MATH 4942018 DISCUSSION 4: SOME FACTS ABOUT UFDS

BEN GOULD

Contents

1. Introduction 1
2. Gauss' Lemma 2
3. Colon criterion (Noetherian rings) 2
4. Kaplansky's Theorem 3

1. Introduction

We will prove ${ }^{11}$ some interesting results about unique factorization domains, or UFDs. UFDs and their special properties come up surprisingly often in algebra and algebraic geometry, and their proofs often use only 494-type material.

We recall the definition: a commutative ring S with identity 1 is a UFD when every nonunit in S can be written as a product of irreducible elements, such that this expression is unique up to reordering of the irreducibles and scaling by a unit. There are many equivalent definitions. One should recall that in a UFD, an element is prime if and only if it is irreducible.

We will prove three interesting statements about them, namely the following. Throughout, R will be a commutative ring with multiplicative identity 1.

Theorem 1.1 (Gauss' Lemma). If F is the fraction field of R, then $f \in R[x]$ is irreducible over R if and only if f is irreducible and primitive over F.

Theorem 1.2. If R is a UFD, then the color ${ }^{2}$ of principal ideals is principal. If R is additionally assumed to be Noetherian, then the converse is also true.

Theorem 1.3 (Kaplansky). If R is a UFD, then every nonzero prime ideal contains a nonzero principal prime ideal (equivalently, an irreducible element).

Let's get started.

[^0]
2. Gauss' Lemma

We restate the proposition: If F is the fraction field of R, then $f \in R[x]$ is irreducible over R if and only if f is irreducible and primitive over F.

This is known as Gauss' Lemma, apparently. Recall that a polynomial $f \in S[x]$, where S is a UFD (more generally, a GCD domain) with 1, is primitive provided that the gcd in S of its coefficients is 1 . Additionally, one may always write a polynomial $g \in S[x]$ as $c(g) \cdot g_{*}$, where $c(g)=\operatorname{gcd}_{S}\left(g\right.$'s coefficients), and g_{*} is obtained from g by dividing by $c(g)$. Then $c(g)$ is defined to be the content of g, with g_{*} its primitive part. We will also use the convention that a polynomial is primitive if its content is a unit.

Assume first that f is irreducible and primitive over F. Suppose that f factors as $f=g h$ in $R[x]$; since g and h naturally lie also in $F[x]$ and f is irreducible over F, (WOLOG) g is a constant. However then g divides the coefficients of f, contradicting that f is primitive. So f is irreducible over R.

For the next part of the proof, prove the following lemma (which is often also called Gauss' Lemma):

Lemma 2.1. When R is a UFD with $f, g \in R[x]$, we have $c(f g)=c(f) \cdot c(g)$. In particular, deduce that the product of primitive polynomials is primitive. (Hint: for a contradiction, consider a prime π dividing the coefficients of $f g$, and the domain $(R /(\pi))[x]$.)

Conversely, assume that f is irreducible over R. We may write, as above, $f=c(f) \cdot f_{*}$, where since f is irreducible over $R, c(f)$ is a unit in R; it follows that f is primitive. If f is not irreducible over F, then write $f=g h$ with $g, h \in F[x]$ both of degree ≥ 1. We may write $g h=(a / b) g_{*} \cdot h_{*}$ with $g_{*}, h_{*} \in R[x]$ primitive parts, and $a, b \in R$ relatively prime (why?). Thus $b f(x)=a g_{*} \cdot h_{*}$, so $b=b \cdot c(f)=c(b \cdot f)=a \cdot c\left(g_{*} h_{*}\right)=a$ by the lemma. However a and b are relatively prime, so they both must be units in R. However then $\left(a \cdot g_{*}\right)\left(b^{-1} \cdot h_{*}\right)$ is a nontrivial factorization of f, contradicting irreducibility over R. So f is irreducible over F, as required.

3. Colon criterion (Noetherian rings)

We restate the proposition: If R is a UFD, then the colon of principal ideals is principal. If R is additionally assumed to be Noetherian, then the converse is also true.

First we note that in a Noetherian ring R, the decomposition of any element into irreducibles is immediately given (though not in general unique). To see this, consider the family of non-zero, non-unit elements a of R not equal to a product of irreducibles. Recall one of the equivalent definitions of a Noetherian ring to choose a maximal such (a). Then writing $a=a_{1} a_{2}$, as a is not irreducible, we may assume that a_{1} is also not a product of irreducibles. However then $\left(a_{1}\right)$ strictly contains (a), contradicting maximality of a.

For ideals $I, J \subset R$ we define the ideal

$$
I: J:=\{b \in R \mid b J \subset I\}
$$

called the colon of I and J in R, or the fractional ideal of I and J in R. Of course we have the analogous notion for principal ideals; the statement in the theorem says that for $f, g \in R$ there is $\phi \in R$ such that $(f):(g)=(\phi)$.

We assume both f and g are nonzero, avoiding trivialities. Write $f=u \pi_{1}^{m_{1}} \cdots \pi_{r}^{m_{r}}$ and $g=v \pi_{1}^{n_{1}} \cdots \pi_{r}^{n r}$ for irreducibles π_{i} and u, v units in R. It is clear (is it?) that

$$
(f):(g)=\left(\prod_{i=1}^{r} \pi_{i}^{\min \left\{m_{i}-n_{i}, 0\right\}}\right)
$$

The interesting part of the statement is the Noetherian case. Prove the following lemma:
Lemma 3.1. If T is a domain with the product that every element is a product of irreducibles, then T is a UFD if and only if every irreducible of T is prime.

Then it suffices, following the lemma, to show that if $\pi \in R$ is irreducible, then it is prime. Suppose that π divides $a b$, so that $b \in(\pi):(a)$. Choose $h \in R$ such that $(\pi):(a)=(h)$; then $\pi \in(h)$, and since π is irreducible, we conclude that h is a unit or $(\pi)=(h)$. In the former case, π divides a; in the latter, π divides b.

4. Kaplansky's Theorem

We restate the proposition: If R is a UFD, then every nonzero prime ideal contains a nonzero principal prime ideal (equivalently, an irreducible element).

Let P be a nonzero prime ideal of R. For $a \in P$ nonzero, write $a=\pi_{1} \cdots \pi_{n}$ for irreducibles $\pi_{i} \in R$. As P is prime, one of the π_{i} lies in P. Therefore P contains the principal prime $\left(\pi_{i}\right)$.

Conversely, suppose every nonzero prime of R contains a nonzero principal prime. Define $\mathcal{S}:=\{a \in R \backslash\{0\}: a$ is a unit or factors into a product of primes $\}$.
Of course, if $\mathcal{S}=R \backslash\{0\}$ then R is a UFD (if this is not clear, prove it). Else, let $0 \neq a \in R \backslash \mathcal{S}$. Applying Zorn's lemma, let I be the ideal of R containing a be maximal among ideals disjoint from \mathcal{S}; we claim that I is prime. Modulo the proof of this statement, we may find $\pi \in I$ a prime in R. However then $\pi \in \mathcal{S}$ as π is prime, so we obtain a contradiction. It follows that R is a UFD.

Now we prove that I is prime. If not, there are $b, c \in R \backslash I$ such that $a b \in I$. Then $I+b R$ and $I+c R$ contain I, so that they must intersect \mathcal{S}. Choose $x \in \mathcal{S} \cap(I+b R)$ and $y \in \mathcal{S} \cap(I+c R)$. Write $x=u_{1}+b r_{1}$ and $y=u_{2}+c r_{2}$ with $c_{i} \in I, r_{i} \in R$. Then $x y=u_{1}\left(u_{2}+c r_{2}\right)+b c r_{1} r_{2} \in I$, since $b c \in I$. However $x y \in \mathcal{S}$. Thus $\mathcal{S} \cap I \neq \emptyset$, a contradiction. It follows that I is prime, finishing the proof.

[^0]: ${ }^{1}$ Some of the claims and proofs presented here come from Morandi's book Field and Galois Theory.
 ${ }^{2}$ We'll define this below.

