 2 illustrates the ability of satellite imagery to detect rural electrification 
from space. The top image shows ASER’s electrification plan for Rao, a village of 2000 
people located 20 km from Saint Louis in Senegal.4 The location of 71 outdoor 
streetlights are highlighted by large red markers. The lower image shows annual 
average nighttime light output from Rao, observed by satellite in 2009.  Overall, light 
output corresponds well with the roughly southwest to northeast axis of the village.  By 
contrast, the same region observed by satellite in 1997 shows no nighttime light output 
from Rao. 
 

[FIGURE 2 ABOUT HERE] 
                                                 

2 Government of India Ministry of Power. 2005. RGGVY brochure  
<http://recindia.gov.in/download/rggvy_brochure.pdf>.  

3 World Bank Enterprise Survey Database 2008. Cited in Anton Eberhard et al. 2011. Africa’s 
Power Infrastructure. World Bank: Washington, DC. 

4 Rao was electrified by SENELEC around 2000, prior to the creation of ASER. The map was 
created in 2007 to support a grid extension project in Rao. 



 
While suggestive, Rao is only a single example. How reliably and consistently can 

nighttime satellite imagery detect other electrified villages? Can a village with fewer 
streetlights be detected? What if the village is electrified but has no streetlights? Are 
annual average imagery the best way to detect electrified villages? Or can they be 
distinguished even in a single nightly image capture? The following sections describe 
the strategy for evaluating these questions and present our key findings.  
 

3. Methodology 
The goal of the project was to evaluate the reliability of DMSP-OLS imagery in 
detecting the availability and use of electricity in rural areas in the developing world. 
Our primary study zone was Senegal and Mali.  To study the relationship between 
electricity use at the village-level against light output captured by satellite, we collected 
survey data collected in May and June 2011 against a range of nighttime satellite 
imagery products, including images captured on the same day that surveys were 
administered. Our study provides the first comprehensive comparison of nighttime 
lights satellite imagery against ground measurements of village electrification in the 
developing world. The project was implemented in close partnership with the Agence 
Sénégalaise d'Electrification Rurale (ASER) and the Agence Malienne pour le 
Développement de l'Energie Domestique et l'Electrification Rurale (AMADER). 

3.1 Survey of Electrified Villages in Senegal and Mali 
In both Senegal and Mali, we fielded survey teams to collect ground-based data on the 
use of electricity across a large number of villages.  In Senegal, the survey was 
administered by ASER staff from June 1 to June 10, 2011, covering over 360 villages. 
About 25 surveyors were deployed in teams across Senegal. In Mali, the survey was 
administered from May 21 to May 28, 2011 across 30 villages by staff from MFC 
Nyetaa.  

The sampled villages were chosen to be representative of the range of conditions 
that characterize electrified villages in the respective countries. We did not administer 
surveys in unelectrified villages. Since the primary goal was to collect data on the range 
of electricity use in villages and not necessarily to identify national patterns, we did not 
pursue the goal of drawing a nationally representative sample of villages. Instead, we 
used a two-stage selection design. The first step divided the country into regions. Then 
within each region, villages were selected largely via convenience sampling.  Given 
time and process constraints, villages were selected so as to be relatively accessible by 
automobile or motorcycle.  

In each village, a pair of surveyors interviewed a knowledgeable village leader 
using a standardized survey form. A copy of the survey questionnaire can be found in 
the Appendix. In Senegal, the survey respondent was usually the village chief. In Mali, 
the respondent was usually the local AMADER operator. The survey took about 30-45 
minutes to administer.  

The surveys collected information about the use of electricity in each village. 
Questions asked when the village was electrified, how many homes have access to 
electricity, how many streetlights are in the village, how many hours of power are 
available, the frequency of power outages, and opinions about the quality of electricity 
service.  In addition, background information about population size and local economic 
conditions were also collected. In each village, the geographic coordinates of the village 



center and the brightest outdoor evening location were recorded using handheld GPS 
coordinates.  

To enable broader statistical analysis, we also collected some administrative data 
on the location and characteristics of unelectrified villages in Senegal and Mali.  Due to 
time and budget constraints, these villages were not surveyed on the ground. As a result, 
we rely on their estimates of village locations, which were collected in various ways, 
including comparisons against paper maps. As a result, the geographic coordinates of 
unelectrified villages may not be as precise as those of the surveyed villages. We 
include these unelectrified villages in some of the analysis below.  In the discussion 
below, we call the group of surveyed electrified villages our “treatment group” and this 
set of unelectrified villages the “control group.” 

To enable comparison against nighttime imagery, we needed to know the 
location of all villages.  In Senegal, our surveyors mapped the precise location of 202 
electrified villages. Surveyors used handheld GPS units to record the location of the 
brightest part of the village at night, as identified by the respondent. Coordinates were 
recorded in WGS 1984 UTM Zone 28N meter coordinates. We used ArcGIS 10 to 
reproject the locations into the WGS 1984 latitude/longitude geographic coordinate 
system. 

For unelectrified villages, ASER provided administrative records of the 
locations of about 7000 unelectrified villages. Because this file had been created at 
some earlier period, we discovered that some of these villages appeared on other more 
recent lists of electrified villages. To avoid using misclassified villages, we further 
limited the list of unelectrified villages to those at least 5 km away from an electrified 
village. From this set, we selected a random sample of 800 villages to create a “control” 
group of unelectrified villages.  

In Mali, surveyors used GPS units to record the latitude and longitude 
coordinates of all 30 surveyed villages. To create a control group, we drew randomly 
from a list of unelectrified villages provided by AMADER. Limiting the selection to 
villages at least 10 km away from the nearest electrified village, the control group 
comprises 99 unelectrified villages. Figures 3 and 4 show the location of all surveyed 
villages, as well as unelectrified villages in the control groups, for both Senegal and 
Mali. 
 

[FIGURE 3 ABOUT HERE] 
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3.2 Analysis of Nighttime Satellite Imagery 
We acquired a range of nighttime satellite imagery covering all of Senegal and Mali. 
The images come from the following products developed and archived by NOAA’s 
National Geophysical Data Center: 
  

• 2009 DMSP F16 annual composite of stable lights (single image)  
• 2009 DMSP F16 annual composite of average lights (single image) 
• April 2011 DMSP F18 monthly composite of average lights (single image) 
• May 2011 DMSP F18 monthly composite of average lights (single image) 
• April 18 – June 15, 2011 DMSP F18 nightly visible lights (142 image orbits) 

 
From each image, we used information on the geographic coordinates of village 
locations to extract the encoded brightness level from each set of nighttime satellite 



imagery. The satellite imagery is encoded at 30 arc-second resolution, resulting in 
pixels that are about 1 square kilometer in size.  We extracted the brightness value of 
the pixel in which the village coordinates lie. However, since villages are typically 
larger than a single square kilometer and to ensure robustness of our results, we also 
estimated local brightness values using bilinear interpolation of all adjacent pixels. In 
general, results were very similar using both methods. 

Figures 5-7 below show sample images from the annual, monthly, and nightly 
imagery for Senegal and Mali. The images reveal very different views of the region at 
night, influenced by the timeframe over which data are collected and the outcomes of 
image processing algorithms. 
 

[FIGURE 5 ABOUT HERE] 
 
The stable lights annual composite in Figure 5 provides the clearest view of how 

access to electricity varies across the two countries. Lights from large cities and towns 
are sharply distinguished against swaths of darkness in the countryside. The stable lights 
image is the product of sophisticated image processing designed to identify the presence 
of persistent lighting over a calendar year (Baugh et al. 2010).  

By contrast, average visible band imagery, which do not screen out ephemeral 
lighting, reveal thousands of more points of light scattered across the countryside. These 
patterns are clearly visible in the monthly composites in Figure 6. Many of these spots 
reflect the burning of agricultural fires, a common feature of crop management in this 
region. At first glance, the brightness and density of these events make it difficult to 
discern patterns of rural electrification.  Indeed, a hot burning field is much brighter 
than the few dozen streetlights found in a typical electrified village. However, crop fires 
have two key features that reduce the challenge of working with average visible band 
imagery. First, deliberately set crop fires tend to be brief, unlikely to last more than a 
few days. These events can thus be screened out with additional imagery and other data. 
Second, because the fires occur on croplands, they are less likely to affect brightness 
values recorded at the geographic center of villages. This highlights the importance of 
having accurate geographic coordinates.  

  
 

[FIGURE 6 ABOUT HERE] 
 

The two sample nightly images shown in Figure 7 look quite different, even 
though they were taken just two days apart. Cloud cover on April 18 shrouds much of 
the region around the Senegal-Mali border. By contrast, atmospheric conditions appear 
much clearer on April 20, revealing many more lit areas. Variations in weather, moon 
illumination, and sensor noise all limit the inferences that can be drawn from any single 
nightly image. We acquired two months of nightly images to support our analysis. For 
each village, we linked the brightness values from each image product to the responses 
we collected on electricity use. Our analysis enables us to compare the relative utility of 
the various image products in supporting different applications to monitoring rural 
electrification. 
 

[FIGURE 7 ABOUT HERE] 



4. Results 
We constructed a village-level dataset made up of responses from the ground surveys 
and brightness levels measured by satellite. Table 1 provides key summary statistics of 
all villages surveyed during the study. For these same villages, Table 2 summarizes 
light output values recorded from different sets of nighttime satellite imagery. In 
general, we found relatively high correlations across all image products, as shown in 
Table 3.  While the correlations are all high, there are differences. For example, the 
April and May monthly composites have a .89 correlation coefficient suggesting that 
brightness levels measured in April and May 2011 differ in at least some cases.  
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Based upon analysis of all the data collected during our study, we conclude that 
electrified villages can be reliably and consistently identified from space using 
nighttime satellite imagery provided there is sufficient intensity of electricity use and 
that image data are acquired over a sufficient timeframe. 

Our analysis reveals that the timeframe of data collection is also important. In 
general, when brightness levels are measured over more nights, the reliability of those 
measurements increases. All else equal, more nights of data, enable greater separation 
of true “signal” from “noise.” By contrast a single nightly image can be challenging to 
analyze. Under optimal conditions, a single nightly image can clearly reveal higher light 
output from cities compared to the countryside. But to detect a small village with low 
levels of electricity use, such an image is insufficient.  In many cases, a single image 
cannot be used to distinguish electrical light output from other artifacts. 

However, annual composite imagery, the most commonly available and 
analyzed data source also has weaknesses. Since annual composites average over such a 
long time period, they provide little ability to discern periods of blackouts, power 
outages, or changes in infrastructure and customer access. Moreover, annual composite 
imagery is produced with a significant time lag and thus data are usually lacking for the 
most recent year.  

4.1 Comparing Brightness Levels of Electrified and Unelectrified Villages 
We compared the average light output captured in a range of nighttime satellite imagery 
for all electrified and unelectrified villages in the study sample. Nighttime satellite 
imagery is available that captures annual, monthly, and nightly timeframes. In 
essentially all cases, electrified villages appeared consistently brighter than non-
electrified villages.  

Table 4 summarizes the key results. In Senegal, the 202 electrified villages are 
consistently brighter than the 800 unelectrified villages in our study. For example, in the 
April 2011 monthly composite image, electrified villages have an average brightness of 
5.23 compared with 4.15 for unelectrified villages.  The difference in means is 
statistically significant, as it is in all cases in the table.  

Overall, the brightness values observed here approach the lower bounds of 
sensitivity of the satellite sensors. By contrast, small cities like Segou, Mali (pop. 
131,000) and Louga, Senegal (pop. 83,000) have brightness values in the 30s. At the 



high end, light output at the centers of Dakar and Bamako are above 60, including some 
fully saturated pixels recorded at 63 that are above the range of the sensor. Our findings 
suggest, however, that even at these low levels, the light signatures of electrified 
villages are consistently brighter than those of unelectrified settlements. 

We observed the lowest average brightness levels from the stable lights annual 
composite image. Visual comparison reveals that the algorithm used to generate the 
stable lights imagery often masks areas of low-level illumination (see Figure 8 for an 
example of the process applied to the region around Kaolack, Senegal). While this is 
useful for many purposes, our findings suggest that stable light composite imagery may 
be less useful for detection and evaluation of rural electrification where light levels are 
low and subject to power outages. 
 

[FIGURE 8 ABOUT HERE] 
 

The difference in brightness levels between electrified and unelectrified villages 
is generally smallest when comparing nightly imagery. We suspect that the smaller 
differences (and the negative finding for Mali in one case) may be because raw nightly 
imagery were not processed to exclude observations with cloud coverage. Moonlit 
clouds and other atmospheric disturbances can result in higher visible band values and 
are not screened out in the raw nightly imagery. By contrast, the annual and monthly 
composites include observations captured only on cloud-free nights. 
 

[TABLE 4 ABOUT HERE] 

4.2 Tracking Brightness Over Time 
We also tracked brightness levels over time using annual imagery. Using the annual 
imagery from 1992-2009, we analyzed temporal trends in light output to see whether 
villages get brighter after they are electrified. Survey respondents were asked when their 
village was first electrified. Knowing the year of electrification, we can compare 
average brightness levels in the years prior to electrification to those 
afterwards. Analyzing data for each village over time, we observe that villages are 
indeed brighter in years after they have been electrified. 

In Senegal, for the 141 surveyed villages that were electrified between 1992 and 
2009, we observe an average increase of about 0.5 points. To account for other 
explanations unrelated to electrification that might have led to this observed increase, 
we also analyzed the trends using fixed effects regressions, as shown in Table 5.  
 

[TABLE 5 ABOUT HERE] 
 

The regressions use village-years as the unit of analysis. The variable Electrified 
Village is coded one for all years following the year of electrification. The coefficient 
thus provides the increase in brightness a village experienced following electrification. 
By adding fixed effects for all villages, the models account for all village-specific 
factors that are invariant over time, like geography or socioeconomic conditions. The 
results of Model 1 confirm the observational findings of a 0.5 increase in brightness 
following observation. The addition of satellite fixed effects helps control for potential 
idiosyncrasies across the five satellites used to capture data across the two-decade time 
frame of analysis. Model 2 shows this reduces the expected increase to just under 0.4 
points.  



From other analysis, we observe that increase in light output are most directly 
linked to the installation of substantial numbers of streetlights (see discussion below). 
Focusing only on villages which installed 40 or more streetlights upon electrification, 
we observe an even greater increase in brightness. Model 3 shows an expected increase 
of over 0.9 points, or slightly lower when we control for satellite effects in Model 4. 

Figure 9 plots average brightness levels for Senegal villages with more than 40 
streetlights, with year of electrification marked in red. In years where more than one 
satellite sensor captured data, two points are drawn. Overall an upward trend is visible 
in the years following electrification. However, in many cases the increase appears 
slow, perhaps because it can take time before all streetlights are installed after the 
official commencement of service.  
 

[FIGURE 9 ABOUT HERE] 

4.3 Light Output and Streetlights 
The findings above found that electrified villages appear brighter than unelectrified 
villages in satellite imagery. We sought to identify what specific characteristics of 
electricity use lead to the increase in brightness. Our analysis focused on Senegal, where 
we were able to collect data across a wider range of villages.  
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Our surveys collected data on different metrics of electricity use at the 
community level.  We conducted multivariate regressions of the Senegal data to 
compare the relationship between these metrics and nighttime light output. The number 
of streetlights in a village was the single most important and robust predictor of 
brightness. Overall, we observe a one-point increase in average nighttime light output 
for every additional 20-60 streetlights present in a village, depending on which imagery 
is used. Analyzing the regressions results using monthly imagery in Table 6, between 21 
and 24 streetlights were associated with a one-point increase in output.5  To detect an 
increase in light output in the raw nightly imagery, a higher number of streetlights is 
required. Interpreting the coefficients in Table 7 indicates that between 48 and 58 
streetlights are required for a one-point increase in average light output.  Results of 
regressions using the annual composite imagery are in the Statistical Appendix (the 
results are similar).  

While the adoption of streetlights might vary around the world, they are installed 
consistently in electrified villages in Senegal. Officials at ASER confirmed that street 
lights were part of all village electrification plans and that they were highly valued by 
villagers.  Typically, streetlights are equipped with 70W low-pressure sodium lamps.  
More recently, some villages have been equipped with 20W compact fluorescent (CFL) 
tubes. In Mali, streetlights are also installed with every new village electrification 
project, typically using 25W-36W CFL bulbs.  

The luminous efficacy, or light output per watt varies, depending on the bulb 
technology. Low-pressure sodium bulbs are regarded to be the most energy-efficient 
outdoor lighting technology, typically emitting between 60-150 lumens per watt. 

                                                 

5 The coefficient describes the impact of a one unit increase of the explanatory variable on the 
outcome. Thus in Model 1, the addition of one streetlight is predicted to increase light output 
by 0.0423 points. A one-point increase in light output thus requires 1/0.0423=24 streetlights.  



However, they have poor color rendition, casting a yellowish light. By contrast, CFL 
bulbs typically output 50-70 lumens per watt.6 All else equal, this implies that about 
five 25W or three 36W CFL bulbs are needed to generate the same light output as one 
70W LPS bulb.  As a result, consideration of the bulb technology must be made when 
considering the relationship between the number of streetlights and light output 
detectable by satellite. 
 

[TABLE 7 ABOUT HERE] 
 

Other measures of electricity use like the number of electrified compounds, the 
number of years since electrification, low availability of power, and subjective opinions 
of dissatisfaction with the quality of service are all insignificant. and do not appear to be 
systematically related to light output.  

One conclusion from this analysis is that electrified villages with fewer than 20 
streetlights are unlikely to be detectable in most nighttime satellite imagery.  This can 
be seen in the scatterplot in Figure 10 that compares monthly average light output 
against the number of streetlights for all 180 villages in Senegal for which we were able 
to collect data. While the overall pattern is noisy, the upward pattern suggests that 
villages with more streetlights are brighter. 
 

[FIGURE 10 ABOUT HERE] 

4.4 Identifying Anomalies Using Time Series Data 
By comparing the light output from a village over time against national trends, it may 
be possible to detect anomalies in electricity service provision. For example, Figure 11 
shows light output from the village of Palmeao, Senegal across the full sequence of 
nightly images. The dashed line shows the average light output for all surveyed 
electrified villages. While both lines generally move in the same direction, there are 
several nights where light output from Palmeao appears unusually low. While we have 
not verified this, we speculate that several of these cases were a result of power outages 
in Palmeao. Additional figures in the appendix show the nightly light output trends for 
all surveyed villages.  
 

[FIGURE 11 ABOUT HERE] 
 

A simple algorithm that identifies pixels that are brighter than the average pixel 
performs well in correctly detecting electrified villages. Several different tests were 
assessed. Even a simple diagnostic test evaluating whether a pixel was brighter than 
average performs well in positively detecting electrified villages.  The test is strongest 
when using the full series of nightly data: 71% of electrified villages are correctly 
detected (with a 42% false positive rate). The test also performs well with annual 
average lights data: 61% of electrified villages are correctly detected (with a 36% false 
positive rate). The test performs worst with monthly average lights data, detecting only 
50% of electrified villages.   

There is a tradeoff between test sensitivity and specificity.  A test that is more 
sensitive in detecting electrified villages is likely to also be less specific and will 

                                                 

6 US Department of Energy Office of Energy Efficiency and Renewable Energy. 
<http://www.energysavers.gov/your_home/lighting_daylighting/index.cfm/mytopic=12030> 



misclassify many unelectrified villages.  But a test that is very good at preventing 
erroneous classifications of unelectrified villages is likely to be less good at detecting 
electrified villages. Thus selection of the test parameters and data set to be used should 
be guided by the specific goals of the application. 

In practice, we usually have more data on villages. When we add more relevant 
data, like population size and geographic region of the country, we can strengthen the 
analytical value of the models by identifying “underperformers” and “overperformers” 
in the provision of electricity service. In other words, we can identify villages that seem 
to generate too little light given what we know about its characteristics.  

Consider a simple model that predicts whether a village is electrified based upon 
how much light it emits, its population, and the region of the country in which it is 
located. From that model, we can calculate the predicted probability of electrification 
and then compare it to what we already know about the actual electrification status of 
the village. We can use this comparison to identify villages that are not well classified 
by the model. If we focus on the most extreme under-performers, we can identify 
villages that might be having problems in delivering adequate service.  

The regression results, shown in Table 8, use only village data on average 
monthly light output, population, and region of the country. The models are 
intentionally lean to mimic the reality that data is scarce for most rural villages.  To the 
extent that other data are available (such as proximity to the power grid, local economic 
conditions, etc.), they could be added to augment the predictive power of the model. 
 

[TABLE 8 ABOUT HERE] 
 

Using Model 3, we calculate predicted probabilities of being electrified for all 
villages based on actual observed data values, including monthly average light output. 
Figure 12 plots the predicted probabilities for all villages in the sample, with green dots 
denoting villages known to be electrified and red dots denoting villages that are 
unelectrified. The concentration of green dots at high probability values and red dots at 
low probability values shows that most villages are correctly classified by the model. 
However, some electrified villages have very low predicted probabilities, inviting 
additional investigation.  
 

[FIGURE 12 ABOUT HERE] 
 

For example, Taiba Nianguene is an electrified village whose characteristics 
lead the model to predict only a 7% likelihood of electrification. Closer examination of 
this case reveals low average light output of 3.3 in April 2011 despite 35 streetlights for 
its 450 residents. Why does Taiba Nianguene appear so dim, despite a relatively high 
concentration of streetlights? One possibility is the limited availability of power supply. 
Our survey data confirm this, noting that power is usually available for only 6-12 hours 
per day in the village.  

Relying on satellite-derived data will not substitute for the information that can 
be gathered by a human monitor investigating whether the power is on or not, whether 
there are problems with infrastructure. Yet by using such data and statistical models as 
illustrated here, it may be possible to identify anomalies quickly and efficiently, thus 
providing guidance on how to focus limited and more costly human resources. 



5. Conclusion 
This paper systematically evaluates the accuracy and reliability of using DMSP-OLS 
nighttime light output to detect rural electrification in the developing world. Compared 
with traditional ground-based data collection efforts that are expensive to replicate over 
time and prone to variations in measurement and data quality, satellite imagery have the 
virtue of being collected every single night over every corner of the globe using an 
objective and automated process. Moreover, all images are digitized and stored on a 
nightly basis. This data archive, extending back over twenty years, enables both analysis 
and visualization of progress in service extension over time and identification of areas 
that remain underserved.  

Based on a comparison of nighttime lights imagery against data collected on the 
ground in villages across Senegal and Mali, we find consistent evidence that satellite 
imagery can reliably detect electrified villages. Electrified villages appear brighter 
because of the presence of streetlights and brighter villages tend to have more 
streetlights. By contrast, the correlation with household electricity use and access is low. 
Villages with more streetlights are brighter than those with fewer streetlights. We 
further demonstrate that a detection algorithm using data on nighttime light output and 
the geographic location of settlements can accurately classify electrified villages.   

Satellite imagery of nighttime lights provides a unique ability to detect access to 
electrification, especially in rural settings in the developing world where access is most 
limited and also most difficult to monitor on the ground. In addition to the historical 
archive of DMSP-OLS imagery that spans the last two decades, newer nighttime data 
has been collected since 2011 from the Soumi National Polar-orbiting Partnership 
(SNPP) Visible Infrared Imaging Radiometer Suite (VIIRS). Nighttime light data from 
VIIRS have multiple advantages over earlier sources, including higher spatial 
resolution, greatly improved dynamic range, and full radiometric calibration (Baugh et 
al. 2013). These valuable tools can strengthen the capacity of governments, 
development agencies, and other entities as they identify inequities in electricity access 
and opportunities for both grid and off-grid improvements in electricity provision.  
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Table 1. Brightness of surveyed electrified villages across nighttime imagery. 
Senegal (n=202 villages) 

 Average Minimum Maximum 
Population 2,145 40 19,000 
Concessions 249 4 5,000 
Concessions electrified 138 3 4,000 
Concession electrification rate 56% 4% 100% 
Number of streetlights 23 1 120 
 

 
Mali (n=30 villages) 

 Average Minimum Maximum 
Population 9,110 459 36,700 
Concessions 943 60 7,149 
Concessions electrified 304 35 1,426 
Concession electrification rate 50% 7% 96% 
Number of streetlights 60 10 179 
 
Note: Concessions are household compounds, comprised of a group of clustered dwellings often 
surrounded by a wall or fence.    

 



 

 

Table 2. Brightness of surveyed electrified villages across nighttime imagery. 
 

Senegal (n=202 villages) 

 Mean Median Standard 
Deviation 

Minimum Maximum 

Annual Composites+     
2009 Annual composite (average visible) 4.04 4 1.3 3 9 
2009 Annual composite (stable lights) 1.39 0 2.52 0 9 
      
Monthly Composites++     
April 2011 monthly composite (average 
visible) 

5.46 4.22 5.39 2.44 51.6 

May 2011 monthly composite (average 
visible) 

5.12 4.11 4.2 1.83 49.3 

      
Nightly Imagery+++     
April 18 – June 15, 2011 (59 nights, 
excluding outliers) 

5.75 5 3.02 0 32 

 

 
Mali (n=30 villages) 

 Mean Median Standard 
Deviation 

Minimum Maximum 

Annual Composites+     

2009 Annual composite (average visible) 3.93 4 0.86 3 6 
2009 Annual composite (stable lights) 0.5 0 1.5 0 5 
      
Monthly Composites++     
April 2011 monthly composite (average 
visible) 

3.86 3.85 1.32 1 6.75 

May 2011 monthly composite (average 
visible) 

3.66 3.76 0.85 2.25 5.8 

      
Nightly Imagery+++     
April 18 – June 15, 2011 (59 nights, 
excluding outliers) 

5 5 1.9 2 11 

 
Notes:  
+ Annual imagery is from the F16 DMSP satellite, using the most recent year available.  
++ Monthly imagery is from the F18 satellite. The composites are average visible band values calculated 
over all cloud-free coverages. 
+++ Nightly imagery is from the F18 satellite, dropping outliers, defined as those observations with 
brightness levels more than one standard deviation from the mean for each village.4/18 – 6/ 

 



Table 3. Correlations of brightness values across different nighttime imagery products.  
 

Senegal (n=202 villages) 

 Nightly 
Imagery 

Monthly Composites Annual Composites 

 18 April – 
15 June 

2011 

April 2011  May 2011 2009 
Average 
Visible 

2009 
Stable 
Lights 

Nightly Imagery 1.0000     
April 2011  0.9336 1.0000    
May 2011  0.9295 0.8913 1.0000   
2009 Avg. visible 0.8881 0.7790 0.8815 1.0000  
2009 Stable lights 0.8765 0.7755 0.8376 0.9083 1.0000 

 
 
 

 



 

 

 

Table 4. Comparing brightness of electrified and unelectrified villages across nighttime 
imagery. 
 

Senegal 

 Electrified 
Villages 
(n=202) 

Unelectrified 
Villages 
(n=800) 

Difference of 
means** 

t-
statistic 

Annual Composites+     
2009 annual composite (average visible) 4.04 3.56 0.48 5.71 
2009 annual composite (stable lights) 1.39 0.03 1.36 14.36 
 
Monthly Composites++ 

    

April 2011 monthly composite (average visible) 5.23 4.15 1.08 5.81 
May 2011 monthly composite (average visible) 4.9 4.23 0.67 3.51 
 
Nightly Imagery+++ 

    

April 18 – June 15, 2011 (59 nights, all evening 
orbits) 

7.42 6.69 0.73 11.43 

April 18 – June 15, 2011 (59 nights, excluding 
outliers) 

5.75 5.16 0.59 21.58 

 
Mali 

 Electrified 
Villages  
(n=30) 

Unelectrified 
Villages 
(n=99) 

Difference of 
means 

t-
statistic 

Annual Composites+     
2009 annual composite (average visible) 3.93 3.18 0.75 4.24 
2009 annual composite (stable lights) 0.5 0 0.5 3.4 
 
Monthly Composites++ 

    

April 2011 monthly composite (average visible) 3.86 3.53 0.33 1.21 
May 2011 monthly composite (average visible) 3.66 3.33 0.33 1.52 
 
Nightly Imagery+++ 

    

April 18 – June 15, 2011 (59 nights, all evening 
orbits) 

5.69 6.01 -0.32 -2.45 

April 18 – June 15, 2011 (59 nights, excluding 
outliers) 

4.99 4.97 0.02 0.34 

 
Notes:  
+ Annual imagery is from the F16 DMSP satellite, using the most recent year available.  
++ Monthly imagery is from the F18 satellite. The composites are average visible band values calculated 
over all cloud-free coverages. 
+++ Nightly imagery is from the F18 satellite. We compute average brightness in two ways. First, 
averaging the visible band values across all evening orbits (which may include nights with cloud cover or 
other disturbances). Second, we drop outliers, defined as those observations with brightness levels more 

          
 



 

 

 

 

 

 

 

 

 

 

 

Table 5. Explaining light output in electrified villages. Fixed effects regressions of 
village brightness before and after electrification. 
 
  (1) (2) (3) (4) 
Outcome is average 
annual visible 
brightness 

All 
surveyed 
villages 

All 
surveyed 
villages 

Villages with 
40+ streetlights 

Villages with 
40+ streetlights 

          
Village has been 
electrified  0.521** 0.357** 0.944** 0.663** 

 
(0.0440) (0.0524) (0.107) (0.123) 

     Village fixed effects Yes  Yes  Yes  Yes  

     Satellite fixed effects No Yes No Yes 

     Constant 2.383** 3.174** 6.206** 6.149** 

 
(0.166) (0.115) (0.277) (0.281) 

     Observations 4,371 4,371 961 961 
R-squared 0.453 0.503 0.596 0.629 
Robust standard errors in parentheses 
** p<0.01, * p<0.05, + p<0.1 

 
Note: Observations are village-years for surveyed villages in Senegal, 1992-2009. 
 
 

 
 



 

 

 

 

 

 

 

 

 

Table 6. Determinants of light output in electrified villages. Senegal monthly average 
lights imagery, April and May 2011. 2 composites per village. 
 
  (1) (2) (3) (4) (5) 

            
Streetlights 0.0423* 0.0426* 0.0442* 0.0436* 0.0467* 

 
(0.0166) (0.0190) (0.0182) (0.0175) (0.0193) 

Compounds electrified 
 

-2.33e-05 2.23e-05 -2.79e-06 0.000288 

  
(0.000344) (0.000353) (0.000420) (0.000420) 

Years electrified 
  

-0.0259 -0.0238 -0.0289 

   
(0.0276) (0.0271) (0.0273) 

<6 hours power/day 
   

0.339 0.400 

    
(0.644) (0.653) 

Not satisified with power service 
   

0.574 0.788 

    
(0.516) (0.527) 

Population (logged) 
    

-0.0938 

     
(0.334) 

Latitude 
    

0.508+ 

     
(0.277) 

Longitude 
    

-0.371 

     
(0.235) 

Constant 3.982** 4.000** 4.167** 3.939** -8.821 

 
(0.329) (0.353) (0.424) (0.492) (8.230) 

      Observations 360 340 322 322 312 
R-squared 0.046 0.045 0.046 0.054 0.070 
Robust standard errors in parentheses, clustered on village. 
** p<0.01, * p<0.05, + p<0.1 

      
 



 

 

 

 

 

 

 

 

 

Table 7. Determinants of light output in electrified villages. Senegal nightly imagery, 
April 18 – June 15, 2011. Up to 59 nights per village; outliers excluded. 
 
  (1) (2) (3) (4) (5) 

            
Streetlights 0.0172+ 0.0182+ 0.0184+ 0.0181+ 0.0207+ 

 
(0.00900) (0.0102) (0.0102) (0.0104) (0.0115) 

Compounds electrified 
 

-0.000220 -0.000207 -0.000128 0.000126 

  
(0.000152) (0.000151) (0.000186) (0.000169) 

Years electrified 
  

-0.00890 -0.00795 -0.0121 

   
(0.0135) (0.0141) (0.0139) 

<6 hours power/day 
   

-0.301 -0.123 

    
(0.281) (0.288) 

Not satisified with power service 
   

0.141 0.315 

    
(0.235) (0.232) 

Population (logged) 
    

-0.0799 

     
(0.179) 

Latitude 
    

0.508** 

     
(0.138) 

Longitude 
    

-0.285** 

     
(0.106) 

Thermal infrared band (clouds) 
    

-0.0154** 

     
(0.00125) 

Constant 5.296** 5.306** 5.371** 5.391** -2.910 

 
(0.178) (0.191) (0.216) (0.261) (3.808) 

      Observations 10,460 9,881 9,363 9,363 9,073 
R-squared 0.010 0.010 0.010 0.011 0.052 
Robust standard errors in parentheses, clustered on village. 
** p<0.01, * p<0.05, + p<0.1 

      
 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 8. Detecting anomalies with statistical models. Logit regressions to predict 
electrification status. 
 

  (1) (2) (3) 
Outcome is Village Electrified or Not 

           
Average Light Output (monthly data) 0.125** 0.117* 0.253** 

 
(0.0239) (0.0514) (0.0669) 

Population (logged) 
 

2.502** 2.710** 

  
(0.198) (0.304) 

    Region fixed effects No No Yes  

    Constant -1.939** -17.68** -20.44** 

 
(0.134) (1.271) (2.034) 

    Observations 2,004 1,968 1,504 
Standard errors clustered on village in 
parentheses 

   ** p<0.01, * p<0.05, + p<0.1 
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Figure 1. Africa at night. 2009 Stable Lights Annual Composite, DMSP F16 satellite. 
Source: NOAA’s National Geophysical Data Center. 
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Figure 2. Seeing electrification projects from space: (a) electrification plan for village of 
Rao, Senegal and (b) satellite imagery of night lights, village of Rao, Senegal. Sources: 
(a) Agence Sénégalaise d'Electrification Rurale and (b) NOAA’s National Geophysical 
Data Center. 



 

 

 

 

 

 

 

 

 
 

Figure 3. Location of villages in study, Senegal. Surveyed electrified villages in green 
(n=202). Control group of unelectrified villages in red (n=800). Background image 
shows 2009 stable lights annual composite from the F16 satellite. Source: Village data 
from Agence Sénégalaise d'Electrification Rurale. Imagery from NOAA’s National 
Geophysical Data Center. 
 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 
 

Figure 4. Location of villages in study, Mali. Surveyed electrified villages in green 
(n=30). Control group of unelectrified villages in red (n=99). Background image shows 
2009 stable lights annual composite from the F16 satellite. Source: Village data from 
AMADER. Imagery from NOAA’s National Geophysical Data Center. 
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Figure 5. Annual night-time satellite imagery: (a) 2009 stable lights annual composite 
and (b) 2009 average visible band annual composite. Source: NOAA’s National 
Geophysical Data Center. 
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Figure 6. Monthly night-time satellite imagery: (a) April 2011 average visible band 
monthly composite and (b) May 2011 average visible band monthly composite. Source: 
NOAA’s National Geophysical Data Center. 
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Figure 7. Nightly night-time satellite imagery: (a) April 18, 2011, 21:13 UTM orbit start 
time and (b) April 20, 2011, 20:49 UTM orbit start time. Source: NOAA’s National 
Geophysical Data Center. 
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Figure 8. Comparing annual composite imagery, Kaolack, Senegal: (a) stable lights 
2009 and (b) average visible 2009. Surveyed electrified villages in green, unelectrified 
villages in red. Source: NOAA’s National Geophysical Data Center. 



 

 

 

 

 

 

 

 

 

 

Figure 9. Brightness of villages before and after electrification, 1992-2009. Surveyed 
villages in Senegal with more than 40 streetlights in 2011. Red dots indicate year of 
electrification according to administrative records. 



 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 10. Light output and streetlights in Senegal. Dots are village-month observations 
for 180 villages from April and May 2011. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11. Identifying anomalies in light output. Comparing nightly light output in 
Palmeao versus Senegal average. 
 



 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12. Detecting anomalies using a statistical model. Comparing predicted 
electrification status against actual status. Predicted probabilities based on Table 8, 
Model 3. 
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