
On-line Symbolic Constraint Embedding

for Simulation of Hybrid Dynamical Systems

R. Brent Gillespie, Volkan Patoglu and Islam I. Hussein

Department of Mechanical Engineering, University of Michigan,

2350 Hayward Ave, Ann Arbor, MI 48109, USA

E. R. Westervelt

Department of Mechanical Engineering, The Ohio State University,

650 Ackerman Rd, Suite 255, Columbus, OH 43202, USA

Abstract. In this paper we present a simulator designed to handle multibody

systems with changing constraints, wherein the equations of motion for each of its

constraint configurations are formulated in minimal ODE form with constraints em-

bedded before they are passed to an ODE solver. The constraint-embedded equations

are formulated symbolically according to a re-combination of terms of the uncon-

strained equations, and this symbolic process is undertaken on-line by the simulator.

Constraint-embedding undertaken on-the-fly enables the simulation of systems with

an ODE solver for which constraints are not known prior to simulation start or for

which the enumeration of all constraint conditions would be unwieldy because of

their complexity or number. Issues of drift associated with DAE solvers that usually

require stabilization are sidestepped with the constraint-embedding approach. We

apply nomenclature developed for hybrid dynamical systems to describe the system

with changing constraints and to distinguish the roles of the forward dynamics

solver, a collision detector, and an impact resolver. We have developed a MATLAB r©

toolbox for symbolically generating equations of motion using Kane’s method and

prototyped a simulator with on-line constraint embedding and demonstrated the

design in three representative examples.

Keywords: Symbolic Manipulation, Changing Constraints, Constraint Embedding,

Hybrid Dynamical Systems

This paper has not been submitted elsewhere in identical or similar

form, nor will it be during the first three months after its submission

to Multibody System Dynamics.

c© 2004 Kluwer Academic Publishers. Printed in the Netherlands.

symnum_review_1.tex; 3/06/2004; 2:22; p.1

2 B. Gillespie

1. Introduction

Various methods are available for the production of the equations of

motion for constrained multibody systems, and each method typically

produces the equations in a particular form. While the equations are

equivalent in the sense that they possess the same solution, the form

of the equations usually dictates which of several available numerical

methods may be applied to obtain that solution. While the following

classification is not exhaustive, let us identify three major families for

the production and solution of the equations of motion for constrained

multibody systems (see [14] for a similar classification): 1) constraint

appending using the Method of Lagrange Multipliers, which produces

differential algebraic equations (DAEs) for solution by a DAE solver,

2) projecting the unconstrained equations through a matrix produced

numerically, which produces DAEs or ODEs requiring stabilization, and

3) symbolic constraint embedding, which produces ODEs in reduced

form (containing only those variables associated with the degrees of

freedom of the constrained system) that do not require stabilization.

Basically a whole spectrum of techniques is available to account for

the effects of constraints: from the numerical Lagrange multiplier and

projection methods to the symbolic constraint embedding methods.

The constraint embedding approach is appealing because it permits one

to apply an ODE solver, which generally requires less expertise than a

DAE solver. The constraint-embedded equations are fewer in number

and have fewer unknowns than their constraint-appended counterparts,

which can lead to compact and numerically efficient equations, though

such an outcome also requires the judicious use of generalized speeds

(quasi-velocities) [25] [17].1 On the other hand, DAE solvers offer a

solution to the constrained system dynamics without requiring the

1 The reduced equations are often dismissed as less numerically efficient [14],

[7], especially given the availability of sparse matrix techniques for the constraint-

symnum_review_1.tex; 3/06/2004; 2:22; p.2

On-line Symbolic Constraint Embedding for Hybrid Dynamical Systems 3

symbolic operations involved in eliminating dependent variables. One

simply needs to invoke a high index DAE solver or negotiate the options

available for index reduction and stabilization to ensure that the DAE

solver provides a solution that satisfies the requirements of a given

application [7].

In addition to relationships between the formulation method and

the resulting form of the equations, one can consider whether the

equations are particularized to a given multibody system description

during compile-time or during run-time (simulation). Generally speak-

ing, each formulation method has been developed with an eye toward

application either during compile-time or during run-time but not both.

For example, Kane’s method is generally applied to build customized

equations during compile-time, using computerized symbolic algebra.

The Newton-Euler approach, on the other hand, is often used to par-

ticularize general-purpose equations to the given system description

at run-time, setting numerical values to appropriately couple various

force and moment balances. Aside from choosing a set of generalized

coordinates, Lagrange’s equations are also often particularized to a

given problem at run-time. While the various needs of computational

efficiency and flexible system description have driven the development

of each method toward application either during compile-time or run-

time in the past, new applications are appearing that motivate a re-

investigation into the advantages available from each method and their

suitability for application symbolically or numerically.

Now, in certain multibody systems, changes in constraint condition

are likely to occur during the time period in which the solution of the

equations of motion is desired. Such systems are said to have changing

topology [11], [37] or intermittent motion [12]. Choosing a solution

method and concomitantly, choosing a formulation method requires

appended equations. However, the judicious use of generalized speeds is not usually

considered in such estimations.

symnum_review_1.tex; 3/06/2004; 2:22; p.3

4 B. Gillespie

special consideration for such systems. Also, whether the constraint

descriptions are available prior to run-time may be critical to the choice

of equation production and solution method.

Within the constraint-appending and numerical projection methods,

approaches to handling changing constraints are readily available. The

core unconstrained equations remain untouched through the change in

constraint, so changes may be reflected simply by swapping the con-

straint equations that are appended or imposed numerically during each

epoch of the simulation [12]. Even constraints that first appear during

run-time can be handled, since the appropriate algorithms are essen-

tially components of the numerical simulator. Within the constraint-

embedding approach, on the other hand, handling changing constraints

is a little more delicate. Nominally, the entire set of equations requires

re-formulation upon each change in constraint condition. If all con-

straint conditions can be enumerated prior to simulation, then quite

plausibly the various constrained system formulations could be linked

together at run-time to form a hybrid dynamical system [10]. Then

the constraint conditions active at any given time in simulation may

be driven by run-time variables. However, constraint conditions that

appear for the first time during run-time cannot be accommodated.

If changes in constraint condition that arise during run-time are to be

handled using the constraint embedding approach and the concomitant

advantages are to be enjoyed, including numerical efficiency and use of

an ODE solver without stabilization, then a means to symbolically

embed constraints during run-time must be developed.

Examples of systems in which constraints cannot be fully described

before run-time include shared gaming environments, where objects

passed between users or between a user and a software agent are subject

to on-line modifications of their composition or surface shape. Another

example is a design environment in which multiple users collaborate on

the specification of a virtual artifact. Also, retaining the description of a

symnum_review_1.tex; 3/06/2004; 2:22; p.4

On-line Symbolic Constraint Embedding for Hybrid Dynamical Systems 5

constraint until run-time allows data-hiding in a distributed simulation

environment. For example, the parameterization of the shape of an

object may be hidden from the simulation routine until the constraint is

actually imposed. Data hiding allows libraries of constrained multibody

systems to be developed and maintained independent of their function

within simulations. Another class of applications that motivates on-

line constraint handling lies in systems for which the enumeration of

all constraint conditions prior to simulation would be unwieldy because

of their complexity or number. On-line constraint handling would allow

only those constraints to be considered that are actually encountered

during simulation.

A specific example in which constraints arise during run-time is a

multi-player video game, played on two or more networked computers.

Two or more users who interact with the same dynamical system may

form a kinematic chain whose equations are stiff relative to a simulation

rate constrained by the network. As an alternative to a shared solution

constrained by a slow network link, each computer may simulate the

dynamics of its nearest neighbors, perhaps including models of the

linked users. The dynamical equations or constraint equations would

be transmitted across the network in symbolic form, and possibly with

on-the-fly updates. The local dynamical equations could be combined

with the constraint equations to form a local constrained dynamical

description. State or parameter errors could then be communicated to

ensure appropriate interaction.

In addition to changing contact conditions, the traversal of the so-

lution through or near to a representation singularity motivates the

consideration of modifying system equations on-the-fly. In this case,

the modifications needed pertain to the choice of independent configu-

ration and/or motion variables. For certain mechanisms (i.e. robots,)

it may prove difficult to define a single set of independent motion

variables suitable for all regions of the coordinate space. In such cases,

symnum_review_1.tex; 3/06/2004; 2:22; p.5

6 B. Gillespie

a change in the choice of independent motion variables may be under-

taken during simulation to avoid break-down of the solution method.

Like constraint handling, this process may be undertaken either nu-

merically or symbolically, but invariably a run-time process is needed.

Again, the DAE approach essentially avoids this problem since it does

not rely on a model in independent coordinates and is essentially run-

time implemented. Use of the constraint embedding approach to avoid

representation singularities by changing coordinates would require the

development of constraint embedding routines that work on-line. That

is, they would require the incorporation of symbolic routines into the

run-time simulator code.

In fact, several recent innovations have enabled the development of

new approaches to multibody code formulation and solution. Namely,

fast computerized symbolic algebra is available and interpreted lan-

guages such as MATLAB allow combinations of symbolic and numerical

operations to be undertaken using ad hoc and iterative code proto-

typing approaches. The opportunity has arisen to blur the distinction

between symbolic compile-time and numerical run-time and breakdown

traditional tradeoffs between formulation approach and solution ap-

proach. In this paper, we propose to incorporate symbolic manipulation

routines into the run-time solution code. This might seem like an un-

likely approach, given the high computational demands of symbolic

routines and the very distinct heritage of symbolic and numerical meth-

ods. However, that is precisely what we have undertaken in our work

and demonstrate in this paper.

We propose to apply computerized symbolic algebra not only to the

process of formulating equations of motion, but also to the process of

simulation. Our aim is to expand the tools available for simulation of

systems with changing topology to the point where they will reflect the

variety of options available for constant topology systems. We antici-

pate applications in which the relative simplicity and stability of ODE

symnum_review_1.tex; 3/06/2004; 2:22; p.6

On-line Symbolic Constraint Embedding for Hybrid Dynamical Systems 7

solvers are desired and the ability is required to impose the effects

of constraints whose specifications are not available prior to run-time.

We also anticipate the availability of sufficient computational power

to invoke the symbolic operations necessary for eliminating dependent

coordinates within a single time-step in a constant step-size solver. This

would enable hardware- or human-in-the-loop simulation for systems

with changing constraints, where the particular constraint conditions

in effect are driven by a human or piece of hardware linked to the

simulated dynamics through a computer interface.

Likewise, by incorporating symbolic routines into the run-time sim-

ulator code, representation singularities can be avoided using a change

in coordinates, yet simple ODE solvers applied to equations in reduced

(constraint embedded) form. Detection of the suitability of the active

set of independent coordinates can be accomplished using a check of

the condition number of the constraint Jacobian, and a new set can

be chosen and re-formulation undertaken to avoid singularities, for

example as described in [29].

We are particularly interested in the use of on-line constraint em-

bedding to create virtual environments for exploration by a human user

through a haptic interface. Our simulator is intended to facilitate inter-

action with mechanisms that include escapements, stops, and latches

specified by a geometric model that retains significant independence

from the dynamic solution engine. Our simulator treats collisions and

transitions between free, rolling, and sliding motion, all with an ODE

solver. We aim to reproduce the effects of making, possibly maintaining,

and breaking contact between bodies, knowing that these effects are

often incited by a user exploring a virtual environment. Naturally,

interaction with a user in a virtual environments requires real-time

simulation.

We have prototyped a simulator with on-line constraint embedding

in MATLAB r©. Development of the equations of motion is based on

symnum_review_1.tex; 3/06/2004; 2:22; p.7

8 B. Gillespie

Kane’s method and the on-line re-formulation in independent coor-

dinates is based on a re-combination of terms in the unconstrained

equations according to the algorithm outlined in [36] and further ex-

tended in [25]. Although our simulator is currently not capable of

real-time constraint embedding within a single time-step in a fixed-step

solver, we do demonstrate embedding on-the-fly that runs in parallel

with simulation and that is initiated a short period before the new

constrained equations are needed.

In the following sections, we further review the field of constrained

system formulation and simulation, contrasting on-line constraint em-

bedding to existing methods. Thereafter, we develop nomenclature

from the field of hybrid dynamical systems that we use to lay out

our simulator design. Finally, we demonstrate the simulator in three

examples and conclude.

2. Dynamical System Modelling

2.1. Kinematical and Dynamical Differential Equations

Consider a multibody system S whose configuration is described by

n generalized coordinates qr (r = 1, . . . , n). To enable the formulation

of compact and efficient equations of motion [31], define n generalized

speeds ur (r = 1, . . . , n) as linear combinations of the generalized co-

ordinate derivatives q̇r (r = 1, . . . , n) [17]. Express these definitions

using

u
∆
= Y q̇+ Z, (1)

where u and q̇ are n× 1 matrices of ur and q̇r, and where the elements of

the n×nmatrix Y and n× 1 matrix Z are functions of qr (r = 1, . . . , n)

and possibly time t. The matrices Y and Z in Eq. (1) must be chosen by

the analyst in such a way that the reciprocal relations exist in which

symnum_review_1.tex; 3/06/2004; 2:22; p.8

On-line Symbolic Constraint Embedding for Hybrid Dynamical Systems 9

the generalized coordinate derivatives are expressed in terms of the

generalized speeds:

q̇ =Wu+X, (2)

where the elements of the n×n matrix W and n× 1 matrix X are

functions of qr (r = 1, . . . , n) and possibly time t. Equation (2) is a

matrix arrangement of the kinematical differential equations, and forms

the first of two portions of the state equations or equations of motion

that govern the behavior of system S.

The second portion, the dynamical differential equations, may be

expressed in matrix form as

M(q)u̇ = f(q,u, t) (3)

which may be derived, for example, using Kane’s method. In Kane’s

method, one carries out dot products between partial velocity vectors

and applied and inertia forces, and between partial angular velocity

vectors and applied and inertia torques. The partial velocity and partial

angular velocity vectors are obtained by inspection of the pertinent

velocity and angular velocity expressions, identifying coefficients of the

corresponding generalized speeds. Then, a summation of terms over

all particles and bodies in S produces expressions for the generalized

active force Fr (r = 1, . . . , n) and the generalized inertia force F
∗

r (r =

1, . . . , n). The dynamical differential equations are then contained in

Fr + F ∗

r = 0 (r = 1, . . . , n), which may be arranged as in Eq. (3).

If there are no configurations of the system for which the motion

of one or more bodies is not resisted by inertia, then the mass matrix

M is nonsingular and the equations of motion can also be expressed in

explicit form as

u̇ = F(q,u, t) (4)

where F is a n× 1 matrix of generalized applied and inertia force terms.

In this paper, we will focus on systems for which the mass matrix

symnum_review_1.tex; 3/06/2004; 2:22; p.9

10 B. Gillespie

is nonsingular, since this is the case for the majority of systems of

engineering interest. We refer readers to Chapter 6 in [30] for a detailed

treatment of the singular case.

2.2. Constraint Equations

System S may be subject to constraints, including constraints that act

only during a time segment within the time interval of interest. Suppose

there are l configuration constraints given as

Φ(q) = 0. (5)

In certain formulations, to be reviewed in the next section, configu-

ration constraints are treated as motion constraints by differentiating

them with respect to time:

Φqq̇ = 0. (6)

In place of imposing the configuration constraints within the solver

(say, by performing Newton iterations on Eq. (5) at each time step),

the configuration can be found by integrating the motion constraints.

However, numerical or initialization errors in the motion constraints

will lead to violations of the configuration constraints –violations that

can accumulate and slow down the integration over long simulations.

Since the initialization and round-off errors at the motion (velocity)

level will remain relatively constant during integration [14], the viola-

tion to the configuration constraints will only grow linearly with time.

There exist simple stabilization techniques to overcome this problem

[31].

Let there be an additional m− l motion constraints, where l ≤ m ≤

n. Suppose further that the motion constraints are linear in the ur, so

that after the application of Eq. (2), the differentiated configuration

constraints can be combined with the motion constraints, yielding

symnum_review_1.tex; 3/06/2004; 2:22; p.10

On-line Symbolic Constraint Embedding for Hybrid Dynamical Systems 11

Bu+ C = 0, (7)

where the elements of the m×n matrix B and the m× 1 matrix C are

functions of qr (r = 1, . . . , n) and possibly time t.

Some of the index reduction formulations require that the con-

straints (7) be differentiated to the acceleration level

Bu̇+ Ḃu+ Ċ = 0, (8)

so that they can be solved together with the dynamical differential

equations.

Care should be taken when imposing acceleration level constraints

instead of their motion-level or configuration level counterparts since

in this case the drift phenomenon is critical. The initialization and

numerical errors that occur at the acceleration level will lead to motion-

level violations that grow linearly and configuration-level violations

that grow quadratically in time. Therefore, it is always good practice

to use stabilization with these formulations.

Equations (4) together with configuration and motion constraints

form a system of n first-order differential and m algebraic equations to

be solved for the n generalized speeds ur. Note that the n first-order

kinematical differential equations (2) are typically solved alongside Eqs.

(4) and (7) to determine the generalized coordinates qr.

Although we have identified more equations than unknowns, the

system is in fact not overdetermined, since associated with the con-

straint equations are constraint forces that restrict the motion of S.

There will be m constraint force components, one for each degree of

freedom that is restricted. Let us call the constraint force components

ξs (s = 1, . . . ,m).

There are three general approaches to the analysis of constrained

dynamical systems as discussed in Section 1. The first employs the

Method of Lagrange Multipliers, the second a numerical projection

symnum_review_1.tex; 3/06/2004; 2:22; p.11

12 B. Gillespie

matrix R, and the third is called embedding the constraints. The next

section discusses these formulations along with their implementation in

simulators to handle systems with changing constraints.

3. Approaches to the Formulation and Simulation of

Systems Subject to Changing Constraints

s dts dt

s dt s dt

DAEs, constraint appending DAEs, projecting constraints

p

m

n

m

p

p

ODEs, off-line constraint embedding
ODE, on-line constraint embedding

I. II.

III. IV.

Figure 1. Four designs for a simulator based on I.) The Method of Lagrange Multipli-

ers, II.) Projection Matrices, III.) Off-line Constraint Embedding, and IV.) On-line

Constraint Embedding (introduced in this paper). Parameter n stands for the num-

ber of generalized speeds, m stands for the number of algebraic constraints and

p
∆

= n−m. Stacked and shaded boxes indicate the manner in which each approach

may be adapted to treat systems with changing constraints.

Figure 1 shows schematically four possible designs for an interactive

simulator capable of handling systems subject to changing constraints.2

2 There exist other alternatives that will not be considered in this paper. One

of them is based on computing the constraint forces explicitly as the solution of a

linear complementarity problem and applying them to the unconstrained system of

equations [2] [23]. Satisfaction of the constraints then follows by the action of the

constraint forces, through the dynamical analysis.

symnum_review_1.tex; 3/06/2004; 2:22; p.12

On-line Symbolic Constraint Embedding for Hybrid Dynamical Systems 13

This section will be organized around Figure 1. The information con-

tained in each schematic representation is twofold. First, the labelled

boxes indicate the number of dynamical differential equations and al-

gebraic constraint equations and make the distinction between the use

of the constraints to eliminate dependent coordinates and their use

to augment the analysis. Secondly, the arrangement of shaded boxes

depicts how each simulator is cast to handle changing constraints.

Design I is based on the Method of Lagrange Multipliers. After

the unconstrained system of equations is developed, the Method of

Lagrange Multipliers is used to append the constraint equations, by

introducing m multipliers λs (s = 1, . . . ,m) and adding the term BTλ

to Eq. (3) leading to

M(q)u̇ = f(q,u, t) +B(q)Tλ (9)

where λ is a m× 1 column matrix of undertermined multipliers. The

multipliers λ may be identified with the constraint force components

[13]. If no motion constraints are imposed, Eqs. (9) may be solved

together with (5) as a DAE of index 3. Although index-3 solvers are

available [26], the algebraic constraint equations are usually differenti-

ated once or twice to reduce their index and thus prepare the equations

for the more readily available index-2 or index-1 DAE solvers. Solv-

ing Eq. (9) together with (7) produces a DAE of index 2 or solving

with equation (8) produces an index-1 DAE. Both index-1 and index-

2 formulations require stabilization to the constraint manifold since

information is lost when differentiating the constraint equations. Baum-

garte stabilization [4] and the Augmented Lagrangian formulation [5]

are among the numerous stabilization methods available for index-1

formulations. A stabilized formulation also exists for index-2 DAEs [8].

For the treatment of systems with changing constraints using the

simulator architecture of Design I, the core n equation Eqs. (9) remain

the same throughout the simulation (except for the constraint Jacobian

symnum_review_1.tex; 3/06/2004; 2:22; p.13

14 B. Gillespie

B(q), which reflects only the active constraints). Them active algebraic

constraint equations are applied to the integration and may change

during simulation. The simulator designs described in [12] and [20]

fit Design I. In [12, 38], Haug et.al. demonstrated the management of

constraints within the Method of Lagrange Multipliers and the use of

DAE solvers.

Design II makes use of numerical projection methods. The n un-

constrained equations (9) are projected onto the p
∆
= n−m dimensional

constraint manifold by pre-multiplying with a p×n projection matrix

R, which is produced numerically during solution from the constraint

Jacobian B via an SVD [34], QR decomposition [19], or Gauss tri-

angularization [33]. The projection matrix R satisfies the equation

RTBT = 0, and the projected dynamical differential equations are given

by

RTM u̇ = RT f. (10)

These numerically projected equations require simultaneous solution of

the constraint equations, so that together with the constraint equations,

the problem may be formulated as an index-2 DAE of p + m = n

equations. Twice differentiating the configuration constraints produces

an ODE, although its solution again requires stabilization.

For the treatment of systems with changing constraints, the simula-

tor architecture of Design II features p dynamical equations produced

by numerical projection. The m algebraic constraint equations are

solved simultaneously, and the dynamical equations must be projected

using a new projection matrix each time the constraints change. Adap-

tation of the projection methods to handle changing constraints is

relatively easy since whenever a change in constraints occurs: only the

projection matrix R is affected due to the change in constraint Jacobian

B; however, R is already generated on the fly numerically.

In Design III the configuration constraints are differentiated and

grouped with the motion (nonholonomic) constraints to produce con-

symnum_review_1.tex; 3/06/2004; 2:22; p.14

On-line Symbolic Constraint Embedding for Hybrid Dynamical Systems 15

straint equations that are linear in the motion coordinates, as in Eq. (7).

These constraints are then used to undertake a local coordinate trans-

formation to eliminate dependent motion variables from the equations

[17]. This process projects the dynamical differential equations onto

the p-dimensional constraint manifold, in which the solution of (4) is

constrained to lie. But here the projection is carried out using symbolic

operations (realizing a dot product) in contrast to numerical operations

and is called embedding the constraints. For a geometrical interpretation

of the projection operation carried out in Kane’s method, see [21] or

[9].

Thus for treating systems subject to changing constraints, simulator

Design III features switching among a set of ODEs, each produced by

embedding the pertinent constraints. Since the constraints are embed-

ded, there are only p dynamical equations to solve for the system in each

of its constraint conditions where p may vary by condition. However,

in Design III, all of the constraints must be known prior to the time

of simulation. Such an approach is often suitable for the simulation of

mechanisms, as described in [10].

In Design IV, the configuration constraints are differentiated and

again grouped with the motion constraints and used to eliminate depen-

dent motion variables as in Design III. Again, the embedding process

yields only p dynamical differential equations for the system in each of

its constraint conditions. However, unlike Design III, the constraints

are embedded on-line (during simulation) through symbolic manip-

ulation of the dynamical equations. Thus, the equations resident in

the integrator are not simply swapped in and out; they are subject

to reformulation on the fly. The incorporation of on-line formulation

into the simulator design allows updates to the geometric model that

occur during simulation to be reflected in the behavior of the dynamic

model. The simulator architecture depicted in Design IV is the new

scheme proposed in this paper.

symnum_review_1.tex; 3/06/2004; 2:22; p.15

16 B. Gillespie

Whether embedding the constraints is undertaken at compile-time

or at run-time, to embed in Kane’s method, one expresses the m de-

pendent generalized speeds in terms of the remaining p independent

generalized speeds by carrying out linear operations on the constraint

equations (7). One may begin by re-ordering and partitioning the gen-

eralized speeds in (7) to produce:

B1

up+1

...

un

= B2

u1
...

up

+ C. (11)

where ur (r = 1, . . . , p) are the independent generalized speeds and

ur (r = p + 1, . . . , n) are the dependent generalized speeds. Further,

one must choose the B1 and B2 matrices so that Eq. (11) may be

solved uniquely for the dependent generalized speeds and the results

written in terms of D = B−1
1 B2 and E = B−1

1 C as:

up+1

...

un

= D

u1
...

up

+ E, (12)

where the elements of D and E are functions of qi (i = 1, . . . , n) and

possibly time t.

Now that the motion constraints have been expressed in an ex-

plicit linear form, the derivation of the constrained dynamical differ-

ential equations may proceed according to one of two methods. In the

first, Eq. (12) may be used to eliminate the dependent generalized

speeds from the analysis and Kane’s method applied as usual. Alter-

natively, the constrained dynamical equations can be obtained by a

re-combination of terms within the unconstrained dynamical equations.

Specifically, the constrained generalized active force F̃r (r = 1, . . . , p)

and the constrained generalized inertia force F̃ ∗

r (r = 1, . . . , p) may

be formed from the unconstrained generalized active force Fr (r =

1, . . . , n) and generalized inertia force F ∗

r (r = 1, . . . , n) as follows:

symnum_review_1.tex; 3/06/2004; 2:22; p.16

On-line Symbolic Constraint Embedding for Hybrid Dynamical Systems 17

F̃r = Fr +
n
∑

s=p+1

DsrFs (r = 1, . . . , p) (13)

F̃ ∗

r = F ∗

r +
n
∑

s=p+1

DsrF
∗

s (r = 1, . . . , p) (14)

where D was defined in Eq. (12). To eliminate the dependent gen-

eralized speeds and dependent generalized speed derivatives from the

resulting expressions, one may substitute from the motion constraints

(Eq. (12)) and differentiated motion constraints [25] [36]. (See also Eqs.

(4.4.3) and (4.11.4) in [17]).

The equations of motion in the independent generalized speeds are

then simply formed as:

F̃r + F̃ ∗

r = 0 (r = 1, . . . , p) (15)

which are only p ordinary differential equations in the p unknowns,

ur (r = 1, . . . , p). Finally, equations (15) may be used to produce

explicit equations for u̇r in the form

˙̃u = F̃(q, ũ, t) (16)

where ũ is a p× 1 matrix of the independent generalized speeds.

The resulting dynamic differential equations are a set of ordinary

differential equations, and yield to solution with a standard ODE solver.

Advantages associated with embedding constraints include the reduc-

tion in the number of equations to be integrated and robustness due

to the disappearance of the instability problem associated with the

integration of differentiated constraints in DAE solvers.

The process outlined above for obtaining equations of motion is

aided by the use of symbolic manipulation software. One such symbolic

package is Autolev [32] [16] and another is SymBody, a new toolbox for

MATLAB r© created by the authors and described in Section 5.5 below.

The recombination of terms prescribed in Eqs. (13) and (14) are

carried out during simulation using computerized symbolic algebra to

symnum_review_1.tex; 3/06/2004; 2:22; p.17

18 B. Gillespie

produce the equations in minimal form for the system in each of its con-

straint conditions, just before they are needed by the numerical solver.

Before demonstrating the process, we first introduce some notation for

hybrid dynamical systems, and then describe its incorporation with

two additional simulator components: a collision detector and impact

resolution algorithm.

In the following, we review the language of hybrid dynamical systems

and apply it to the formulation of a simulator to handle the interact-

ing continuous-time and discrete-time dynamics. The intention is to

capture both the “memory” in the continuous system dynamics and

the “memory” in the discrete dynamics and their interaction to create

a system whose behavior accurately reflects the behavior of its target

system.

4. Hybrid System Modelling

To prepare for the construction of a simulator that can advance the

solution of a constrained dynamical system through changes in the

constraints, reflecting changes in contact condition, we borrow nomen-

clature and modeling tools from the field of Hybrid Dynamical Systems.

Review papers in the field of hybrid dynamical systems include [1] and

[6]. The purpose of this section is to present a model that can sequen-

tially and interactively patch together various dynamical subsystems

with appropriate initial and final states.

Hybrid dynamical systems are systems that exhibit interacting dis-

crete state and continuous state dynamics. The term interacting in-

dicates that changes in discrete states influence the evolution of the

continuous dynamics and changes in continuous states influence evolu-

tion in the discrete dynamics. Such interaction precludes an analysis

that treats the continuous and discrete models separately.

symnum_review_1.tex; 3/06/2004; 2:22; p.18

On-line Symbolic Constraint Embedding for Hybrid Dynamical Systems 19

We shall concentrate here on hybrid dynamical systems in which

the discrete and continuous dynamics interact only at discrete points

in time known as events. This enables a description in terms of a

single discrete state subsystem, a collection of continuous state sub-

systems, and a description of the possible interactions between the two

subsystem classes. We will also restrict the discussion to systems in

which the continuous state dynamics can be modelled in the form of

ODEs or DAEs, defined on open subsets of the time interval of interest.

That is, we employ a continuous time formulation, realizing that for

numerical solution, these continuous dynamics will be approximated by

a discrete time system. To describe the discrete subsystem, we employ

a finite state machine. Together, the collection of continuous and dis-

crete subsystems expressed in this form may be represented in a hybrid

automaton [1] and [3]. A hybrid automaton, then, can be considered a

finite state machine in which the discrete states have been replaced by

co-called “modes”, each of which indicate a particular continuous dy-

namics. Each mode is a description of a dynamical system that applied

for a period of time that is governed by the discrete dynamics.

While the continuous state may change at any time, the state of

the discrete subsystem changes only at the events. At these events, the

discrete subsystem exerts its influence over the continuous dynamics in

one or both of two ways: a) by causing a switch in the active differen-

tial equations describing the continuous state evolution, and/or b) by

causing a jump or discontinuity in the continuous states.

The hybrid dynamics are abstracted into a collection S =
⋃nm

k=1 Sk,

of modes Sk, where nm is the number of modes and where the state

x(k) is defined as the collection of kinematical variables and dynamical

variables [q u]T] defined for mode Sk. The state within mode Sk

evolves according to the differential equation

ẋ(k) = F(k)(x(k), θθθθθθθθθθθθθ(k), t), (17)

symnum_review_1.tex; 3/06/2004; 2:22; p.19

20 B. Gillespie

where θθθθθθθθθθθθθ(k)(t) is an exogenous input for the k-th mode. The superscripts

(k) index not only the functions F but also the state x and input

θθθθθθθθθθθθθ to allow different state and input variable definitions and possibly

different state and input dimensions between modes. Note that for the

simulation of mechanical systems, whose state equations are generally

second order, the state x will comprise the generalized coordinates qr

(r = 1, . . . , n) and the generalized speeds ur (r = 1, . . . , p).

Also associated with each mode Sk is a set of pending transitions Jk

to other modes, where j ∈ J (k) is the index of the new mode following

the event and J (k) is the set of modes reachable from the k-th mode.

The timing of the events is determined by a switching function:

f
(k)
j,i (x

(k), θθθθθθθθθθθθθ(k)) = 0, i = 1, . . . , n
(k)
j , j ∈ J (k), (18)

where n
(k)
j is the number of transitions from mode k to mode j.

The time t∗ that, together with the state x(k)(t∗) and specified

motion θθθθθθθθθθθθθ(k)(t∗), produces a zero of switching function f
(k)
j,i is called a

switching instant; it triggers the associated transition. Once a transition

is triggered, an associated reset function φφφφφφφφφφφφφ
(k)
j,i is executed to map the

final state values x(k) in the current mode to the initial state values

x(j) in the next mode.

x(j) = φφφφφφφφφφφφφ
(k)
j,i (x

(k), t∗), i = 1, . . . , n
(k)
j , j ∈ J (k) (19)

A special reset function sets the initial conditions for the initial mode

S1 (The initial mode is arbitrarily labelled with k = 1).

x(1)(0) = x
(1)
0 (20)

Evaluation of the hybrid system can be viewed as a sequence of

subproblems, each characterized by a continuous evolution in a mode

terminated by an event (i.e. zero crossing of a switching function), and

then evaluation of the reset functions to initialize the new mode.

It is convenient to represent the interacting continuous and discrete

dynamics of the hybrid system using an automaton as in Figure 2. This

symnum_review_1.tex; 3/06/2004; 2:22; p.20

On-line Symbolic Constraint Embedding for Hybrid Dynamical Systems 21

PSfrag replacements

ẋ(1) =

ẋ(2) =

ẋ(3) =

F(1)(x(1), θ(1), t)

F(2)(x(2), θ(2), t)

F(3)(x(3), θ(3), t)f
(1)
2,1 (x(1), θ(1)) = 0

f
(1)
2,2 (x(1), θ(1)) = 0

f
(2)

3,1
(x
(2) , θ

(2)) = 0

f
(3)
1,1 (x

(3), θ(3)) = 0

f
(3)
3,1 (x

(3), θ(3)) = 0

x(2) = φ
(1)
2,1(x

(1), t)

x(2) = φ
(1)
2,2(x

(1), t)
x
(3) = φ

(2)
3,1
(x
(2) , t)

x(1
) = φ

(3)
1,1(x

(3), t)

x(3) = φ
(3)
3,1(x

(3), t)

Figure 2. An example hybrid automaton with three modes and five transitions.

simple hybrid automaton has 3 modes with two transitions from mode

1 to 2, one transition from mode 2 to 3, one transition from mode 3 to

1 and a self transition in mode 3.

5. Simulator Architecture

yes
stop

start

Set ICs

Formulate EOMs

Simulation

over?

no

pre-processing

run-time

Forward Dynamics

 Solver

Collision

Detector

Impact Resolver

collision

no collision

dynamic

 model

geometric

 model

contact

 model

Figure 3. Standard Simulation Flow Chart.

symnum_review_1.tex; 3/06/2004; 2:22; p.21

22 B. Gillespie

A simulator equipped to handle multibody systems with changing

constraint conditions requires three major components: a forward dy-

namics solver (an ODE or DAE solver), a collision detector, and a

means for resolving impacts as indicated in the flow chart in Figure

3. The forward dynamics solver advances the solution of F(k) in con-

tinuous time between events. The collision detector checks for contact

between bodies by evaluating a collection of transition functions f
(k)
j,i .

(Additional transition functions are used to detect interaction forces

that become tensile between unilaterally constrained bodies, to trigger

loss of contact.) The impact resolver, triggered into action by the col-

lision detector, computes reset functions φ
(k)
j,i to initialize the forward

dynamics solver.

Alongside these three major simulator components, there exist three

models for the system: a dynamic model, a geometric model, and a

contact model. Roughly, the numerical integrator will maintain the

dynamic model, the collision detector handles the geometric model, and

the impact resolver calls upon the contact model. The impact resolver

however, also consults the geometric model and possibly the dynamic

model to compute the appropriate impulse response between bodies.

The use of a collision detector and interaction calculator, as in Figure

3, ensures that interacting bodies respond to each other’s presence.

Note that the impact resolver is called only intermittently whereas the

collision detector and forward dynamics solver run continually, either

alongside or subsequent to each other in computational time.

Let us now consider each of the elements of the flow chart in greater

detail.

5.1. Forward Dynamics Solver

The forward dynamics solver operates on the equations of motion, a

set of differential equations in the configuration and motion variables

symnum_review_1.tex; 3/06/2004; 2:22; p.22

On-line Symbolic Constraint Embedding for Hybrid Dynamical Systems 23

and inertia parameters. The multibody model can contain embedded

or appended configuration or motion constraint equations written in

terms of certain geometric parameters that are not necessarily part of

the geometric model. In addition to new initial conditions from the

impact resolver, the forward dynamics solver may respond to forces

and moments applied during simulation, perhaps through the action of

a human user interacting through a haptic interface.

5.2. Collision Detector

A collision detector is an algorithm that operates on a continually

updated geometric model to determine points in time at which objects

make contact with one another. At initial contact, the collision detector

triggers the impact resolution algorithm that computes the interaction

forces or impulses that act, in simulation, to prevent interpenetration

of the two colliding objects.

A set of surface patches and their interconnection can be used to

describe the geometry of each body in the simulation environment.

The whole collection of surface patches along with its connected graph

is called the geometric model.

There exists an extensive literature on the collision detection prob-

lem. For a detailed overview of existing methods for different geometric

representations, we refer the reader to survey papers [15], [22]. In

previous work [27], we have also contributed a collision detector that

treats objects whose boundaries are represented using parametric sur-

face patches. In [27] we presented a method for finding and tracking

the closest points between two parametric surfaces based on a control

problem formulation and the design of a stabilizing controller. The

algorithm simultaneously accounts for the surface shape and motion

while asymptotically achieving (and maintaining) the closest points.

symnum_review_1.tex; 3/06/2004; 2:22; p.23

24 B. Gillespie

Features of this approach include its guaranteed stability and seamless

integration with the forward dynamics solver.

5.3. Impact Resolver

Impact resolution considers the problem of finding the separation ve-

locities of two contacting bodies given the approach velocities and

an appropriate contact model. Using Kane’s method, the problem is

formulated by expressing generalized impulse and momentum in terms

of independent generalized speeds and then calculating the change in

the generalized speeds under the assumptions dictated by a contact

model. Independent of the contact model used, the impact resolution

problem makes two assumptions: the configuration of the system does

not change due to impact and the forces other than the action-reaction

forces at the contact point can be ignored.

There exist several contact models in the literature [35], [18]. The

contact model proposed by Smith [35] consists of assumptions that

can be embodied in three equations about the impulse and relative

momentum during impact. The first equation is provided by assuming

that the components of the approach and separation velocities in the

contact normal direction are related by a factor ε, called the coefficient

of restitution. Two more equations can be formulated assuming that

the tangential contact forces obey Coulomb’s law of friction.

With these assumptions, the resolution model fully determines the

response of the system to an impact. If the coefficient ε is non-zero, then

the two bodies are guaranteed to rebound. Depending on whether the

tangential forces are inside the friction cone or not, the two bodies will

rebound in the direction of the contact normal at the contact point if

inside the friction cone and in a direction determined by impulses that

lie in the tangent plane if outside the friction cone. On the other hand,

if ε = 0, the two bodies will remain in contact. For a more detailed

symnum_review_1.tex; 3/06/2004; 2:22; p.24

On-line Symbolic Constraint Embedding for Hybrid Dynamical Systems 25

discussion of the contact and friction models, we refer the reader to

[35] and the references therein.

5.4. Simulator Flow of Operation

We are interested in combining a forward dynamics solver, a collision

detector, and an impact resolver to render the dynamics of a hybrid

system using only an ODE solver, and in such a way that changes in

the geometric model that occur on-line may be reflected in the simu-

lated behavior. Thus our job is to perform on-line symbolic embedding

of constraints. To lay out our architecture, we now elaborate on the

flowchart in Figure 3, describing the incorporation of symbolic routines

responsible for embedding constraints. Before presenting the elaborated

flowchart, further perspective on our simulator can be developed by

comparing Designs III and IV in Figure 1 in light of the example

hybrid automaton shown in Figure 2. In fact, the hybrid automaton

and the associated nomenclature in Section 4 is more suitably reflected

in Design III. Each mode contains a particular pre-compiled (constraint

embedded) dynamical model that will be passed to the integrator for

simulation during the epoch in which it is active. In effect, the simu-

lator switches among the pre-compiled models, as depicted in Figure

1, Design III. In this paper, however, we propose the use of on-line

symbolic manipulation to produce the dynamical models in each of

the automaton modes during run-time. One might think of each mode

containing the same core equations Fr + F ∗

r = 0 (r = 1, . . . , n), which,

when the mode is actually visited, are then modified to produce the

appropriate F̃r + F̃ ∗

r = 0 (r = 1, . . . , p) that reflect the presence of the

constraints identified with that mode. Using this on-line approach to

formulating the constrained equations, it becomes possible to handle

constraints whose full expression are not known at the simulation start.

symnum_review_1.tex; 3/06/2004; 2:22; p.25

26 B. Gillespie

Using on-line constraint embedding, the following steps must oc-

cur with each switching function zero-crossing: integration must be

stopped; the reset functions invoked and, if a new mode is triggered

reflecting the imposition of new constraints, then independent general-

ized speeds must be chosen and the dependent generalized speeds ex-

pressed in terms of the independent generalized speeds; the constrained

dynamical equations formulated; and finally, integration re-started.

yes

s dt

stop

start

Embed the constraints

Form F , F*

Formulate

constraint eqns,

Identify dependent

generalized speeds,

Form matrix D

Set ICs

Form F , F*rr

Simulation

over?

yes

no

no

Integrate one time-step

Invoke resetting

functions

φ
(k)

j,i

f
(k)

j,i

new

mode?

j = k

~
r r

~

pre-processing

run-time

> 0

< 0

main simulation

loop

F
(k)~

Evaluate

transition

functions

Forward Dynamics Solver

Collision

Detector

Impact Resolver

Figure 4. Simulation Flow Chart for Design IV. Double frames indicate symbolic

operations undertaken by SymBody.

symnum_review_1.tex; 3/06/2004; 2:22; p.26

On-line Symbolic Constraint Embedding for Hybrid Dynamical Systems 27

To reflect all the operations involved in real-time constraint embed-

ding, we present in Figure 4 an elaborated version of the flowchart of

Figure 3. Consider traversing a path through the flowchart starting

at the top. First, the unconstrained dynamical differential equations

Fr + F ∗

r = 0 (r = 1, . . . , n) are formulated and the initial conditions

are set (Eq. (20)). Then, interactive simulation is ready to begin. A

real-time clock is used to trigger the sampling of data from sensors and

the issuing of commands through a digital-to-analog converter to ac-

tuators. The integration step must be traversed once each sample-time

to update the behavior of virtual dynamical objects.

Before the equations are ready for integration, any active constraints

must be embedded. The active constraint equations, expressed as de-

pendencies among the generalized speeds in the form of Eq. (7) are

collected. The generalized speeds are partitioned into sets of indepen-

dent and dependent variables and the matrix D whose elements are Dsr

is produced as in Eq. (12). Finally the constrained generalized active

force F̃r and constrained generalized inertia force F̃
∗

r are formed using

Dsr in Eqs. (13) and (14) and the constrained equations of motion are

formed, F̃r + F̃ ∗

r = 0 (r = 1, . . . , p). Formation of the constrained dy-

namical equations are all accomplished using symbolic algebra routines

executed during run-time.

Simulation then proceeds within a particular mode by executing

the main integration loop using F̃(k) until any one of the transition

functions f
(k)
j,i associated with mode k crosses zero. A switching function

zero-crossing initiates an excursion from the main simulation loop:

First, the associated reset function φk
j,i (if any) is invoked. If j = k

or there is no change in mode, then the process returns to the main

simulation loop. If, however, a new mode is reached, then new con-

strained equations of motion are formulated symbolically. Figure 4,

then, presents a simulation paradigm in which the equations to be

integrated are ODEs in a set of independent variables, no matter what

symnum_review_1.tex; 3/06/2004; 2:22; p.27

28 B. Gillespie

constraints might hold at a particular time. This enables the use of

a standard ODE solver operating on dynamical equations in minimal

form. As a result, the main simulation loop is as fast as possible and

enjoys inherent stability. Of course if simulation is to take place in

real-time, all loops must be traversable in a single time-step.

Using on-line symbolic manipulation and constraint embedding, an

additional feature can be added to the simulator architecture depicted

in Figure 4. Representation singularities, which exist in the configura-

tion space of certain mechanisms, can be avoided with the incorporation

of a check on the condition number of the constraint Jacobian within

the main simulation loop. Such singularities can be side-stepped by

triggering a re-selection of the independent generalized speeds using

symbolic routines. For additional details, see [29] or [9].

To evaluate transition functions that trigger the deletion of con-

straints, expressions for interaction forces between bodies are needed.

That is, expressions for the constraint forces are needed, which were

eliminated from the analysis by constraint embedding. Expressions for

the constraint forces can easily be produced, however, using the method

of auxiliary generalized speeds [17] and such expressions will be uncou-

pled from the dynamical analysis. They are algebraic functions of the

generalized coordinates, generalized speeds, and system parameters.

The constraint forces can then be evaluated in the transition functions

for the the purpose of, say, deleting a constraint when the interaction

force becomes tensile and thereby realizing a unilateral constraint.

5.5. Symbolic Manipulation in MATLAB r©

We have written a new MATLAB r© toolbox for carrying out Kane’s

method, which we call SymBody. Like Autolev, a symbolic manipula-

tor written in C for dynamic system analysis [32], SymBody provides

tailored data objects to describe components and geometric entities

symnum_review_1.tex; 3/06/2004; 2:22; p.28

On-line Symbolic Constraint Embedding for Hybrid Dynamical Systems 29

such as bodies, points, forces and moments and their relationships

with each other. For the implementation of the code, a new variable

type called timevars and a symbolic time differentiation routine dt

are defined in MATLAB r©. Other core elements of the code are the

definitions of vector variables and vector operations, most importantly

the dot and cross products on vectors. For simplification of symbolic

expressions and symbolic operations on scalars, matrices, and vectors,

SymBody makes use of well developed MATLAB r© Symbolic Toolbox

and the Maple Kernel. The main motivation for re-creating Autolev

inside MATLAB r© was to leverage the high-level language and the

powerful symbolic/numerical routines already available in MATLAB r©.

Equations of motion for a dynamic system are automatically gen-

erated using Kane’s method once necessary kinematic and dynamic

variables are defined by the user using an input script. Constraint

equations can be embedded into equations of motion to obtain the min-

imal representation using the constrain command. Since commands

defined within a MATLAB r© toolbox are available even to subroutines,

newly defined symbolic operations can be easily incorporated into the

routines responsible for numerical integration. We incorporate certain

symbolic operations into the use of MATLAB r© ODE solvers with event

handling, as further described below.

6. Example 1

Figure 5 shows a planar system comprising a uniform disk B of radius

r, mass m, and central moment of inertia J in contact with a ramp A

inclined at an angle φ with the horizontal. LetN designate a Newtonian

reference frame and let the unit vectors a1,a2, and a3 be directed as

shown.

symnum_review_1.tex; 3/06/2004; 2:22; p.29

30 B. Gillespie

φ

B
A

r

q
2

Bo

q
1

a 2

a1

a 3

O

N

g

Figure 5. A rolling disk

To characterize the configurations in which B maintains contact

with A, we may use the displacement q1 between a fixed point O and

the center Bo of B and the angle q2 between the ramp edge and a line

fixed in B that is initially parallel to the ramp edge. To characterize the

motion of B in N , define generalized speeds as u1
∆
= q̇1 and u2

∆
= rq̇2.

If B slides on A, then both u1 and u2 are independent variables.

However, if B rolls on A, a motion constraint may be written u1 +

u2 = 0. When the rolling constraint is enforced, the equations may be

written in terms of a single generalized speed (but still two generalized

coordinates). The corresponding definition of the D matrix is: D =

[−1], which will be useful for on-line constraint embedding.

In preparation for the formulation of equations of motion for the

disk in both the sliding and the rolling mode, we first formulate the

unconstrained (sliding) equations. The forces acting on B, including

the gravity force acting on the mass center Bo and the contact forces

acting at the point of contact with A, may be resolved into a resultant

RB = −mgn2−Ffa1+Na2 applied at Bo and a torque TB = −rFfa3,

where Ff is the friction force, N is the normal force of contact, g is the

local gravitational constant, and n2 is a unit vector directed vertically

upward.

The unconstrained equations of motion may be obtained by carrying

out the steps outlined in Section 2.2 above to yield, for Fr+F
∗

r = 0 (r =

symnum_review_1.tex; 3/06/2004; 2:22; p.30

On-line Symbolic Constraint Embedding for Hybrid Dynamical Systems 31

1, 2):

−mg sin(φ)− Ff −mu̇1 = 0

−Ff −
J
r2
u̇2 = 0

(21)

which may be easily solved for u̇1 and u̇2.

The equations of motion for the disk in the rolling phase, with

the rolling constraint embedded, may be formulated through a re-

combination of terms according to (13) and (14). Since there are one

constraint and two generalized coordinates, we have p = n − m =

2− 1 = 1, and D = [−1], so Eqs. (13) and (14) yield

F̃1 = F1 − F2

F̃ ∗

1 = F ∗

1 − F ∗

2

(22)

which produce

−mg sin(φ)−

(

m+
J

r2

)

u̇1 = 0. (23)

These operations will actually be undertaken by a symbolic manipula-

tor on-line, during simulation.

F (sliding)
(1)

F (rolling)
(2)

PSfrag replacements

f
(1)
2 : u1 + u2 ≤ 0

f
(2)
1 :

∣

∣

∣

∣

J
r2 u̇1

∣

∣

∣

∣

≥ µ mg sinφ

Figure 6. Automaton for the Rolling Disk

We are now ready to compose these two sets of equations into

a hybrid automaton. Figure 6 shows a hybrid automaton with two

modes: mode 1 for the sliding disk and mode 2 for the rolling disk.

The switching function f
(1)
2 that triggers a transition from sliding to

rolling is the condition u1 = −u2 (satisfaction of the rolling constraint).

Rolling begins with the initial conditions equal to the final conditions

of the sliding mode (i.e., there is no reset function). Rolling ends if ever

symnum_review_1.tex; 3/06/2004; 2:22; p.31

32 B. Gillespie

the force of friction Ff magnitude exceeds the friction cone, defined

by µN , where N is the normal force given by mg sinφ. To produce

an algebraic expression for the normal force N needed to evaluate the

tangential friction for the switching function, an auxiliary generalized

speed was used to bring N into evidence.

We have implemented a simulation of this system in MATLAB r©

using our SymBody toolbox. The pre-processing of symbolic formu-

lation of unconstrained equations of motion takes 1.95 seconds on a

3GHz Pentium IV Processor with 1GB RAM, where online symbolic

embedding takes 0.1 seconds and constraint deletion takes 0.03 seconds.

We also utilized a fourth order 0.01 second fixed step Runge-Kutta

routine with relative tolerance of 1e − 7 for numerical integration.

With this routine each step takes about 0.003 seconds in sliding and

0.0025 seconds in rolling mode. We have also implemented a fourth

order BDF formula for simulation of formulation using DAEs. Again,

for 0.01 second fixed step size and allowing 5 iterations, each step takes

about 0.004 seconds in sliding and 0.0045 seconds in rolling mode.

7. Example 2

Example 2 considers a planar system much like the disk B and ramp

A of Example 1, except here the ramp is extended by a fence F whose

shape is subject to change. This example is inspired by a robotic parts

feeding application where parts are sorted by a flexible fence based

on real-time computer vision. Another application is a programmable

constraint (realized by a robotic materials handling device [28]) whose

shape is not known ahead of time but is programmed online to achieve

certain goals [24].

To simplify the example, assume the fence F is an arc of length Lf

and initially unknown radius R, joined to ramp A at point P , which

symnum_review_1.tex; 3/06/2004; 2:22; p.32

On-line Symbolic Constraint Embedding for Hybrid Dynamical Systems 33

?
.

PSfrag replacements

g

O
C

P

Bo
r

R =?

φ

A

B

F

N L

[q1, q2]

q2

q3

q4

q1

q2

d

S

Figure 7. Schematic representation of Example 2

is a distance L from O. Let point C, lying on the perpendicular to

A at point P , be the center of F . Let the configuration of B in N

be characterized by a set of four generalized coordinates, with q1, q2

defined as the horizontal and vertical displacements of B0 relative to

point O, and q3 defined as the angle between the ramp edge and a line

fixed in B that is initially parallel to the ramp edge and q4 defined as

the path length along the ramp (or ramp and fence) that locates the

point S along the path that is closest to B. The point S on A is tracked

by a feedback stabilized extremal point tracking algorithm discussed in

Section 5.2 and the minimum distance between the disk and the ramp

is denoted by d.

The automaton for this example, represented in Figure 8, contains

three modes: mode 1 for the free disk, mode 2 for the disk constrained

to the ramp and mode 3 for the disk constrained to a fence of a cer-

tain shape. Since the geometry of the fence is not defined until some

time after the simulation is started, the automaton is required to be

constructed on the fly and cannot be enumerated beforehand as in

Example 1.

The switching functions f
(2)
3 and f

(3)
2 that trigger transitions be-

tween the ramp and the fence are given by the equation q4 = L.

symnum_review_1.tex; 3/06/2004; 2:22; p.33

34 B. Gillespie

F (ramp)
(2)

F (fence)
(3)

F (free)
(1)

PSfrag replacements

f
(2)
3 : q4 = L

f
(3)
2 : q4 = L

f
(1)
2 : d = 0

f
(3)
2 : N = 0

f
(3)
1,1 : N = 0

f
(3)
1,2 : q4 = L + Lf

φ
(1)
2

Figure 8. Automaton for the disk-ramp-fence system. The constraint-embedded

equations of motion governing the motion of the disk on the fence must be formulated

on the fly since the shape of the fence is not known prior to simulation start.

The switching function f
(1)
2 activates a transition from free mode to

a ramp-constrained mode when the disk comes in contact with the

ramp. We assume the coefficient of restitution is equal to zero so the

reset condition φ
(1)
2 sets the velocity of the disk perpendicular to the

ramp to zero upon impact. The disk can leave a constraint (the ramp

or the fence) when the normal force N between the disk and the sur-

face becomes tensile, i.e. one of the transition functions f
(3)
1 or f

(2)
1,1 is

satisfied. Finally, the disk can also break free if it reaches the end of

the fence, f
(2)
1,2 : q4 = L+ Lf . All undefined reset conditions are set to

satisfy state continuity.

To embed the constraint equations to obtain the constrained equa-

tions of motion, one formulates the configuration constraints defined by

the geometry and differentiates them to arrive at motion constraints

as explained in Section 2.2. The motion of B in N is defined by gener-

alized speeds: ui
∆
= q̇i, (i = 1, . . . , 4). Due to configuration constraints

imposed in the ramp and fence modes, the generalized speeds may not

all be independent. For example, the motion constraints, obtained by

differentiating the configuration constraints due to contact with the

ramp, are given as u1 = u4 cos(φ) and u2 = u4 sin(φ).

symnum_review_1.tex; 3/06/2004; 2:22; p.34

On-line Symbolic Constraint Embedding for Hybrid Dynamical Systems 35

?

PSfrag replacements

t = 0

t = 7.3

t = 7.3

t = 7.7

t = 9.0

∆t = 0.4

Figure 9. Simulation of a disk constrained to a ramp and a fence whose shape is

not predetermined. The top figure shows 19 snapshots taken after the disk comes

in contact with the ramp at ∆t = 0.4 sec intervals. The bottom figure shows 5

snapshots taken after the shape of the fence is determined at time t = 7.3 sec.PSfrag replacements

−0.7 0 7.0 7.4 7.7 9.0 time
trigger trigger

process

numeric integration

symbolic formulation

disk-ramp

disk-fence

free diskfree disk

Figure 10. Time chart for Example 2. Symbolic constraint embedding takes place in

parallel with numerical integration and is triggered according to a threshold selected

such that the embedding is complete before the constrained equations are needed.

The time it takes for our toolbox to symbolically embed constraints is 0.4 seconds.

Figure 9 shows 24 snapshots of a simulation at 0.4 second time

intervals. The simulation starts at t = 0 sec, just after the disk comes

in contact with the ramp, with the constraint embedded that ensures

disk B maintains contact with ramp A. The shape of the fence is not

defined until t = 7.3 sec when the sensory feedback becomes available

to the robot to program the shape required to achieve the specified

task. This circular arc geometry defines a new set of motion (differen-

symnum_review_1.tex; 3/06/2004; 2:22; p.35

36 B. Gillespie

tiated configuration) constraints: u1 = −
(R−r)

R
u4 cos(

q4−L
R

− φ) and

u2 =
(R−r)

R
u4 sin(

q4−L
R
− φ). At time t = 7.0 sec constraint embedding

for the new mode is triggered according to an arbitrary threshold.

During the time interval t = 7.0 sec to t = 7.4 sec, symbolic con-

straint embedding for the fence takes place in parallel with numerical

integration of the disk-ramp equations of motion. In Figure 10 numer-

ical and symbolic processes running in parallel are shown stacked in

the same time interval. Naturally, either a parallel processor or multi-

threaded program is required to implement the processes depicted in

Figure 10. At t = 7.7 sec, the disk comes in contact with the fence

and the simulator starts to numerically integrate the new set of disk-

fence equations of motion for which the constraint equations ensuring

contact with fence F have been embedded. Finally, at t = 9.0 sec, the

disk reaches the end of the fence and breaks free.

8. Example 3

PSfrag replacements
l1

l2

d

G

R1

R2

P1

P2

q1

q2

O

g

Figure 11. A double pendulum with floor

Figure 11 shows a double pendulum of massless rigid rods R1 and

R2 of lengths l1 and l2 with particles P1 and P2 of mass m1 and m2

symnum_review_1.tex; 3/06/2004; 2:22; p.36

On-line Symbolic Constraint Embedding for Hybrid Dynamical Systems 37

attached. Let generalized coordinates q1 and q2 measure the angular

displacements of R1 and R2 from the vertical. A horizontal floor G

is located a distance d below the pendulum pivot O, where l1 < d <

l1+ l2. Particle P2 may strike G with a contact model characterized by

a coefficient of restitution ε that takes on values between 0 and 1 and

a coefficient of friction µ.

Vertical Bounce

ε > 0, inside cone

Bounce

ε > 0, outside cone

slider-crank

double pendulum

stuck

PSfrag replacements

F (1)

F (2) F (3)

st
ri
ke

, ε
=

0,
F t
>
µ
F n

F
n
>

0

strike, ε =
0, F

t <
µF

n

strike, ε
>

0, F
t <
µF

n

st
rik

e,
ε
>

0,
F t
>
µF

n

Figure 12. Automaton for the Double Pendulum

An automaton depicting the various modes of the double pendulum

interacting with the floor G is shown in Figure 12. There are three

modes: F (1) representing the unconstrained pendulum with two degrees

of freedom, F (2) representing a slider-crank with one degree of freedom,

where particle P2 is constrained to slide along G, and F (3), in which

P2 is stuck on G and the system has no degrees of freedom.

Mode 2 is reachable from mode 1 only when ε = 0 and upon striking,

the tangential friction force lies outside the friction cone. There is no

reset function associated with this transition. Mode 2 transitions back

to mode 1 when the normal force becomes tensile: f
(2)
1 : Fn > 0. Mode

symnum_review_1.tex; 3/06/2004; 2:22; p.37

38 B. Gillespie

3, no motion, is reachable from mode 1 when ε = 0 and the friction

force Ft lies inside the friction cone.

There are two transitions out and back into mode 1 that invoke reset

functions. The first of these, named f
(1)
1,1 , is called upon a collision with

ε > 0 and the friction force lying outside the friction cone, Ft > µFn.

The second, named f
(1)
1,2 , is called upon strike with ε > 0 and the friction

force lies inside the friction cone, Ft < µFn.

Once again, we have implemented a simulation of this system in

MATLAB r© using our SymBody toolbox. This time, pre-processing

of symbolic formulation of unconstrained equations of motion takes

6 seconds on a 3GHz Pentium IV Processor with 1GB RAM, where

online symbolic embedding takes 0.3 seconds and constraint deletion

takes 0.08 seconds. We also utilized a fourth order 0.01 second fixed

step Runge-Kutta routine with relative tolerance of 1e−7 for numerical

integration. With this routine each step takes about 0.008 seconds in

slider crank and 0.009 seconds in free mode.

9. Conclusions

In this paper, we presented a simulator designed to handle multibody

systems with changing constraints, wherein the equations of motion

for each of its constraint configurations are formulated in minimal

ODE form with constraints embedded before they are passed to an

ODE solver. Unlike other simulator designs, the constraint-embedded

equations are formulated symbolically on-the-fly according to a re-

combination of terms of the unconstrained equations. Constraint em-

bedding undertaken on-the-fly enables the simulation of systems with

an ODE solver for which constraints are not known prior to simulation

start or for which the enumeration of all constraint conditions would be

unwieldy because of their complexity or number. The advantages of this

symnum_review_1.tex; 3/06/2004; 2:22; p.38

On-line Symbolic Constraint Embedding for Hybrid Dynamical Systems 39

design also include robustness, since issues of drift associated with DAE

solvers are sidestepped by symbolic embedding. We also applied nomen-

clature developed for hybrid dynamical systems to describe the system

with changing constraints and to distinguish the roles of the forward

dynamics solver, a collision detector, and an impact resolver. Finally,

we have prototyped the simulator in MATLAB r© and demonstrated the

design in three representative examples.

Acknowledgements

This work was supported by a NSF PECASE award CISE-0093290.

References

1. Antsaklis, P., X. Koutsoukos, and J. Zaytoon: 1998, ‘On Hybrid Control of

Complex Systems: A Survey’. European Journal of Automation 32, 1023–1045.

2. Baraff, D.: 1994, ‘Fast contact force computation for nonpenetrating rigid

bodies’. In: SIGGRAPH. pp. 23–34.

3. Barton, P. I. and C. K. Lee: 2002, ‘Modeling, simulation, sensitivity analysis,

and optimization of hybrid systems’. ACM Transactions on Modeling and

Computer Simulation 12(4), 256–289.

4. Baumgarte, J.: 1972, ‘Stabilization of Constraints and Integrals of Mo-

tion in Dynamical Systems’. Computer Methods in Applied Mechanics and

Engineering I pp. 1–16.

5. Bayo, E., J. Garcia de Jalon, and M. Serna: 1988, ‘A modified Lagrangian

Formulation for the Dynamic Analysis of Constrained Mechanical Systems’.

Computer Methods in Applied Mechanics and Engineering 71, 183–195.

6. Branicky, M., V. Borkar, and S. Mitter: 1998, ‘Unified framework for hybrid

control: model and optimal control theory’. IEEE Transactions on Automatic

Control 43(31-45).

7. Brenan, K., S. Campbell, and L. Petzold: 1989, Numerical Solution of Initial

Value Problems in Differential-Algebraic Equations. Elsevier.

symnum_review_1.tex; 3/06/2004; 2:22; p.39

40 B. Gillespie

8. Gear, C., B. Leimkuhler, and G. Gupta: 1985, ‘Automatic Integration of Euler-

Lagrange Equations with Constraints’. Journal of Computational and Applied

Mathematics 12, 77–90.

9. Gillespie, R.: 2003, ‘Kanes Equations for Haptic Display of Multibody Systems’.

Haptics-e, The Electronic Journal for Haptics Research 2(3).

10. Gillespie, R. B.: 1996, ‘Haptic Display of Systems with Changing Kinematic

Constraints: The Virtual Piano Action’. Ph.D. thesis, Stanford University.

11. Gilmore, B. and R. Cipra: 1991, ‘Simulation of planar dynamic mechanical

systems with changing topologies: Part 1–characterization and prediction of

the kinematic constraint changes’. Journal of Mechanical Design 113, 70–76.

12. Haug, E., S. Wu, and S. Yang: 1986, ‘Dynamics of mechanical systems

with coulomb friction, stiction, impact and constraint addition-deletion –I’.

Mechanism and Machine Theory 21, 401–406.

13. Huston, R.: 1999, ‘Constraint Forces and Undetermied Multipliers in Con-

strained Multibody Systems’. Multibody System Dynamics 3, 381–389.

14. Javier, G. and E. Bayo: 1993, Kinematic and Dynamic Simulation of Multibody

Systems: The Real-Time Challenge. Springer Verlag.

15. Jimenez, P., F. Thomas, and C. Torras: 2001, ‘3D Collision Detection: A

Survey’. Computers and Graphics 25(2), 269–285.

16. Kane, T. and D. A. Levinson: 1999, ‘A Multibody Motion Stability Analysis’.

Multibody System Dynamics 3, 287–299.

17. Kane, T. R.: 1985, Dynamics, Theory and Applications. McGraw-Hill, New

York.

18. Keller, J.: 1986, ‘Impact with Friction’. Journal of Applied Mechanics 583,

1–4.

19. Kim, S. and M. Vanderploeg: 1986, ‘QR Decomposition for State Space Rep-

resentation of Constrained Mechanical Dynamic Systems’. ASME Journal on

Mechanisms, Transmissions, and Automation in Design 108, 176–182.

20. Klisch, T.: 1998, ‘Contact Mechanics in Multibody Systems’. Multibody System

Dynamics 2, 335–354.

21. Lesser, M.: 1992, ‘A Geometrical Interpretation of Kane’s Equations’. Proceed-

ings of the Royal Society of London, Series A. 436, 69–87.

22. Lin, M. C. and S. Gottschalk: 1998, ‘Collision Detection Between Geometric

Models: A Survey’. In: Proceedings of IMA Conference on Mathematics of

Surfaces. pp. 602–608.

symnum_review_1.tex; 3/06/2004; 2:22; p.40

On-line Symbolic Constraint Embedding for Hybrid Dynamical Systems 41

23. Lötstedt, P.: 1982, ‘Mechanical systems of rigid bodies subject to unilateral

constraints’. SIAM Journal of Applied Math. 42(2), 281–296.

24. Lynch, K. M., C. Liu, A. Sorensen, S. Kim, M. Peshkin, J. E. Colgate, T. Tickel,

D. Hannon, and K. Shiels: 2002, ‘Motion Guides for Assisted Manipulation’.

International Journal of Robotics Research 21(1), 27–43.

25. Mitiguy, P.: 1995, ‘Efficient formulation and solution of equations of motion’.

Ph.D. thesis, Stanford University.

26. Orlandea, N., D. Calahan, and M. Chace: 1977, ‘A Sparsity-oriented Approach

to the Dynamic Analysis and Design of Mechanical Systems: Part I and Part

II’. Journal of Engineering for Industry 3(99), 773–784.

27. Patoglu, V. and R. B. Gillespie: 2002, ‘Extremal Distance Maintenance for

Parametric Curves and Surfaces’. ICRA 2002 3, 2717–2723.

28. Peshkin, M. A., J. E. Colgate, W. Wannasuphoprasit, C. A. Moore, R. B.

Gillespie, and P. Akella: 2001, ‘Cobot Architecture’. IEEE Transactions on

Robotics and Automation 17(4), 377–390.

29. Reckdahl, K. J.: 1997, ‘Dynamics and control of mechanical systems containing

closed kinematic chains’. Ph.D. thesis, Stanford University.

30. Riley, S. M.: 2000, ‘Model Reduction of Multibody Systems by the Removal of

Generalized Forces of Inertia’. Ph.D. thesis, The University of Michigan, Ann

Arbor.

31. Sayers, M. W.: 1990, ‘Symbolic Computer Methods To Automaically Formulate

Vehicle Simulation Codes’. Ph.D. thesis, The University of Michigan, Ann

Arbor.

32. Schaechter, D. B. and D. A. Levinson: 1988, ‘Interactive computerized symbolic

dynamics for the dynamicist’. Journal of Astronautical Sciences 36(4), 365–

388.

33. Serna, M., R. Aviles, and J. Garcia de Jalon: 1982, ‘Dynamic Analysis of Plane

Mechanisms with Lower-Pairs in Basic Coordinates’. Mechanism and Machine

Theory 17, 397–403.

34. Singh, R. and P. Likins: 1985, ‘Singular Value Decomposition for Constrained

Dynamic Systems’. ASME Journal of Applied Mechanics 52, 943–948.

35. Smith, C. E.: 1991, ‘Predicting Rebounds Using Rigid Body Dynamics’.

Journal of Applied Mechanics 58, 754–758.

36. Wampler, C., K. Buffington, and J. Shu-hui: 1985, ‘Formulation of equations

of motion for systems subject to constraints’. Journal of Applied Mechanics

52, 465–470.

symnum_review_1.tex; 3/06/2004; 2:22; p.41

42 B. Gillespie

37. Wang, Y. and M. T. Mason: 1992, ‘Two-dimensional rigid-body collisions with

friction’. Journal of Applied Mechanics 59, 635–642.

38. Wehage, R. A. and E. J. Haug: 1982, ‘Dynamic analysis of mechanical systems

with intermittent motion’. Transactions of the ASME 104, 778–784.

symnum_review_1.tex; 3/06/2004; 2:22; p.42

