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1. Introduction

We will prove1 some interesting results about unique factorization domains, or UFDs.
UFDs and their special properties come up surprisingly often in algebra and algebraic ge-
ometry, and their proofs often use only 494-type material.

We recall the definition: a commutative ring S with identity 1 is a UFD when every non-
unit in S can be written as a product of irreducible elements, such that this expression is
unique up to reordering of the irreducibles and scaling by a unit. There are many equiva-
lent definitions. One should recall that in a UFD, an element is prime if and only if it is
irreducible.

We will prove three interesting statements about them, namely the following. Throughout,
R will be a commutative ring with multiplicative identity 1.

Theorem 1.1 (Gauss’ Lemma). If F is the fraction field of R, then f ∈ R[x] is irreducible
over R if and only if f is irreducible and primitive over F .

Theorem 1.2. If R is a UFD, then the colon2 of principal ideals is principal. If R is
additionally assumed to be Noetherian, then the converse is also true.

Theorem 1.3 (Kaplansky). If R is a UFD, then every nonzero prime ideal contains a
nonzero principal prime ideal (equivalently, an irreducible element).

Let’s get started.

1Some of the claims and proofs presented here come from Morandi’s book Field and Galois Theory.
2We’ll define this below.
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2. Gauss’ Lemma

We restate the proposition: If F is the fraction field of R, then f ∈ R[x] is irreducible
over R if and only if f is irreducible and primitive over F .

This is known as Gauss’ Lemma, apparently. Recall that a polynomial f ∈ S[x], where S
is a UFD (more generally, a GCD domain) with 1, is primitive provided that the gcd in S
of its coefficients is 1. Additionally, one may always write a polynomial g ∈ S[x] as c(g) · g∗,
where c(g) = gcdS(g’s coefficients), and g∗ is obtained from g by dividing by c(g). Then c(g)
is defined to be the content of g, with g∗ its primitive part. We will also use the convention
that a polynomial is primitive if its content is a unit.

Assume first that f is irreducible and primitive over F . Suppose that f factors as f = gh
in R[x]; since g and h naturally lie also in F [x] and f is irreducible over F , (WOLOG) g is
a constant. However then g divides the coefficients of f , contradicting that f is primitive.
So f is irreducible over R.

For the next part of the proof, prove the following lemma (which is often also called Gauss’
Lemma):

Lemma 2.1. When R is a UFD with f, g ∈ R[x], we have c(fg) = c(f) · c(g). In particular,
deduce that the product of primitive polynomials is primitive. (Hint: for a contradiction,
consider a prime π dividing the coefficients of fg, and the domain (R/(π))[x].)

Conversely, assume that f is irreducible over R. We may write, as above, f = c(f) · f∗,
where since f is irreducible over R, c(f) is a unit in R; it follows that f is primitive. If f is
not irreducible over F , then write f = gh with g, h ∈ F [x] both of degree ≥ 1. We may write
gh = (a/b)g∗ · h∗ with g∗, h∗ ∈ R[x] primitive parts, and a, b ∈ R relatively prime (why?).
Thus bf(x) = ag∗ · h∗, so b = b · c(f) = c(b · f) = a · c(g∗h∗) = a by the lemma. However a
and b are relatively prime, so they both must be units in R. However then (a · g∗)(b−1 · h∗)
is a nontrivial factorization of f , contradicting irreducibility over R. So f is irreducible over
F , as required.

3. Colon criterion (Noetherian rings)

We restate the proposition: If R is a UFD, then the colon of principal ideals is principal.
If R is additionally assumed to be Noetherian, then the converse is also true.

First we note that in a Noetherian ring R, the decomposition of any element into irre-
ducibles is immediately given (though not in general unique). To see this, consider the family
of non-zero, non-unit elements a of R not equal to a product of irreducibles. Recall one of
the equivalent definitions of a Noetherian ring to choose a maximal such (a). Then writing
a = a1a2, as a is not irreducible, we may assume that a1 is also not a product of irreducibles.
However then (a1) strictly contains (a), contradicting maximality of a.

For ideals I, J ⊂ R we define the ideal

I : J := {b ∈ R | bJ ⊂ I}
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called the colon of I and J in R, or the fractional ideal of I and J in R. Of course we have
the analogous notion for principal ideals; the statement in the theorem says that for f, g ∈ R
there is φ ∈ R such that (f) : (g) = (φ).

We assume both f and g are nonzero, avoiding trivialities. Write f = uπm1
1 · · · πmr

r and
g = vπn1

1 · · · πnr
r for irreducibles πi and u, v units in R. It is clear (is it?) that

(f) : (g) =

(
r∏

i=1

π
min{mi−ni,0}
i

)
.

The interesting part of the statement is the Noetherian case. Prove the following lemma:

Lemma 3.1. If T is a domain with the product that every element is a product of irreducibles,
then T is a UFD if and only if every irreducible of T is prime.

Then it suffices, following the lemma, to show that if π ∈ R is irreducible, then it is prime.
Suppose that π divides ab, so that b ∈ (π) : (a). Choose h ∈ R such that (π) : (a) = (h);
then π ∈ (h), and since π is irreducible, we conclude that h is a unit or (π) = (h). In the
former case, π divides a; in the latter, π divides b.

4. Kaplansky’s Theorem

We restate the proposition: If R is a UFD, then every nonzero prime ideal contains a
nonzero principal prime ideal (equivalently, an irreducible element).

Let P be a nonzero prime ideal of R. For a ∈ P nonzero, write a = π1 · · · πn for irreducibles
πi ∈ R. As P is prime, one of the πi lies in P . Therefore P contains the principal prime
(πi).

Conversely, suppose every nonzero prime of R contains a nonzero principal prime. Define

S := {a ∈ Rr {0} : a is a unit or factors into a product of primes}.
Of course, if S = R r {0} then R is a UFD (if this is not clear, prove it). Else, let
0 6= a ∈ R r S. Applying Zorn’s lemma, let I be the ideal of R containing a be maximal
among ideals disjoint from S; we claim that I is prime. Modulo the proof of this statement,
we may find π ∈ I a prime in R. However then π ∈ S as π is prime, so we obtain a
contradiction. It follows that R is a UFD.

Now we prove that I is prime. If not, there are b, c ∈ R r I such that ab ∈ I. Then
I + bR and I + cR contain I, so that they must intersect S. Choose x ∈ S ∩ (I + bR)
and y ∈ S ∩ (I + cR). Write x = u1 + br1 and y = u2 + cr2 with ci ∈ I, ri ∈ R. Then
xy = u1(u2+cr2)+bcr1r2 ∈ I, since bc ∈ I. However xy ∈ S. Thus S∩I 6= ∅, a contradiction.
It follows that I is prime, finishing the proof.
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