
MATH 296 2018 DISCUSSIONS 1 & 2:
IMPOSSIBILITY THEOREMS FOR ELEMENTARY INTEGRATION

BEN GOULD

Contents

1. Introduction 1
2. What does “elementary” mean? 2
3. Elementary fields and functions 3
4. Two integrability criteria, and applications 5
References 6

1. Introduction

It is a well-known result in calculus generally that one cannot find an antiderivative for
the real-valued function e−x

2
“in terms of elementary functions”. Of course this is of great

use in probability theory, as the function e−x
2

is the meaningful part of the definition of
a Gaussian distribution, and the (im)possibility of computations with this integrand poses
serious problems for the theory. In number theory, a well-known (and very deep) result
is the prime number theorem, which states that asymptotically, we have φ(x) ∼ x/ log(x),
where φ is the totient function. It turns out that there is a slightly better approximation
for φ(x) given by the “logarithmic integral” Li(x) =

∫ x

2
dt/ log(t). Here is an exercise: show

that x/ log(x) ∼ Li(x) in the limit x → ∞. It is another popular result that there is no
antiderivative for Li(x), again “in terms of elementary functions”. Of course such a result
has wide-reaching implications for analytic number theory. Applying the change of variables
u = log(t) we obtain the integrand eu/u; this is the integrand we will consider in the ensuing
proofs, where we will show that this also cannote be integrated in elementary terms.

In this discussion and the next we will precisely define what we mean by “integration in
terms of elementary functions”, and prove the two impossibility statements above concerning
functions of import. We will follow Brian Conrad’s expository paper Impossibility Theorems
for Elementary Integration, [1].
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2. What does “elementary” mean?

So, what do we really mean by an elementary function? It seems reasonable to define
the standard calc 1 functions like arithmetic functions, polynomials, rational functions, loga-
rithms and exponentials, roots, and trig functions and their inverses should be “elementary”.
Thus

x1/3 + πx log(xe
x
)

2x− sin(x)

should be elementary, on an open interval on which it is defined. Liouville, who was a very
well-known French mathematician, proved a result about such elementary functions in the
form feg for rational functions f, g in terms of the solution of a simple differential equation in
rational functions. In particular, this setting settles the issues of the elementarity of the two
functions Li(x) and e−x

2
we’re concerned with here. Conrad develops the result in slightly

higher levels of generality.
Aside on notation. Here I will include a brief discussion of polynomial rings and rational

function fields over R and C, which are Googleable. I will include definitions of fields like
C(x, f1, ..., fn).

It will often be convenient to discuss complex functions, i.e. functions of the form u(x) +
iv(x) for real-valued functions u, v, of a real variable x. We expand notions of continuity,
analyticity, etc. of real functions of real variables to complex functions by examining real
and imaginary parts.

Observe that via formulas of the form

cos−1(x) = tan−1

(√
1

x2
− 1

)
, sin−1(x) = tan−1

(
x√

1− x2

)
and the standard facts

sin(x) =
eix − e−ix

2i
, cos(x) =

eix + e−ix

2

defined on suitable intervals, we may recover trigonometric functions as exponentials, loga-
rithms, and rational functions of analytic functions. Further, we leave as an exercise to show
that if a C-valued function f is analytic and non-vanishing, then f ′/f is also analytic. Then

appropriately choosing x0 we obtain the analytic function (log f)(t) =
∫ t

x0
(f ′(s)/f(s))ds

called the logarithm of f . The definition of this logarithm depends on x0 up to additive
constant (“+C”), but we won’t be concerned with this slight ambiguity. When x0 = 1 and
f(t) = t we recover the standard logarithm (on what interval?). We can arrange things (by
choosing appropriate constants) as well so that elog f = f , justifying the notation.

Another exercise: check that 2i tan−1(x) + iπ is a logarithm of the non-vanishing function
(x − i)/(x + i) (remember we are only using real variables x!). Thus using the formulas
above, we really have reduced things to non-trigonometric functions. (Note: I did not do
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this, so if you want to do it, I will include your computations in this document and cite your
good work.)

3. Elementary fields and functions

Some important definitions and notions.

Definition 3.1. If f1, ..., fn are meromorphic functions (that is, quotients of analytic func-
tions), then C(f1, ..., fn) denotes the set of meromorphic functions h of the form

h =
p(f1, ..., fn)

q(f1, ..., fn)
=

∑
αe1,...,enf

e1
1 · · · f en

n∑
bj1,...,jnf

jn
1 · · · f

jn
n

for polynomials p, q in n variables, with q(f1, ..., fn) 6= 0.

Example. The field K = C(x, sin(x), cos(x)) is the set of ratios

p(x, sin(x), cos(x))

q(x, sin(x), cos(x))

for polynomials p, q ∈ C[X, Y, Z] such that q(x, sin(x), cos(x)) 6= 0. For example, the poly-
nomial Y 2 + Z2 − 1 won’t do.

Definition 3.2. A fieldK of meromorphic functions is an elementary field ifK = C(x, f1, ..., fn)
with each fj either an exponential or a logarithm of an element of Kj−1 = C(x, ..., fj−1) or
else algebraic over Kj−1 in the sense that P (fj) = 0 for some P (T ) ∈ Kj−1[T ] with all
coefficients lying in Kj−1. A meromorphic function is an elementary function if it lies in an
elementary field of meromorphic functions.

Example. Recall the function given above,

f(x) =
x1/3 + πx log(xe

x
)

2x− sin(x)
.

Then f is elementary, and an elementary field containing f is C(x, x1/3, sin(x)).

Example. An example of an “algebraic” function in the definition 3.2 is given by g(x) =√
x+ 3
√
x. We think of g as lying in the field C(x,

√
x, 3
√
x) with

√
x algebraic over C(x) (as

a root of T 2 − x ∈ C(x)[T ]), and 3
√
x algebraic over C(x,

√
x) (similarly).

The following theorem will give us much of the tools we need to prove that functions are
not elementary, which at present does not seem like an obvious task to go about.

Theorem 3.3. If K is an elementary field, then it is closed under the operation of differ-
entiation.
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Proof. We write K = C(x, f1, ..., fn) and induct on n. The case of n = 0 is the case of
K = C(x), and the standard formulas for differentiating sums, products, and quotients of
(polynomial) functions show that this field is indeed closed under differentiation. For the
general case we have by induction that K0 = C(x, f1, ..., fn−1) is closed under differentiation,
and K = K0(fn) with fn either algebraic over K0 or a logarithm or exponential of an element
of K0. We check now that it suffices to show that f ′n ∈ K0(fn).

Under this assumption, for any polynomial P (T ) =
∑

j≥0 ajT
j ∈ K0[T ] we have

P (fn)′ = a′0 +
∑
j≥1

(a′jf
j
n + jaj−1f

j−1
n f ′n) ∈ KK0(fn)

since a′j ∈ K0 by assumption. Thus when P,Q ∈ K0[T ] are polynomials over K0 with
Q(fn) 6= 0, we have(

P (fn)

Q(fn)

)′
=
Q(fn)P (fn)′ − P (fn)Q(fn)′

Q(fn)2
∈ K0(fn) = K.

So, it just remains to check that f ′n lies in K0(fn) when fn is either algebraic over K0 or
the exponential or logarithm of an element of K0. Standard formulas for differentiating
logarithms and exponentials (of functions!) take care of the latter two cases.

To treat the case of fn being algebraic over K0, suppose we have P (fn) = 0 for some
P = Tm + am−1(x)Tm−1 + · · ·+ a0(x) ∈ K0[T ]. Further choose P of minimal degree, so that
P ′(T ) = mTm−1 + (m− 1)am−1(x)Tm−1 + · · ·+ 2a2(x)T + a1(x) with degree m− 1 satisfies
P ′(fn) 6= 0. However:

0 = P (fn)′ =
∑
j>0

jaj(x)f j−1
n fn′ +

∑
j<m

a′j(x)f j
n = P ′(fn)f ′n +

∑
j<m

a′j(x)f j
n,

so P ′(fn)f ′n = −
∑

j<m a
′
j(x)f j

n ∈ K0(fn). Since P ′(fn) 6= 0 and lies in K0(fn), we are done

after dividing through by P ′(fn). �

Definition 3.4. A meromorphic function field which is closed under differentiation is called
a differential field.

Remark. The preceding theorem says that elementary fields are differential fields, but the
proof says more. Namely, we’ve shown that expanding a differential field by adjoining a
function which is the logarithm or exponential of an element of that field, or is algebraic
over that field, gives yet another differential field.

Definition 3.5. A meromorphic function f can be integrated in elementary terms if f = g′

for an elementary function g (and so f is necessarily elementary, by 3.3).

3.5 captures the reasonable intuition for what gives an “elementary formula” for finding
an anti-derivative of a function you might find in a calculus class, with the added generality
of considering C-valued functions instead of the more typical R-valued ones.
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It is important to note, however, that if we did not include the addition of complex
coefficients, that we would have the wrong definition of elementary integrability. A key
example witnessing this necessity is the meromorphic function 1/(1 + x2). Under any rea-
sonable definition we would like to say that this function admits an elementary integral
(such as tan−1(x)). This is the case in the C-valued setting, since as noted above we have
tan−1(x) = log((x+ i)/(x− i)). However if we work only in the R-valued setting, then it can
be proved that 1/(1 + x)2 is not integrable over R in elementary terms (see [2, p. 968] for a
rigorous proof).

One might want instead now to just throw in all of the usual trigonometric functions
and their inverses in the definition of an elementary field, but this turns out also to be
the wrong thing to do. This is because in (the proofs of) the results we will state in the
following section, one needs to work out elementary functions as solutions to simple first-
order differential equations, and trigonometric functions aren’t.

4. Two integrability criteria, and applications

For the results in this section that we do not prove, see the homepage for documents
containing proofs.

The main theorem we will state (and punt the proof of) is due to Liouville, and it as-
serts that if an elementary function is integrable in elementary terms then there are severe
constraints on the possible form of an antiderivative.

Theorem 4.1 (Liouville). Let f be an elementary function and let K be an elementary field
containing f . The function f can be integrated in elementary terms if and only if there exist
nonzero c1, ..., cn ∈ C, nonzero g1, ..., gn ∈ K, and an element h ∈ K such that

f =
∑

cj
g′j
gj

+ h′.

The key feature is that the gj’s and h can be found in any elementary field containing f .
In this setting

∑
cj log(gj) + h gives an antiderivative of f in terms of elementary functions.

A consequence of 4.1 is the following, extra criterion.

Theorem 4.2. Choose f, g ∈ C(x) with f 6= 0 and g nonconstant. The function f(x)eg(x)

can be integrated in elementary terms if and only if there exists a rational function R ∈ C(x)
such that R′(x) + g′(x)R(x) = f(x) in C(x).

The content of this theorem isn’t that one can find a solution to the given differential
equation as a C-valued differentiable function of x, indeed via integrating factors we can
always write down such a solution. Rather, we obtain a solution with the very special
property that it is a rational function in x.

Modulo the proof of these results, we now prove the non-integrability of the two examples
given in the opening section.
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Example. Taking f = 1 and g = −x2 in the statement of 4.2, we need only to show that
the differential equation R′(x) − 2xR(x) = 1 in C(x) has no solution (in C(x)). The
method of integrating factors gives a formula for the general function solution, namely
Rc(x) = e−x

2 ∫
e−x

2
dx+ c with c ∈ C, but we cannot show by inspection that this is never a

rational function, since we don’t know how to describe
∫
e−x

2
dx in the first place! However

this does yield a significant simplification of our original problem of finding an elementary
antiderivative for f , since now we have concluded that any such antiderivative must have
the form e−x

2
r(x) for some rational function r ∈ C(x).

We argue by contradiction. If there does exist a solution R ∈ C(x) then R is certainly
nonconstant, and we claim that R is not a polynomial in x. If it were, then R′(x)− 2xR(x)
is a polynomial of degree 1 greater than the degree of R, so it is not 1. Thus after reducing
we must have R(x) = p(x)/q(x) for nonzero relatively prime polynomials p, q ∈ C[x] with q
nonconstant. The defining differential equation dictates that (p(x)/q(x))′− 2x(p(x)/q(x)) =
1.

By the fundamental theorem of algebra, q has a root z0 ∈ C. Relative primality of
p and q implies that p(z0) 6= 0. Hence if z0 is a root of q with multiplicity m ≥ 1, then
p(x)/q(x) = h(x)/(x−z0)m for h(x) ∈ C(x) having numerator and denominator nonvanishing
at z0. Now we differentiate:(

p(x)

q(x)

)′
=
−mh(x)

(x− z0)m+1
+

h′(x)

(x− z0)m

so passing to a limit z → z0 in C we see that (p(x)/q(x))′|x=z0 has absolute value that blows
up like A/|z − z0|m+1 with A = |mh(z0)| 6= 0. But, | − 2z · (p(z)/q(z))| has growth bounded
by a constant multiple of 1/|z − z0|m as z → z0 in C, so∣∣∣∣((p(x)

q(x)

)′
− 2x ·

(
p(x)

q(x)

))
|x=z

∣∣∣∣ ∼ A

|z − z0|m+1

in the limit z → z0 in C. But this contradicts the identity (p(x)/q(x))′− 2x(p(x)/q(x)) = 1.

Example. We return now to the logarithmic integral Li(x) =
∫
dt/ log(t) ≈

∫
(eu/u)du.

Taking f = 1/x and g = x in 4.2, to prove that the logarithmic integral cannot be expressed
in elementary terms it suffices to show that the differential equation R′(x)+R(X) = 1/x has
no solution in C(x). Clearly such a solution R is not a polynomial in x, so writing R = p/q
in reduced form with q ∈ C[x] nonconstant, there is a root z0 ∈ C of q with multiplicity
m ≥ 1. Thus R′(x) has a zero of order m+ 1 at z0 and so as in the previous example we can
see that 1/x = R′(x) + R(x) blows up like a nonzero constant multiple of 1/|z − z0|m+1 in
the limit z → z0. However the only a ∈ C for which |1/z| has explosive growth in absolute
value as z approaches a is a = 0. Hence z0 = 0. But as z → 0 we would then have that |1/z|
grows like a nonzero constant multiple of z/|z − z0|m+1 = 1/|z|m+1, a contradiction.
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