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Abstract 

We tested whether humans can learn to sense and compensate for interaction forces in contact tasks. Many tasks, 

such as use of hand tools, involve significant interaction forces between hand and environment. One control strategy 

would be to use high hand impedance to reduce sensitivity to these forces. But an alternative would be to learn feed-

back compensation for the extrinsic dynamics and associated interaction forces, with the potential for lower control 

effort. We observed subjects as they learned control of a ball-and-beam system, a visuo-motor task where the goal 

was to quickly position a ball rolling atop a rotating beam, through manual rotation of the beam alone. We devised a 

ball-and-beam apparatus that could be operated in a real mode, where a physical ball was present; or in a virtual 

training mode, where the ball’s dynamics were simulated in real time. The apparatus presented the same visual feed-

back in all cases, and optionally produced haptic feedback of the interaction forces associated with the ball’s motion. 

Two healthy adult subject groups, Vision-Only and Vision-Haptics (each N=10), both trained for 80 trials on the 

simulated system, and then were evaluated on the real system to test for skill transfer effects. If humans incorporate 

interaction forces in their learning, the Vision-Haptics group would be expected to exhibit a smoother transfer, as 
quantified by changes in completion time of a ball-positioning task. During training, both groups adapted well to the 

task, with reductions of 64-70% in completion time. At skill transfer to the real system, the Vision-Only group had a 

significant 35% increase in completion time (p < 0.05). There was no significant change in the Vision-Haptics 

group, indicating that subjects had learned to compensate for interaction forces. These forces could potentially be 

incorporated in virtual environments to assist with motor training or rehabilitation. 
 

 

1. Introduction   

Sensory information is important for both learning 
and execution of many motor tasks. It is critical for 

tasks that require continuous adjustment of position or 

maintenance of balance, such as standing upright (Park 

et al. 2003) or holding a cup of coffee (Dingwell et al. 

2002). Some actions, such as in touch-typing, occur 

too quickly for feedback to contribute directly to exe-

cution (Rempel et al. 1994), but sensory information is 

nonetheless important for assessing outcome and pro-

viding re-afference for motor learning (Johansson and 

Cole 1992). It might therefore be helpful to provide 

sensory feedback to humans learning novel motor 

tasks or undergoing neuro-rehabilitation (Patton and 
Mussa-Ivaldi 2003). Virtual environments can produce 

a wide range of visual and haptic (touch) feedback, 

with the potential to manipulate that feedback and per-

haps enhance learning. But before this potential can be 

realized, it is important to understand how the quality 

and quantity of sensory feedback contributes to learn-

ing and performance. 

In many motor tasks, interaction forces are impor-

tant for feedback control. For reaching tasks, the main 

feedback is proprioceptive and visual. Muscle spin-

dles, Golgi tendon organs, and nociceptors provide 

proprioceptive feedback of muscle length, muscle 

force, and joint position, respectively (Gandevia et al. 

2002). Vision is often important for continuous feed-

back and knowledge of results, particularly for visu-

ally-guided tasks where the hand must be positioned 

relative to objects in the environment (Elliott et al. 
1998). But many skilled tasks also involve contact and 

interaction with the environment, for example, wash-

ing a window or turning a crank. In such tasks, haptic 

feedback from mechanoceptors allows the interaction 

forces with the environment to be monitored  

(Westling and Johansson 1987) and potentially regu-

lated.  

The central nervous system (CNS) integrates this 

array of information and learns to associate sensory 

patterns with motor actions. Some investigators have 

hypothesized that this sensory integration is part of a 

CNS internal representation of movement (e.g., Cos-
man et al. 2002), where associations are developed be-

tween a motor command and the resulting motion. 

This internal representation may take the form of a 

forward model of limb dynamics, where the motor 

command can be used to predict the expected motion 
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and associated sensory feedback (Johansson and Cole 

1992; Mehta and Schaal 2002). Differences between 

expected and actual afference might then be used to 

refine the motor command during learning. Another 

form of internal representation is an inverse model of 

limb dynamics (Kawato 1999), where a desired out-
come is used to trigger the appropriate motor com-

mand for the task. Both types of internal representation 

are learned with the help of sensory feedback (Wolpert 

and Kawato 1998), and model-based control allows 

movements to be more automatic and to rely less heav-

ily on high-gain feedback (Shadmehr and Mussa-Ivaldi 

1994). This learning can compensate not only for the 

natural limb dynamics, but also altered dynamics in-

cluding viscous and spring-like environments applied 

by robotic manipulators (Scheidt et al. 2001; Dingwell 

et al. 2002). These manipulators alter the torques nec-

essary to perform a reaching command, and subjects’ 
adaptations demonstrate that humans can adapt to a 

wide variety of environments.  

A CNS internal representation could potentially in-

clude not only dynamics of the limbs, but of the exter-

nal environment as well. Humans appear to have some 

predictive visuo-motor understanding of the kinemat-

ics of external objects, as is needed to catch a ball 

(McIntyre et al. 1998) or balance a pole on one’s hand 

(Mehta and Schaal 2002). This requires sensing and 

prediction of kinematical states external to the body. 

Humans also appear to haptically and proprioceptively 
sense the mass of an external object simply by wield-

ing it (Chan 1994; Cosman et al. 2002). Depending on 

how the object is coupled to the hand, it may simulta-

neously introduce dynamic interaction forces in addi-

tion to extrinsic kinematic states. Compensation for 

such forces was demonstrated by Dingwell et al. 

(2002), in a fast reaching task where subjects exerted 

forces through a virtual spring to position a virtual 

mass on the opposite end. After a training period, sub-

jects adapted well to the spring-mass dynamics, pro-

ducing motions that could not be explained by in-

creased hand impedance or greater use of visual feed-
back. The motions were best explained by an internal 

representation of the spring-mass dynamics, allowing 

subjects to produce an appropriate feedforward con-

trol. This leads to the question of whether interaction 

forces are also incorporated in learning of a feedback 

control task, in which extrinsic states must be continu-

ously stabilized. Such learning may be relevant to mo-

tor training or rehabilitation, because interaction forces 

are important in many skilled occupational tasks in-

volving tool use.  

The purpose of the present study was to test 
whether humans learn to accommodate or counteract 

interaction forces in a novel motor task that requires 

feedback control of states external to the body. We 

performed this test with the ball-and-beam task (Fig. 

1A), where the goal is to position and balance a ball 

rolling freely atop a beam that pivots about a horizon-

tal axis, by manually rotating the beam. Because the 

ball’s position and velocity are not directly governed 

by the hand, these constitute states external to the 

body. As with pole-balancing (Mehta and Schaal 
2002), the ball-and-beam system is dynamically unsta-

ble. While the ball’s motion can be initiated with a 

feedforward beam rotation, feedback is necessary to 

maintain a target ball position. The ball’s motion can 

be sensed visually, and to a greater degree than pole 

balancing, also haptically. This task could in principle 

be performed by learning the kinematics of the ball 

and beam, and using hand positioning with high im-

pedance to rotate the beam appropriately. But incorpo-

ration of a control strategy specific to the ball-and-

beam dynamics could allow for lower hand impedance 

and minimal effort. We tested for learning of interac-
tion forces with a skill transfer experiment, where sub-

jects learned to control the ball in a virtual environ-

ment, with sensory feedback as an independent vari-

able. After training one subject group with visual feed-

back alone and another with visual and haptic feed-

back, we assessed their task performance on a physical 

ball-and-beam system. We hypothesized that subjects 

trained with haptic feedback would learn the interac-

tion forces and would subsequently exhibit better skill 

transfer to the physical task compared to subjects re-

ceiving visual feedback only.  

2. Methods 

We developed a ball-and-beam motor task trainer 

and simulator (Fig. 1A), with which subjects learned 

how to balance a ball atop a pivoting beam. The appa-

ratus could be operated in two modes, where the sub-

ject held the beam at one end and manually rotated it 

to influence the motion of either 1) a physical ball roll-
ing on the beam, or 2) a virtual ball whose rolling was 

simulated by computer. In the first case, the subject 

could directly feel the interaction of the physical ball 

with the beam. In the second, the virtual ball-and-beam 

dynamics were simulated in real-time, and the interac-

tion forces presented via the beam to the subject’s 

hand by a motor driving the beam. In both modes, vis-

ual feedback was provided by a computer graphic 

animation of the ball and beam. We trained two groups 

of subjects to move the virtual ball to a target position 

on the beam, wherein one group was provided with 
visual feedback alone, and the other group was pro-

vided with visual and haptic feedback. After a training 

period, the performance of both groups was evaluated 

using the physical ball atop the same beam. We then 

tested for adaptation to interaction forces, by observing 

how well each group transferred to the physical sys-

tem. The following sections describe the dynamics of 
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the ball-and-beam system, its implementation in a vir-

tual environment, and the protocol of the skill transfer 

experiments. 

2.1 Virtual Ball-and-Beam Environment 

We modeled the ball-and-beam system (Fig. 1B) 

with two coupled second-order equations of motion 

(Eqs. 1-2). A beam with transverse moment of inertia I 

is connected to a base, pivoted about its midpoint. A 

ball of mass m and radius R rolls without slipping over 

the center-line of the beam. The angular displacement 

of the beam θ is measured counter-clockwise relative 
to the ground. The translational displacement of the 

ball relative to the beam center is r, increasing to the 

right. The ball’s mass is subject to gravity g, and its 

moment of inertia is 2
mRα , where α = 2/5 for a 

sphere. Two torques act on the ball and beam system: 

the motor torque τ, and the torque due to the interac-
tion force F acting between the subject’s hand and the 

beam. We obtained the equations of motion for this 

system using Lagrangian methods:   

( ) 20 1 sinr R r gα θ θ θ= + − − +&& &&&  Eq. 1 
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  Eq. 2 

The equations above comprise the model used to 

simulate the ball-and-beam dynamics with real-time 

numerical integration. The motion of the ball along the 

beam is determined solely by the angular input θ(t) 
and its derivatives (Eq. 1), whereas the interaction 
force F depends on motion of both ball and beam (Eq. 

2). Linearized about a non-zero equilibrium position r, 

the system has two unstable poles. To maintain such a 

position, it is necessary to produce compensatory beam 

motions dependent on feedback of r(t), θ(t), and their 
time-derivatives. When the system is operated with the 

physical ball, the motor is turned off, and so τ = 0. 
When operated with the virtual ball, the motor is pro-

grammed to supply the torques associated with the 

missing physical ball (all terms containing the ball 

mass m on the right-hand-side of Eq. 2).  

2.2 Description of Apparatus 

Our experimental apparatus consists of a light-

weight beam, pivoted about a horizontal axis, atop 

which a ball could roll without slipping (see Fig. 1A). 

The beam was constructed from L-channel aluminum, 

mounted with the inner faces directed upward and 

connected to a support tower via a revolute joint with 

horizontal axis. For the ball, we used a chrome steel 

ball bearing rolling within the L-channel. The beam’s 

axis of rotation was designed to pass through the path 

of the ball’s mass center. Actuation of the beam by the 

motor occurred through a capstan drive to an alumi-
num arc fixed to the beam via an inextensible flexible 

steel cable. The capstan drive supplied a mechanical 

advantage of 11.68 between the motor and the beam. 

The relevant inertial and geometric parameters of the 

apparatus are shown in Table 1.  

 
Table 1. Inertial and geometric properties for the ball-and-

beam apparatus. 

Beam Moment of Inertia 
Beam Length 
Ball Mass 
Ball Radius 

I 
L 
m 
R 

0.027 kg-m2 
0.80 m 
0.23 kg 
0.019 m 

 

The experimental apparatus was used to collect 
data during the ball-and-beam task, and in some condi-

tions to display interaction forces in the form of haptic 

feedback without the physical ball. In the haptic feed-

DC motor capstan driveoptical
encoder

steel ball

L-channel beam

linear
potentiometer

A. Apparatus

I, L 

τ

θ

g r

F

B. Schematic R, m, α

motor torque

interaction
force

 

Figure 1. (A.) In the ball-and-beam task, a human 

operator rotates a beam, atop which a ball rolls 

without slipping. The goal of the task is to control 

the ball by moving the beam alone. The ball’s mo-

tion is determined by the tilt of the beam. The hu-

man operator experiences interaction forces at the 

point of contact, with the forces depending on the 

motion of the ball. The ball-and-beam apparatus 

may be operated with a physical ball, or with a vir-

tual representation of the ball, with feedback of in-

teraction supplied by a DC-motor. (B.) Schematic 

shows definition of mathematical symbols (Table 1). 

The subject exerts interaction force F against the 

end of the beam, and the computer-driven motor 

exerts torque ττττ. 
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back conditions, the DC motor (peak stall torque 0.30 

N-m) replaced the torques normally felt by the opera-

tor when the physical ball was present. A linear poten-

tiometer transduced the position of the steel ball along 

the beam. The potentiometer consisted of a plastic 

conductive strip on an inner face of the beam, acting as 
a variable resistance in a voltage divider circuit, with 

the ball making contact between the strip and the other 

face of the beam. The measured voltage was linearly 

proportional to the ball position, with a resolution of 

approximately 0.0005 m. The beam’s angle of rotation 

was measured with a quadrature-output optical en-

coder (3600 lines per revolution) mounted on the mo-

tor shaft. A desktop PC collected these data and con-

trolled the motor in real-time, with a sampling rate of 1 

kHz. Experimental data were logged at a lower rate of 

100 Hz. 

2.3 Implementation of Virtual and Real Envi-

ronments 

The ball-and-beam apparatus could function in real 

mode using a physical ball, and also in virtual mode 

using a virtual ball with simulated dynamics (see Fig. 

2). In both modes, the human operator moved a physi-

cal beam and received visual feedback from a real-
time animation of the ball-and-beam on a computer 

monitor. In real mode, the human operator actuated the 

beam with the motor turned off, with the position of 

the physical ball and orientation of the angle recorded 

by computer and displayed in the animation. In virtual 

mode, the physical ball was not present, and in its 

place the computer simulated the dynamics and op-

tionally provided haptic feedback in the form of inter-

action torques associated with the ball’s motion.    

In virtual mode, the computer measured the human 

operator’s input to the ball-and-beam system, in the 

form of the beam angle θ. The ball motion was simu-

lated in real time, along with the interaction force that 

would have been produced by the physical ball had it 

been present. The simulation was performed by inte-

grating a discretized form of Eq. 1 in real time. This 

yielded the ball motion which was both displayed in 

the animation and logged as data. In addition to this 
visual feedback, the computer optionally provided hap-

tic feedback, by computing the interaction torque from 

Eq. 2, and supplying this torque through the DC motor.  

The programmed dynamics were designed to emu-

late the force coupling characteristics of the real roll-

ing ball, which we consider to be the most critical ele-

ment of haptic feedback in the real system. However, 

for this experiment, we did not include other effects 

which may be additional sources of feedback to a hu-

man operator. The effects of rolling irregularities and 

friction may produce both haptic and audio feedback, 

which were not included in our virtual environment.  

2.4 Transfer Paradigm Experiment Protocol 

Our experiment compared skill transfer in a ball 

balancing task for two subject groups, Vision-Only 

and Vision-Haptics, as outlined in Table 2. Twenty 

young healthy adults (ages 22 – 39) were randomly 

assigned to the two subject groups. All participants 

provided informed consent in accordance with Univer-

sity of Michigan human subject protection policies.  

 

Table 2. Haptic feedback conditions applied dur-

ing training and evaluation sessions with two sub-

ject groups. The Vision-Only group learned the 

ball-and-beam task (Training Session) without 

haptic feedback, and then performed the task 

(Evaluation Session) with the physical ball. The 

Vision-Haptics group received virtual haptic feed-

back during Training, before performing the task 

with the physical ball. Visual feedback was ani-

mated by computer in all trials. 

Subject Group 

Training 
Session 

w/ Virtual Ball 

(80 Trials) 

Evaluation 
Session 

w/ Real Ball 

(80 Trials) 

Vision-Only 
(n=10) 

No haptic  
feedback 

Physical haptic  
Feedback 

Vision-Haptics 
(n=10) 

Virtual 

haptic feedback 

Physical haptic  

Feedback  

 

Both groups trained on a virtual system, after 

which their performance was evaluated on the physical 
system. Subjects from both groups viewed an anima-

tion of the ball-and-beam motion on a computer screen 

as they performed the ball balancing task. All training 

and evaluation trials presented visual feedback. The 

 

Real-time animation

with target displayed

Task Feedback Environment 

Visual feedback from 
computer monitor

Real or simulated
haptic feedback
from manual contact

Figure 2. Each human subject received visual 

feedback from the computer animation 

including the display of a box for the target ball 

position. Simulated haptic feedback from a mo-

tor or from the presence of a real ball produced 

interaction forces between the beam and hand. 
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two groups differed as to whether they received haptic 

feedback during training. Vision-Haptics subjects re-

ceived haptic feedback supplied by the computer, to 

simulate the interaction forces associated with ball mo-

tion. The Vision-Only did not receive any haptic feed-

back of interaction forces.  
We employed a skill transfer paradigm with a 

training session of 80 practice trials, and then an 

evaluation session of another 80 trials. Training took 

place with a virtual ball, and evaluation with the 

physical ball. We asked subjects to complete a ball po-

sitioning movement in minimum time for all trials. A 

short break (≈1 min.) was given after every 20 trials to 
avoid fatigue. Subjects did not receive an extended rest 

period between training and evaluation sessions. Sub-

jects typically completed both sessions in approxi-

mately 35 min.  

The goal of the task was to control the beam so that 

the rolling ball would quickly move from one end of 
the beam (r = 40 cm) to a target box (4.2 cm wide) 

across the beam (r = -25 cm), and then keep the ball 

center within the target box for a minimum capture 

time of 3.5 sec (see Fig. 3). Positive displacement of 

the ball was defined to the operator’s right, when fac-

ing the beam.  The target box was displayed along with 

the animated ball-and-beam. The ball was initially at 

rest, with each trial commencing when the subject 

moved the beam counter-clockwise from the horizon-

tal, thereby causing the ball to start rolling. Audio 

beeps and a color cue displayed on the monitor alerted 

subjects when the ball was settled within the target box 
for the required capture time. The task completion time 

was defined from onset of ball motion to completion of 

this capture. After completion, subjects were instructed 

to roll the ball back to the starting position, at which 

point the computer would indicate readiness for the 

next trial. Subjects were asked to achieve the lowest 

task completion time possible for each trial.  

Each participant was given the same instructions 

for body stance and hand positioning on the beam and 

the criteria for performance was explained. Body 

stance consisted of a standing position with the left 

hand resting on the table surface. Each subject con-

trolled the motion of the beam using the right hand, 

holding onto the end of the beam. We used the same 

hand for all subjects, regardless of handedness (1 out 
of 20 subjects were self-reported as left-handed) be-

cause the task was fairly novel and we were interested 

mainly in each subject’s improvement in control re-

gardless of initial level of performance, For all trials, 

subjects viewed an animation of the ball-and-beam 

motion on a computer monitor without looking at the 

physical apparatus. There was no prompting of strat-

egy to the participants, nor was there a demonstration 

of the control action. 

2.5 Task Completion Time and Analysis of 

Skill Transfer 

In order to determine differences in performance 

between the two subject groups, we undertook two 

types of data analysis. The first was a simple compari-

son of absolute task completion times, to form a non-

parametric indicator of learning during the training 

and/or evaluation sessions. This comparison was based 

on block-averaged task completion times, formed by 
averaging 20 trial blocks at the start and end of each 

session. We performed an analysis of variance on these 

block-average task completion times, considering three 

experiment factors: training group (Vision-Only vs. 

Vision-Haptics), testing session (Training vs. Evalua-

tion), and testing period (blocks from Start or End of 

the testing session). We also considered two-way in-

teractions, with significant interactions leading to a 

limited set of post-hoc tests to determine general indi-

cations of learning. We used paired, two-tailed t-tests 

with p < 0.05 as the criterion for statistical signifi-

cance.  
The second analysis used a parametric fit to nor-

malize and characterize the learning curves, and de-
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Figure 3. (A.) The goal of the ex-

periment task was to move the 

beam so that the ball would move 

from the far right hand end of the 

beam to a target box in a mini-

mum amount of time. The task 

completion time was defined as the 

time from the beginning of ball 

motion to the instant at which the 

ball is settled within the target 

zone for a required capture time of 

3.5 sec. (B.) Typical trajectories of 

beam angle and ball position, from 

one subject. 
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termine whether there were relative differences in skill 

transfer. The parametric fit was a power law, as a func-

tion of trial number (see Fig. 4). This fit was per-

formed on each subject’s task completion time data, 

with separate fits for the training and evaluation ses-

sions. These fits were then used to compare the change 
in performance during skill transfer, by examining the 

transition delta, or change in completion times when 

switching from a virtual system to the physical system. 

Comparisons of transition deltas between groups were 

then made using paired, two-tailed t-tests using p < 

0.05 as the criterion for statistical significance. 

To account for differences between individuals 

when performing the parametric fit, task completion 

times were scaled by a normalizing factor specific to 

each subject. This normalizing factor, the final-

performance norm, was defined as the average task 

completion time of the last twenty trials from each 
subject’s evaluation session (see Fig. 4). Normalized 

task completion time data were determined by dividing 

all of the subject’s task completion times by the final 

performance norm. 

The normalized task completion time data from the 

training and evaluation sessions were then fit, sepa-

rately, to power law functions using a non-linear least 

squares method (Trust-Region algorithm from MAT-

LAB Curve-Fitting Toolbox, MathWorks, Natick, 

MA), where the parameters were found using a 

bounded search.  The power law functions used, typi-

cal of skill acquisition (Newell and Rosenbloom 

1981), were of the form 

( )task

b
T k a k c

−= ⋅ + ,  Eq. 3 

where Ttask(k) was the task completion time for the k-th 
trial, starting from k = 1. Parameter a weights the func-

tion to have proper initial value, b indicates the rate of 

convergence of the curve, and c is an offset represent-

ing the limit of task completion time as k increases. 

These performance curves represent the overall 

trends of task completion time as the number of trials 

progressed. The curves demonstrate a general reduc-

tion in task completion time with practice. Sample task 

completion results, shown for one subject in Figure 4, 

illustrate two separate best-fit curves overlaid onto the 

normalized completion time data. The first curve starts 

at a large value and decreases as the training trials pro-
gress. The second curve starts at a value higher than 

the end of the previous curve, but approaches the final 

performance norm as the evaluation trials progress. 

We examined the success in skill transfer for each 

subject by considering the transition delta, defined as 

the fitted completion time (Eq. 3) evaluated at the be-

ginning of the evaluation session, minus that from the 

end of the training session (Figure 4). A positive tran-

sition delta indicated an initial deficit in performance 

in the evaluation session. We compared the fitted per-

formance curves and transition delta results from the 
Vision-Only and Vision-Haptics groups, to determine 

what differences arose from the groups’ respective 

training conditions. As with block averages, these 

comparisons were based on t-tests with p < 0.05 as the 

criterion for significance.  

3.0 Results  

Subjects in both groups improved their perform-
ance of the ball positioning task with practice. The 

progression of task completion times through trials 

was characterized by a steep initial descent and subse-

quent leveling, as shown in the sample results of Fig-

ure 4. A reduction in the scatter of task completion 

times was typical of both subject groups as well. Most 

subjects demonstrated convergence of performance 

mainly within the first 60 to 80 training trials, but with 

continuing small improvements through the end of the 

evaluation session, through the total 160 trials.  

Block averaged task completion times revealed 
significant differences associated with each factor. 

Analysis of variance yielded significant differences for  

subject training group (Vision-Only vs. Vision-

Haptics, p = 0.0068), testing session (Training vs. 

Evaluation, p = 1.2e-7, and trial block (Start vs. End, p 

= 3.5e-6). Two-way interactions were significant for 
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Figure 4. Results from a typical subject’s training 

and evaluation sessions. Task completion times are 

plotted as a function of trial number. After 80 trials 

of training on the virtual ball-and-beam, subjects 

were evaluated on the real ball-and-beam. Power 

law curve fits describe the overall learning trends. 

The transition delta quantifies the skill transfer in 

terms of the difference between curves at transition 

from training to evaluation. The last 20 points of 

the evaluation session were used as a normalization 

factor for subsequent analysis. 
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testing session and trial block (p = 9.8e-6), and for 

subject training group and trial block (p = 0.012). 

Both subject groups demonstrated a marked de-

crease in the block-averaged task completion times 

during the training session (Table 3). Quantitative im-

provements in performance with training were found 
to be statistically significant, with reductions of at least 

30-40% (Vision-Only group, p=0.00024; Vision-

Haptics group, p=0.00036). The group standard devia-

tions also decreased from the start to the end of the 

training session for both groups, indicating more con-

sistent trial-to-trial performance with practice.  

Although the major adaptations occurred during 

training, some subjects also exhibited significant 

changes in performance during the evaluation session. 

The Vision-Only group had a significant, 2 second de-

crease in block averaged task completion times 

(p=0.020) with continued practice, whereas the Vision-
Haptics group demonstrated no significant change 

(p=0.14) through the evaluation session. The practice 

gained during the evaluation session was sufficient to 

result in no significant differences in performance be-

tween the two groups (p=0.90) by the end of the 

evaluation session. The average completion times at 

the end of the evaluation session (last column of Table 

3) also serve as the final performance norms for use in 

the power law fits. The experiment-wise error rate for 

these post-hoc test results was p = 0.021. 

 

Table 3. Block-averaged absolute task completion 

times (in sec) for the start and end of training and 

evaluation sessions. Start and End values shown 

are means (± s.d.) taken over the first or last 20 

trials, respectively, of each session.  Significant 

differences were observed for each of three fac-

tors (p < 0.05). 

Training Session Evaluation Session 
Group 

Start  End  Start End 

Vision-

Only 
21.0 ± 7.8 12.4 ± 3.7  12.3 ± 3.1 10.3 ± 2.5 

Vision-

Haptics  
17.6 ± 4.8 12.0 ± 2.6  10.7 ± 1.8 10.1 ± 1.8 

 

Power law curves, fit to each subject’s normalized 

task completion times, appeared to successfully cap-

ture the trends of the raw task completion data points. 

Mean learning curves (Fig. 5) demonstrated decreases 

of 64-70% in task completion time, as well as de-

creased variability (group standard deviations) with 

training. The Vision-Haptics group began training with 

insignificantly different task completion times com-

pared to Vision-Only, 3.16±1.66 versus 4.04±1.80 
(p=0.27), and also finished the training session with 

comparable performance, 1.13±0.11 versus 1.19±0.18 

(p=0.42), in units of normalized time. Upon switching 
to the physically real system, the Vision-Haptics group 

began the evaluation session with a significantly lower 

completion time 1.19±0.23 versus 1.61±0.43 

(p=0.016). In agreement with our analysis of the final 

performance norms, the subject groups finished 

evaluation with comparable performance (0.95±0.05 

vs. 0.97±0.07, no significant difference p=0.87). In 

each case, standard deviations were smaller for the Vi-

sion-Haptics group through the latter part of training 

and throughout the evaluation session. The power law 

parameters, from which these results are derived, are 
shown in Table 4. 
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Figure 5. Learning curves for (A.) Vision-Only and 

(B.) Vision-Haptics groups, during Training and 

Evaluation Sessions. Learning curves shown are 

derived from power law curves (Eq. 3), averaged 

over subjects in each group (region within dashed 

lines denote ±1 standard deviation). Both groups 

adapted to the virtual ball-and-beam task during 

the Training Session, and then experienced a small 

increase in task completion time when transferring 

to the Evaluation Session with the physical ball. 

Further adaptation was observed as the Evaluation 

Session progressed. Vertical axis is task completion 

time, normalized by the final performance time. 
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In these performance curves, the Vision-Haptics 
group exhibited a better skill transfer than the Vision-

Only group at the point of transition from the training 

to the evaluation session (Fig. 5). The performance 

curves of the Vision-Haptics group were fairly con-

tinuous at the point of transition. For the Vision-Only 

group, however, a large positive offset, or transition 

delta, was evident between the performance curves of 

the two sessions. These results are expressed quantita-

tively by a comparison of normalized task completion 

times derived from power law curve fits (Fig. 6A). The 

Vision-Haptics group demonstrated an insignificant 
change in normalized task completion time (1.13±0.11 

to 1.20±0.23, p=0.36), when switching to the real ball-

and-beam. In contrast, the Vision-Only group demon-

strated a significant increase in task completion time 

after transition (p=0.0028), from 1.19±0.18 to 

1.61±0.43, indicating a disruption in performance. A 

comparison of the changes in performance (see Figure 

6B) shows that the Vision-Haptics group exhibited a 

significantly smaller change (p=0.011), 0.07±0.22 vs. 

the Vision-Only group’s 0.42±0.33. 

4.0 Discussion  

We sought to test whether subjects compensated 

for interaction forces between the hand and the beam. 

The ability to learn control of extrinsic states has pre-

viously been shown in visuo-motor tasks, both in feed-

forward and feedback settings. In a feedforward task, 

adaptation to dynamics is readily demonstrated with 

“catch trials,” where the external object is unexpect-
edly altered, and resulting changes in ballistic 

movement belie compensation for the original dynam-

ics (Dingwell et al. 2002). In a feedback task, the adap-

tation can be probed by altering the dynamics of the 

object or the sensory information regarding the ob-

ject’s motion. For example, temporal features of feed-

back compensation can be characterized by blanking 

out sensory information and observing the time course 

of the motor command (Mehta and Schaal 2002). In 

the present study, the experimental alteration consisted 

of switching from one of two virtual environments to 

the physical environment and then observing changes 

in performance, both immediately and over time.  

Our results show evidence that subjects do incorpo-

rate interaction forces when learning to control the ball 

and beam. This is demonstrated by the disparate results 

for the two subjects groups when evaluated for skill 

transfer (Fig. 6). The Vision-Haptics group, which had 
been exposed to simulated interaction forces, achieved 

a relatively smooth skill transfer, with only an insig-

nificant 6.2% increase in completion time on the 

physical system. In contrast, Vision-Only subjects 

learned to control visual aspects of the task equally 

well, but experienced a significant 35% increase in 

completion time when transferring to the real system. 

Even though both groups were able to control the ball-

and-beam system equally well by the end of the train-

ing session, the Vision-Haptics group was better able 

to compensate for the interaction forces felt in the real 

system during the evaluation session. 
These results are in contrast to what would be ex-

pected if subjects had only learned to control the 

kinematics of the system, that is, to associate desired 

ball motion with a beam position command, but not 

with the interaction forces necessary to achieve that 

beam position. Kinematic control could be achieved by 

controlling the beam with high hand impedance, but 

Table 4. Power Law Curve Fit Parameters (Eq. 

3) and R-Squared Values (mean ± s.d.). 

Group 
 

Para-
meter 

Training 
Session 

Evaluation 
Session 

a 3.17 ± 1.54 1.09 ± 0.51 
b 0.75 ± 0.42 0.35 ± 0.30 
c 0.87 ± 0.55 0.52 ± 0.44 

Vision-
Only 

R
2
 0.59 ± 0.11 0.38 ± 0.19  

a 2.42 ± 1.28 0.67 ± 0.50 
b 0.79 ± 0.71 0.28 ± 0.30 
c 0.74 ± 0.53 0.53 ± 0.46 

Vision-
Haptics 

R
2
 0.61 ± 0.14 0.34 ± 0.18 

Training End
Evaluation Start
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A. Performance Before/After Skill Transfer B. Changes in Performance

Figure 6. (A.) Performance and (B.) changes in 

performance at skill transfer, comparing Vi-

sion-Only and Vision-Haptics groups. Data are 

derived from learning curves (Fig. 5), showing 

mean task completion time (error bars denote 

one s.d.). At skill transfer, Vision-Only group 

demonstrated significantly degraded perform-

ance in terms of longer completion time com-

pared to end of Training Session. Vision-Haptic 

group had no significant change in perform-

ance. Comparing the two groups directly (B.), 

the increase in completion time at skill transfer 

was significantly larger for Vision-Only vs. Vi-

sion-Haptics. For both graphs, vertical axis is 

time, normalized by the final performance time. 

(* indicates p < 0.05.) 
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such control would be negligibly affected by interac-

tion forces, and would be expected to produce a seam-

less skill transfer. The ability to control the ball cer-

tainly indicates an acquired understanding of the ball-

and-beam kinematics. Indeed, Vision-Only subjects 

performed far better at the onset of skill transfer than 
they had when exposed to the task for the first time, 

suggesting that kinematic training alone was helpful 

for learning. But the more effective skill transfer dem-

onstrated by subjects trained with haptic feedback in-

dicates the successful incorporation of interaction 

forces in their control strategy.  

The non-zero change in performance seen in the 

Vision-Haptics group indicates that the virtual ball-

and-beam system, despite its advantages over Vision-

Only, was nevertheless an imperfect model of reality. 

A sufficiently realistic model would be expected to 

yield an insignificant change in performance at skill 
transfer. There were a number of aspects of the real 

system not replicated in the virtual system, such as the 

fact the that real-time ball-and-beam model is limited 

in bandwidth and can only approximate the actual in-

teraction forces. But more important differences may 

lie in other sensory dimensions missing from the vir-

tual system. Some subjects noted that they found the 

sound of the physical ball rolling on the beam to be 

helpful. This rolling also produced a very light but de-

tectable vibration in the beam, that may provide addi-

tional cues regarding ball velocity. With regard to the 
experiment, low fidelity of simulation would be ex-

pected to reduce the magnitude of differences observed 

between groups. At any rate, the skill transfer may be a 

useful paradigm for evaluating the fidelity of a virtual 

reality system. 

Interaction forces are useful for control, partly due 

to the sensory information they impart. The Central 

Nervous System (CNS) has a large array of sensory 

information available, and it is advantageous to use 

any sensory cues that might contribute to estimation of 

the state of the body and environment. In reaching 

tasks, visual and proprioceptive feedback is sufficient 
to estimate limb position and speed. Contact tasks may 

involve the same limb state but vastly different interac-

tion forces, and haptic information can help to differ-

entiate between such forces. In the ball and beam task, 

interaction forces are nearly proportional to ball posi-

tion, and can therefore serve almost directly as a 

measurement of extrinsic states.  

Unlike other sensory feedback, however, interac-

tion forces can disturb the hand. This is due to the two-

way dynamic coupling between hand and beam, which 

involves both position and force. In the presence of 
these interaction forces, a desired beam position can 

only be achieved if the CNS uses high impedance con-

trol to make the hand stiff, or produces appropriate 

compensatory forces. High impedance reduces sensi-

tivity to disturbances, but is also potentially costly in 

terms of muscle force or activation, and might require 

co-contraction. A gradual reduction in impedance 

and/or co-contraction has been observed in a number 

of other motor tasks (Thoroughman and Shadmehr 

1999; Osu et al. 2002; Gribble et al. 2003). In contrast, 
learning of compensatory forces reduces the need for 

co-contraction, and instead relies on both intrinsic and 

extrinsic states, whose dynamics are likely learned 

over time. It is possible that subjects initially used 

higher impedance at the beginning of the Training Ses-

sion, but gradually reduced that strategy over time. If 

so, haptic feedback may be particularly advantageous 

for learning compensatory control.  

Our results are not, however, sufficient to disprove 

the use of high-impedance strategies. Here, it is possi-

ble that Vision-Haptics subjects used haptic feedback 

simply to select higher impedance rather than to learn 
the ball-and-beam interaction forces, with vision alone 

sufficient to learn ball-and-beam kinematics. But such 

impedance tuning would be expected to occur very 

quicly after skill transfer, in contrast to the continued 

adaptation we observed throughout the evaluation ses-

sions.    

The short-term advantages of learning with haptic 

feedback do not, however, appear to be critical in the 

long term. By the end of the Evaluation Session, the 

two subject groups performed the task nearly equally 

well, with no significant difference in performance. 
The presence or absence of haptic feedback therefore 

does not appear to interfere with learning during the 

Training Session, nor with the eventual steady-state 

performance at the end of the Evaluation Session. The 

main advantage of haptic feedback was to effect 

smoother skill transfer than with vision alone.  

These findings may have implications for rehabili-

tation applications. Virtual environments are poten-

tially useful for rehabilitation because they can apply 

highly customized and repeatable training, while si-

multaneously quantifying performance as subjects im-

prove. Because many skilled occupational tasks in-
volve contact with and manipulation of the environ-

ment, it is potentially advantageous for virtual envi-

ronments to simulate these tasks, and to provide haptic 

feedback to help subjects to learn the associated inter-

action forces. 
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